Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindsenlbs Structured version   Visualization version   GIF version

Theorem lindsenlbs 35772
Description: A maximal linearly independent set in a free module of finite dimension over a division ring is a basis. (Contributed by Brendan Leahy, 2-Jun-2021.)
Assertion
Ref Expression
lindsenlbs (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋𝐼) → 𝑋 ∈ (LBasis‘(𝑅 freeLMod 𝐼)))

Proof of Theorem lindsenlbs
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 1192 . 2 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋𝐼) → 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)))
2 drngring 19998 . . . . . . 7 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
3 eqid 2738 . . . . . . . 8 (𝑅 freeLMod 𝐼) = (𝑅 freeLMod 𝐼)
43frlmlmod 20956 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LMod)
52, 4sylan 580 . . . . . 6 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LMod)
6 eqid 2738 . . . . . . 7 (Base‘(𝑅 freeLMod 𝐼)) = (Base‘(𝑅 freeLMod 𝐼))
76linds1 21017 . . . . . 6 (𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) → 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼)))
8 eqid 2738 . . . . . . 7 (LSpan‘(𝑅 freeLMod 𝐼)) = (LSpan‘(𝑅 freeLMod 𝐼))
96, 8lspssv 20245 . . . . . 6 (((𝑅 freeLMod 𝐼) ∈ LMod ∧ 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
105, 7, 9syl2an 596 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
11103impa 1109 . . . 4 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
1211adantr 481 . . 3 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋𝐼) → ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
13 bren2 8771 . . . . . . 7 (𝑋𝐼 ↔ (𝑋𝐼 ∧ ¬ 𝑋𝐼))
1413simprbi 497 . . . . . 6 (𝑋𝐼 → ¬ 𝑋𝐼)
15 snfi 8834 . . . . . . . . . . . 12 {𝑦} ∈ Fin
16 simp2 1136 . . . . . . . . . . . . 13 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝐼 ∈ Fin)
17 lindsdom 35771 . . . . . . . . . . . . 13 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋𝐼)
18 domfi 8975 . . . . . . . . . . . . 13 ((𝐼 ∈ Fin ∧ 𝑋𝐼) → 𝑋 ∈ Fin)
1916, 17, 18syl2anc 584 . . . . . . . . . . . 12 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ∈ Fin)
20 unfi 8955 . . . . . . . . . . . 12 (({𝑦} ∈ Fin ∧ 𝑋 ∈ Fin) → ({𝑦} ∪ 𝑋) ∈ Fin)
2115, 19, 20sylancr 587 . . . . . . . . . . 11 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ({𝑦} ∪ 𝑋) ∈ Fin)
2221adantr 481 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ({𝑦} ∪ 𝑋) ∈ Fin)
23 vex 3436 . . . . . . . . . . . . . 14 𝑦 ∈ V
2423snss 4719 . . . . . . . . . . . . 13 (𝑦𝑋 ↔ {𝑦} ⊆ 𝑋)
256, 8lspssid 20247 . . . . . . . . . . . . . . . 16 (((𝑅 freeLMod 𝐼) ∈ LMod ∧ 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼))) → 𝑋 ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))
265, 7, 25syl2an 596 . . . . . . . . . . . . . . 15 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))
27263impa 1109 . . . . . . . . . . . . . 14 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))
2827sseld 3920 . . . . . . . . . . . . 13 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (𝑦𝑋𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)))
2924, 28syl5bir 242 . . . . . . . . . . . 12 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ({𝑦} ⊆ 𝑋𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)))
3029con3dimp 409 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ¬ {𝑦} ⊆ 𝑋)
31 nsspssun 4191 . . . . . . . . . . 11 (¬ {𝑦} ⊆ 𝑋𝑋 ⊊ ({𝑦} ∪ 𝑋))
3230, 31sylib 217 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → 𝑋 ⊊ ({𝑦} ∪ 𝑋))
33 php3 8995 . . . . . . . . . 10 ((({𝑦} ∪ 𝑋) ∈ Fin ∧ 𝑋 ⊊ ({𝑦} ∪ 𝑋)) → 𝑋 ≺ ({𝑦} ∪ 𝑋))
3422, 32, 33syl2anc 584 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → 𝑋 ≺ ({𝑦} ∪ 𝑋))
3534adantrl 713 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → 𝑋 ≺ ({𝑦} ∪ 𝑋))
36 simpl1 1190 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → 𝑅 ∈ DivRing)
37 simpl2 1191 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → 𝐼 ∈ Fin)
38 snssi 4741 . . . . . . . . . . . 12 (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) → {𝑦} ⊆ (Base‘(𝑅 freeLMod 𝐼)))
3938adantr 481 . . . . . . . . . . 11 ((𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → {𝑦} ⊆ (Base‘(𝑅 freeLMod 𝐼)))
4073ad2ant3 1134 . . . . . . . . . . 11 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼)))
41 unss 4118 . . . . . . . . . . . 12 (({𝑦} ⊆ (Base‘(𝑅 freeLMod 𝐼)) ∧ 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼))) ↔ ({𝑦} ∪ 𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
4241biimpi 215 . . . . . . . . . . 11 (({𝑦} ⊆ (Base‘(𝑅 freeLMod 𝐼)) ∧ 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼))) → ({𝑦} ∪ 𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
4339, 40, 42syl2anr 597 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → ({𝑦} ∪ 𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
44 simpr 485 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))
4528con3dimp 409 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ¬ 𝑦𝑋)
46 difsn 4731 . . . . . . . . . . . . . . . . . 18 𝑦𝑋 → (𝑋 ∖ {𝑦}) = 𝑋)
4745, 46syl 17 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → (𝑋 ∖ {𝑦}) = 𝑋)
4847fveq2d 6778 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})) = ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))
4944, 48neleqtrrd 2861 . . . . . . . . . . . . . . 15 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})))
5049adantlr 712 . . . . . . . . . . . . . 14 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})))
51 difsnid 4743 . . . . . . . . . . . . . . . . . . . . 21 (𝑧𝑋 → ((𝑋 ∖ {𝑧}) ∪ {𝑧}) = 𝑋)
5251fveq2d 6778 . . . . . . . . . . . . . . . . . . . 20 (𝑧𝑋 → ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑧})) = ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))
5352eleq2d 2824 . . . . . . . . . . . . . . . . . . 19 (𝑧𝑋 → (𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑧})) ↔ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)))
5453notbid 318 . . . . . . . . . . . . . . . . . 18 (𝑧𝑋 → (¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑧})) ↔ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)))
5554biimparc 480 . . . . . . . . . . . . . . . . 17 ((¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) ∧ 𝑧𝑋) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑧})))
5655adantll 711 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑧})))
573frlmsca 20960 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 = (Scalar‘(𝑅 freeLMod 𝐼)))
58 simpl 483 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 ∈ DivRing)
5957, 58eqeltrrd 2840 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (Scalar‘(𝑅 freeLMod 𝐼)) ∈ DivRing)
60 eqid 2738 . . . . . . . . . . . . . . . . . . . . 21 (Scalar‘(𝑅 freeLMod 𝐼)) = (Scalar‘(𝑅 freeLMod 𝐼))
6160islvec 20366 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 freeLMod 𝐼) ∈ LVec ↔ ((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ DivRing))
625, 59, 61sylanbrc 583 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LVec)
63623adant3 1131 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (𝑅 freeLMod 𝐼) ∈ LVec)
6463ad4antr 729 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) ∧ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) → (𝑅 freeLMod 𝐼) ∈ LVec)
657ssdifssd 4077 . . . . . . . . . . . . . . . . . . 19 (𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) → (𝑋 ∖ {𝑧}) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
66653ad2ant3 1134 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (𝑋 ∖ {𝑧}) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
6766ad4antr 729 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) ∧ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) → (𝑋 ∖ {𝑧}) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
68 simp-4r 781 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) ∧ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) → 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)))
69 difundir 4214 . . . . . . . . . . . . . . . . . . . . . . . 24 (({𝑦} ∪ 𝑋) ∖ {𝑧}) = (({𝑦} ∖ {𝑧}) ∪ (𝑋 ∖ {𝑧}))
7069equncomi 4089 . . . . . . . . . . . . . . . . . . . . . . 23 (({𝑦} ∪ 𝑋) ∖ {𝑧}) = ((𝑋 ∖ {𝑧}) ∪ ({𝑦} ∖ {𝑧}))
71 elsni 4578 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑧 ∈ {𝑦} → 𝑧 = 𝑦)
7271eleq1d 2823 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ {𝑦} → (𝑧𝑋𝑦𝑋))
7372notbid 318 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ {𝑦} → (¬ 𝑧𝑋 ↔ ¬ 𝑦𝑋))
7445, 73syl5ibrcom 246 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → (𝑧 ∈ {𝑦} → ¬ 𝑧𝑋))
7574con2d 134 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → (𝑧𝑋 → ¬ 𝑧 ∈ {𝑦}))
7675imp 407 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) → ¬ 𝑧 ∈ {𝑦})
77 difsn 4731 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑧 ∈ {𝑦} → ({𝑦} ∖ {𝑧}) = {𝑦})
7876, 77syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) → ({𝑦} ∖ {𝑧}) = {𝑦})
7978uneq2d 4097 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) → ((𝑋 ∖ {𝑧}) ∪ ({𝑦} ∖ {𝑧})) = ((𝑋 ∖ {𝑧}) ∪ {𝑦}))
8070, 79eqtrid 2790 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) → (({𝑦} ∪ 𝑋) ∖ {𝑧}) = ((𝑋 ∖ {𝑧}) ∪ {𝑦}))
8180fveq2d 6778 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) = ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑦})))
8281eleq2d 2824 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) → (𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑦}))))
8382adantllr 716 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) → (𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑦}))))
8483biimpa 477 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) ∧ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) → 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑦})))
85 drngnzr 20533 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑅 ∈ DivRing → 𝑅 ∈ NzRing)
8685adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 ∈ NzRing)
8757, 86eqeltrrd 2840 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing)
885, 87jca 512 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing))
8988anim1i 615 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))))
90893impa 1109 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))))
918, 60lindsind2 21026 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ∧ 𝑧𝑋) → ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑧})))
92913expa 1117 . . . . . . . . . . . . . . . . . . . 20 (((((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑧𝑋) → ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑧})))
9390, 92sylan 580 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑧𝑋) → ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑧})))
9493ad5ant14 755 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) ∧ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) → ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑧})))
9584, 94eldifd 3898 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) ∧ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) → 𝑧 ∈ (((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑦})) ∖ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑧}))))
96 eqid 2738 . . . . . . . . . . . . . . . . . 18 (LSubSp‘(𝑅 freeLMod 𝐼)) = (LSubSp‘(𝑅 freeLMod 𝐼))
976, 96, 8lspsolv 20405 . . . . . . . . . . . . . . . . 17 (((𝑅 freeLMod 𝐼) ∈ LVec ∧ ((𝑋 ∖ {𝑧}) ⊆ (Base‘(𝑅 freeLMod 𝐼)) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ 𝑧 ∈ (((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑦})) ∖ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑧}))))) → 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑧})))
9864, 67, 68, 95, 97syl13anc 1371 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) ∧ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) → 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑧})))
9956, 98mtand 813 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧𝑋) → ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))
10099ralrimiva 3103 . . . . . . . . . . . . . 14 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ∀𝑧𝑋 ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))
101 ralunb 4125 . . . . . . . . . . . . . . 15 (∀𝑧 ∈ ({𝑦} ∪ 𝑋) ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ (∀𝑧 ∈ {𝑦} ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∧ ∀𝑧𝑋 ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
102 id 22 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑦𝑧 = 𝑦)
103 sneq 4571 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 = 𝑦 → {𝑧} = {𝑦})
104103difeq2d 4057 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 = 𝑦 → (({𝑦} ∪ 𝑋) ∖ {𝑧}) = (({𝑦} ∪ 𝑋) ∖ {𝑦}))
105 uncom 4087 . . . . . . . . . . . . . . . . . . . . . . 23 ({𝑦} ∪ 𝑋) = (𝑋 ∪ {𝑦})
106105difeq1i 4053 . . . . . . . . . . . . . . . . . . . . . 22 (({𝑦} ∪ 𝑋) ∖ {𝑦}) = ((𝑋 ∪ {𝑦}) ∖ {𝑦})
107 difun2 4414 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∪ {𝑦}) ∖ {𝑦}) = (𝑋 ∖ {𝑦})
108106, 107eqtri 2766 . . . . . . . . . . . . . . . . . . . . 21 (({𝑦} ∪ 𝑋) ∖ {𝑦}) = (𝑋 ∖ {𝑦})
109104, 108eqtrdi 2794 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑦 → (({𝑦} ∪ 𝑋) ∖ {𝑧}) = (𝑋 ∖ {𝑦}))
110109fveq2d 6778 . . . . . . . . . . . . . . . . . . 19 (𝑧 = 𝑦 → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) = ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})))
111102, 110eleq12d 2833 . . . . . . . . . . . . . . . . . 18 (𝑧 = 𝑦 → (𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦}))))
112111notbid 318 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑦 → (¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦}))))
11323, 112ralsn 4617 . . . . . . . . . . . . . . . 16 (∀𝑧 ∈ {𝑦} ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})))
114113anbi1i 624 . . . . . . . . . . . . . . 15 ((∀𝑧 ∈ {𝑦} ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∧ ∀𝑧𝑋 ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) ↔ (¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})) ∧ ∀𝑧𝑋 ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
115101, 114bitri 274 . . . . . . . . . . . . . 14 (∀𝑧 ∈ ({𝑦} ∪ 𝑋) ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ (¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})) ∧ ∀𝑧𝑋 ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
11650, 100, 115sylanbrc 583 . . . . . . . . . . . . 13 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ∀𝑧 ∈ ({𝑦} ∪ 𝑋) ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))
117116ex 413 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → (¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) → ∀𝑧 ∈ ({𝑦} ∪ 𝑋) ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
11863ad3antrrr 727 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (𝑅 freeLMod 𝐼) ∈ LVec)
119 eldifsn 4720 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) ↔ (𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∧ 𝑥 ≠ (0g‘(Scalar‘(𝑅 freeLMod 𝐼)))))
120119biimpi 215 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) → (𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∧ 𝑥 ≠ (0g‘(Scalar‘(𝑅 freeLMod 𝐼)))))
121120adantl 482 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∧ 𝑥 ≠ (0g‘(Scalar‘(𝑅 freeLMod 𝐼)))))
12238, 7, 42syl2anr 597 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → ({𝑦} ∪ 𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
1231223ad2antl3 1186 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → ({𝑦} ∪ 𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
124123sselda 3921 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) → 𝑧 ∈ (Base‘(𝑅 freeLMod 𝐼)))
125124adantr 481 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → 𝑧 ∈ (Base‘(𝑅 freeLMod 𝐼)))
126 eqid 2738 . . . . . . . . . . . . . . . . . . . 20 ( ·𝑠 ‘(𝑅 freeLMod 𝐼)) = ( ·𝑠 ‘(𝑅 freeLMod 𝐼))
127 eqid 2738 . . . . . . . . . . . . . . . . . . . 20 (Base‘(Scalar‘(𝑅 freeLMod 𝐼))) = (Base‘(Scalar‘(𝑅 freeLMod 𝐼)))
128 eqid 2738 . . . . . . . . . . . . . . . . . . . 20 (0g‘(Scalar‘(𝑅 freeLMod 𝐼))) = (0g‘(Scalar‘(𝑅 freeLMod 𝐼)))
1296, 60, 126, 127, 128, 8lspsnvs 20376 . . . . . . . . . . . . . . . . . . 19 (((𝑅 freeLMod 𝐼) ∈ LVec ∧ (𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∧ 𝑥 ≠ (0g‘(Scalar‘(𝑅 freeLMod 𝐼)))) ∧ 𝑧 ∈ (Base‘(𝑅 freeLMod 𝐼))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘{(𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧)}) = ((LSpan‘(𝑅 freeLMod 𝐼))‘{𝑧}))
130118, 121, 125, 129syl3anc 1370 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → ((LSpan‘(𝑅 freeLMod 𝐼))‘{(𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧)}) = ((LSpan‘(𝑅 freeLMod 𝐼))‘{𝑧}))
131130sseq1d 3952 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (((LSpan‘(𝑅 freeLMod 𝐼))‘{(𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧)}) ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ ((LSpan‘(𝑅 freeLMod 𝐼))‘{𝑧}) ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
13253adant3 1131 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (𝑅 freeLMod 𝐼) ∈ LMod)
133132ad3antrrr 727 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (𝑅 freeLMod 𝐼) ∈ LMod)
134 df-3an 1088 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ↔ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))))
135122ssdifssd 4077 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → (({𝑦} ∪ 𝑋) ∖ {𝑧}) ⊆ (Base‘(𝑅 freeLMod 𝐼)))
1366, 96, 8lspcl 20238 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 freeLMod 𝐼) ∈ LMod ∧ (({𝑦} ∪ 𝑋) ∖ {𝑧}) ⊆ (Base‘(𝑅 freeLMod 𝐼))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∈ (LSubSp‘(𝑅 freeLMod 𝐼)))
1375, 135, 136syl2an 596 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ (𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∈ (LSubSp‘(𝑅 freeLMod 𝐼)))
138137anassrs 468 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∈ (LSubSp‘(𝑅 freeLMod 𝐼)))
139134, 138sylanb 581 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∈ (LSubSp‘(𝑅 freeLMod 𝐼)))
140139ad2antrr 723 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∈ (LSubSp‘(𝑅 freeLMod 𝐼)))
141 eldifi 4061 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) → 𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod 𝐼))))
142141adantl 482 . . . . . . . . . . . . . . . . . . 19 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → 𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod 𝐼))))
1436, 60, 126, 127lmodvscl 20140 . . . . . . . . . . . . . . . . . . 19 (((𝑅 freeLMod 𝐼) ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ (Base‘(𝑅 freeLMod 𝐼))) → (𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧) ∈ (Base‘(𝑅 freeLMod 𝐼)))
144133, 142, 125, 143syl3anc 1370 . . . . . . . . . . . . . . . . . 18 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧) ∈ (Base‘(𝑅 freeLMod 𝐼)))
1456, 96, 8, 133, 140, 144lspsnel5 20257 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → ((𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ ((LSpan‘(𝑅 freeLMod 𝐼))‘{(𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧)}) ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
146132ad2antrr 723 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) → (𝑅 freeLMod 𝐼) ∈ LMod)
147139adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∈ (LSubSp‘(𝑅 freeLMod 𝐼)))
1486, 96, 8, 146, 147, 124lspsnel5 20257 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) → (𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ ((LSpan‘(𝑅 freeLMod 𝐼))‘{𝑧}) ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
149148adantr 481 . . . . . . . . . . . . . . . . 17 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ ((LSpan‘(𝑅 freeLMod 𝐼))‘{𝑧}) ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
150131, 145, 1493bitr4rd 312 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ (𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
151150notbid 318 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ ¬ (𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
152151biimpd 228 . . . . . . . . . . . . . 14 (((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) → ¬ (𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
153152ralrimdva 3106 . . . . . . . . . . . . 13 ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) → (¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) → ∀𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) ¬ (𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
154153ralimdva 3108 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → (∀𝑧 ∈ ({𝑦} ∪ 𝑋) ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) → ∀𝑧 ∈ ({𝑦} ∪ 𝑋)∀𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) ¬ (𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
155117, 154syld 47 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → (¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) → ∀𝑧 ∈ ({𝑦} ∪ 𝑋)∀𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) ¬ (𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
156155impr 455 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → ∀𝑧 ∈ ({𝑦} ∪ 𝑋)∀𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) ¬ (𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))
157 ovex 7308 . . . . . . . . . . 11 (𝑅 freeLMod 𝐼) ∈ V
1586, 126, 8, 60, 127, 128islinds2 21020 . . . . . . . . . . 11 ((𝑅 freeLMod 𝐼) ∈ V → (({𝑦} ∪ 𝑋) ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ↔ (({𝑦} ∪ 𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)) ∧ ∀𝑧 ∈ ({𝑦} ∪ 𝑋)∀𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) ¬ (𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))))
159157, 158ax-mp 5 . . . . . . . . . 10 (({𝑦} ∪ 𝑋) ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ↔ (({𝑦} ∪ 𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)) ∧ ∀𝑧 ∈ ({𝑦} ∪ 𝑋)∀𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖ {(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) ¬ (𝑥( ·𝑠 ‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))
16043, 156, 159sylanbrc 583 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → ({𝑦} ∪ 𝑋) ∈ (LIndS‘(𝑅 freeLMod 𝐼)))
161 lindsdom 35771 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ ({𝑦} ∪ 𝑋) ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ({𝑦} ∪ 𝑋) ≼ 𝐼)
16236, 37, 160, 161syl3anc 1370 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → ({𝑦} ∪ 𝑋) ≼ 𝐼)
163 sdomdomtr 8897 . . . . . . . 8 ((𝑋 ≺ ({𝑦} ∪ 𝑋) ∧ ({𝑦} ∪ 𝑋) ≼ 𝐼) → 𝑋𝐼)
16435, 162, 163syl2anc 584 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → 𝑋𝐼)
165164stoic1a 1775 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑋𝐼) → ¬ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)))
16614, 165sylan2 593 . . . . 5 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋𝐼) → ¬ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)))
167 iman 402 . . . . 5 ((𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) → 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ↔ ¬ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)))
168166, 167sylibr 233 . . . 4 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋𝐼) → (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) → 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)))
169168ssrdv 3927 . . 3 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋𝐼) → (Base‘(𝑅 freeLMod 𝐼)) ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))
17012, 169eqssd 3938 . 2 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋𝐼) → ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) = (Base‘(𝑅 freeLMod 𝐼)))
171 eqid 2738 . . 3 (LBasis‘(𝑅 freeLMod 𝐼)) = (LBasis‘(𝑅 freeLMod 𝐼))
1726, 171, 8islbs4 21039 . 2 (𝑋 ∈ (LBasis‘(𝑅 freeLMod 𝐼)) ↔ (𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ∧ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) = (Base‘(𝑅 freeLMod 𝐼))))
1731, 170, 172sylanbrc 583 1 (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋𝐼) → 𝑋 ∈ (LBasis‘(𝑅 freeLMod 𝐼)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  Vcvv 3432  cdif 3884  cun 3885  wss 3887  wpss 3888  {csn 4561   class class class wbr 5074  cfv 6433  (class class class)co 7275  cen 8730  cdom 8731  csdm 8732  Fincfn 8733  Basecbs 16912  Scalarcsca 16965   ·𝑠 cvsca 16966  0gc0g 17150  Ringcrg 19783  DivRingcdr 19991  LModclmod 20123  LSubSpclss 20193  LSpanclspn 20233  LBasisclbs 20336  LVecclvec 20364  NzRingcnzr 20528   freeLMod cfrlm 20953  LIndSclinds 21012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-hom 16986  df-cco 16987  df-0g 17152  df-gsum 17153  df-prds 17158  df-pws 17160  df-mre 17295  df-mrc 17296  df-mri 17297  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-drng 19993  df-subrg 20022  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lmhm 20284  df-lbs 20337  df-lvec 20365  df-sra 20434  df-rgmod 20435  df-nzr 20529  df-dsmm 20939  df-frlm 20954  df-uvc 20990  df-lindf 21013  df-linds 21014
This theorem is referenced by:  matunitlindflem2  35774
  Copyright terms: Public domain W3C validator