Step | Hyp | Ref
| Expression |
1 | | simpl3 1192 |
. 2
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋 ≈ 𝐼) → 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) |
2 | | drngring 19998 |
. . . . . . 7
⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
3 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑅 freeLMod 𝐼) = (𝑅 freeLMod 𝐼) |
4 | 3 | frlmlmod 20956 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LMod) |
5 | 2, 4 | sylan 580 |
. . . . . 6
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LMod) |
6 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘(𝑅
freeLMod 𝐼)) =
(Base‘(𝑅 freeLMod
𝐼)) |
7 | 6 | linds1 21017 |
. . . . . 6
⊢ (𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) → 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼))) |
8 | | eqid 2738 |
. . . . . . 7
⊢
(LSpan‘(𝑅
freeLMod 𝐼)) =
(LSpan‘(𝑅 freeLMod
𝐼)) |
9 | 6, 8 | lspssv 20245 |
. . . . . 6
⊢ (((𝑅 freeLMod 𝐼) ∈ LMod ∧ 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼))) |
10 | 5, 7, 9 | syl2an 596 |
. . . . 5
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼))) |
11 | 10 | 3impa 1109 |
. . . 4
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼))) |
12 | 11 | adantr 481 |
. . 3
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋 ≈ 𝐼) → ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼))) |
13 | | bren2 8771 |
. . . . . . 7
⊢ (𝑋 ≈ 𝐼 ↔ (𝑋 ≼ 𝐼 ∧ ¬ 𝑋 ≺ 𝐼)) |
14 | 13 | simprbi 497 |
. . . . . 6
⊢ (𝑋 ≈ 𝐼 → ¬ 𝑋 ≺ 𝐼) |
15 | | snfi 8834 |
. . . . . . . . . . . 12
⊢ {𝑦} ∈ Fin |
16 | | simp2 1136 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝐼 ∈ Fin) |
17 | | lindsdom 35771 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ≼ 𝐼) |
18 | | domfi 8975 |
. . . . . . . . . . . . 13
⊢ ((𝐼 ∈ Fin ∧ 𝑋 ≼ 𝐼) → 𝑋 ∈ Fin) |
19 | 16, 17, 18 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ∈ Fin) |
20 | | unfi 8955 |
. . . . . . . . . . . 12
⊢ (({𝑦} ∈ Fin ∧ 𝑋 ∈ Fin) → ({𝑦} ∪ 𝑋) ∈ Fin) |
21 | 15, 19, 20 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ({𝑦} ∪ 𝑋) ∈ Fin) |
22 | 21 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ({𝑦} ∪ 𝑋) ∈ Fin) |
23 | | vex 3436 |
. . . . . . . . . . . . . 14
⊢ 𝑦 ∈ V |
24 | 23 | snss 4719 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝑋 ↔ {𝑦} ⊆ 𝑋) |
25 | 6, 8 | lspssid 20247 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 freeLMod 𝐼) ∈ LMod ∧ 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼))) → 𝑋 ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) |
26 | 5, 7, 25 | syl2an 596 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) |
27 | 26 | 3impa 1109 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) |
28 | 27 | sseld 3920 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (𝑦 ∈ 𝑋 → 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) |
29 | 24, 28 | syl5bir 242 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ({𝑦} ⊆ 𝑋 → 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) |
30 | 29 | con3dimp 409 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ¬ {𝑦} ⊆ 𝑋) |
31 | | nsspssun 4191 |
. . . . . . . . . . 11
⊢ (¬
{𝑦} ⊆ 𝑋 ↔ 𝑋 ⊊ ({𝑦} ∪ 𝑋)) |
32 | 30, 31 | sylib 217 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → 𝑋 ⊊ ({𝑦} ∪ 𝑋)) |
33 | | php3 8995 |
. . . . . . . . . 10
⊢ ((({𝑦} ∪ 𝑋) ∈ Fin ∧ 𝑋 ⊊ ({𝑦} ∪ 𝑋)) → 𝑋 ≺ ({𝑦} ∪ 𝑋)) |
34 | 22, 32, 33 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → 𝑋 ≺ ({𝑦} ∪ 𝑋)) |
35 | 34 | adantrl 713 |
. . . . . . . 8
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → 𝑋 ≺ ({𝑦} ∪ 𝑋)) |
36 | | simpl1 1190 |
. . . . . . . . 9
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → 𝑅 ∈ DivRing) |
37 | | simpl2 1191 |
. . . . . . . . 9
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → 𝐼 ∈ Fin) |
38 | | snssi 4741 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) → {𝑦} ⊆ (Base‘(𝑅 freeLMod 𝐼))) |
39 | 38 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → {𝑦} ⊆ (Base‘(𝑅 freeLMod 𝐼))) |
40 | 7 | 3ad2ant3 1134 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼))) |
41 | | unss 4118 |
. . . . . . . . . . . 12
⊢ (({𝑦} ⊆ (Base‘(𝑅 freeLMod 𝐼)) ∧ 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼))) ↔ ({𝑦} ∪ 𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼))) |
42 | 41 | biimpi 215 |
. . . . . . . . . . 11
⊢ (({𝑦} ⊆ (Base‘(𝑅 freeLMod 𝐼)) ∧ 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼))) → ({𝑦} ∪ 𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼))) |
43 | 39, 40, 42 | syl2anr 597 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → ({𝑦} ∪ 𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼))) |
44 | | simpr 485 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) |
45 | 28 | con3dimp 409 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ¬ 𝑦 ∈ 𝑋) |
46 | | difsn 4731 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
𝑦 ∈ 𝑋 → (𝑋 ∖ {𝑦}) = 𝑋) |
47 | 45, 46 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → (𝑋 ∖ {𝑦}) = 𝑋) |
48 | 47 | fveq2d 6778 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})) = ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) |
49 | 44, 48 | neleqtrrd 2861 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦}))) |
50 | 49 | adantlr 712 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦}))) |
51 | | difsnid 4743 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ 𝑋 → ((𝑋 ∖ {𝑧}) ∪ {𝑧}) = 𝑋) |
52 | 51 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ 𝑋 → ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑧})) = ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) |
53 | 52 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ 𝑋 → (𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑧})) ↔ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) |
54 | 53 | notbid 318 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ 𝑋 → (¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑧})) ↔ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) |
55 | 54 | biimparc 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((¬
𝑦 ∈
((LSpan‘(𝑅 freeLMod
𝐼))‘𝑋) ∧ 𝑧 ∈ 𝑋) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑧}))) |
56 | 55 | adantll 711 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧 ∈ 𝑋) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑧}))) |
57 | 3 | frlmsca 20960 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 = (Scalar‘(𝑅 freeLMod 𝐼))) |
58 | | simpl 483 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 ∈
DivRing) |
59 | 57, 58 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) →
(Scalar‘(𝑅 freeLMod
𝐼)) ∈
DivRing) |
60 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(Scalar‘(𝑅
freeLMod 𝐼)) =
(Scalar‘(𝑅 freeLMod
𝐼)) |
61 | 60 | islvec 20366 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 freeLMod 𝐼) ∈ LVec ↔ ((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ DivRing)) |
62 | 5, 59, 61 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LVec) |
63 | 62 | 3adant3 1131 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (𝑅 freeLMod 𝐼) ∈ LVec) |
64 | 63 | ad4antr 729 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) → (𝑅 freeLMod 𝐼) ∈ LVec) |
65 | 7 | ssdifssd 4077 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) → (𝑋 ∖ {𝑧}) ⊆ (Base‘(𝑅 freeLMod 𝐼))) |
66 | 65 | 3ad2ant3 1134 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (𝑋 ∖ {𝑧}) ⊆ (Base‘(𝑅 freeLMod 𝐼))) |
67 | 66 | ad4antr 729 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) → (𝑋 ∖ {𝑧}) ⊆ (Base‘(𝑅 freeLMod 𝐼))) |
68 | | simp-4r 781 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) → 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) |
69 | | difundir 4214 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (({𝑦} ∪ 𝑋) ∖ {𝑧}) = (({𝑦} ∖ {𝑧}) ∪ (𝑋 ∖ {𝑧})) |
70 | 69 | equncomi 4089 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (({𝑦} ∪ 𝑋) ∖ {𝑧}) = ((𝑋 ∖ {𝑧}) ∪ ({𝑦} ∖ {𝑧})) |
71 | | elsni 4578 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 ∈ {𝑦} → 𝑧 = 𝑦) |
72 | 71 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 ∈ {𝑦} → (𝑧 ∈ 𝑋 ↔ 𝑦 ∈ 𝑋)) |
73 | 72 | notbid 318 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 ∈ {𝑦} → (¬ 𝑧 ∈ 𝑋 ↔ ¬ 𝑦 ∈ 𝑋)) |
74 | 45, 73 | syl5ibrcom 246 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → (𝑧 ∈ {𝑦} → ¬ 𝑧 ∈ 𝑋)) |
75 | 74 | con2d 134 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → (𝑧 ∈ 𝑋 → ¬ 𝑧 ∈ {𝑦})) |
76 | 75 | imp 407 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧 ∈ 𝑋) → ¬ 𝑧 ∈ {𝑦}) |
77 | | difsn 4731 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (¬
𝑧 ∈ {𝑦} → ({𝑦} ∖ {𝑧}) = {𝑦}) |
78 | 76, 77 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧 ∈ 𝑋) → ({𝑦} ∖ {𝑧}) = {𝑦}) |
79 | 78 | uneq2d 4097 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧 ∈ 𝑋) → ((𝑋 ∖ {𝑧}) ∪ ({𝑦} ∖ {𝑧})) = ((𝑋 ∖ {𝑧}) ∪ {𝑦})) |
80 | 70, 79 | eqtrid 2790 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧 ∈ 𝑋) → (({𝑦} ∪ 𝑋) ∖ {𝑧}) = ((𝑋 ∖ {𝑧}) ∪ {𝑦})) |
81 | 80 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧 ∈ 𝑋) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) = ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑦}))) |
82 | 81 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧 ∈ 𝑋) → (𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑦})))) |
83 | 82 | adantllr 716 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧 ∈ 𝑋) → (𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑦})))) |
84 | 83 | biimpa 477 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) → 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑦}))) |
85 | | drngnzr 20533 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑅 ∈ DivRing → 𝑅 ∈ NzRing) |
86 | 85 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 ∈ NzRing) |
87 | 57, 86 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) →
(Scalar‘(𝑅 freeLMod
𝐼)) ∈
NzRing) |
88 | 5, 87 | jca 512 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing)) |
89 | 88 | anim1i 615 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)))) |
90 | 89 | 3impa 1109 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)))) |
91 | 8, 60 | lindsind2 21026 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ∧ 𝑧 ∈ 𝑋) → ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑧}))) |
92 | 91 | 3expa 1117 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑅 freeLMod
𝐼) ∈ LMod ∧
(Scalar‘(𝑅 freeLMod
𝐼)) ∈ NzRing) ∧
𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑧 ∈ 𝑋) → ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑧}))) |
93 | 90, 92 | sylan 580 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ 𝑋) → ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑧}))) |
94 | 93 | ad5ant14 755 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) → ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑧}))) |
95 | 84, 94 | eldifd 3898 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) → 𝑧 ∈ (((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑦})) ∖ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑧})))) |
96 | | eqid 2738 |
. . . . . . . . . . . . . . . . . 18
⊢
(LSubSp‘(𝑅
freeLMod 𝐼)) =
(LSubSp‘(𝑅 freeLMod
𝐼)) |
97 | 6, 96, 8 | lspsolv 20405 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 freeLMod 𝐼) ∈ LVec ∧ ((𝑋 ∖ {𝑧}) ⊆ (Base‘(𝑅 freeLMod 𝐼)) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ 𝑧 ∈ (((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑦})) ∖ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑧}))))) → 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑧}))) |
98 | 64, 67, 68, 95, 97 | syl13anc 1371 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) → 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑧}))) |
99 | 56, 98 | mtand 813 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧 ∈ 𝑋) → ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) |
100 | 99 | ralrimiva 3103 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ∀𝑧 ∈ 𝑋 ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) |
101 | | ralunb 4125 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑧 ∈
({𝑦} ∪ 𝑋) ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ (∀𝑧 ∈ {𝑦} ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∧ ∀𝑧 ∈ 𝑋 ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))) |
102 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑦 → 𝑧 = 𝑦) |
103 | | sneq 4571 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 = 𝑦 → {𝑧} = {𝑦}) |
104 | 103 | difeq2d 4057 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = 𝑦 → (({𝑦} ∪ 𝑋) ∖ {𝑧}) = (({𝑦} ∪ 𝑋) ∖ {𝑦})) |
105 | | uncom 4087 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ({𝑦} ∪ 𝑋) = (𝑋 ∪ {𝑦}) |
106 | 105 | difeq1i 4053 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (({𝑦} ∪ 𝑋) ∖ {𝑦}) = ((𝑋 ∪ {𝑦}) ∖ {𝑦}) |
107 | | difun2 4414 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑋 ∪ {𝑦}) ∖ {𝑦}) = (𝑋 ∖ {𝑦}) |
108 | 106, 107 | eqtri 2766 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (({𝑦} ∪ 𝑋) ∖ {𝑦}) = (𝑋 ∖ {𝑦}) |
109 | 104, 108 | eqtrdi 2794 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = 𝑦 → (({𝑦} ∪ 𝑋) ∖ {𝑧}) = (𝑋 ∖ {𝑦})) |
110 | 109 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑦 → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) = ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦}))) |
111 | 102, 110 | eleq12d 2833 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑦 → (𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})))) |
112 | 111 | notbid 318 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑦 → (¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})))) |
113 | 23, 112 | ralsn 4617 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑧 ∈
{𝑦} ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦}))) |
114 | 113 | anbi1i 624 |
. . . . . . . . . . . . . . 15
⊢
((∀𝑧 ∈
{𝑦} ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∧ ∀𝑧 ∈ 𝑋 ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) ↔ (¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})) ∧ ∀𝑧 ∈ 𝑋 ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))) |
115 | 101, 114 | bitri 274 |
. . . . . . . . . . . . . 14
⊢
(∀𝑧 ∈
({𝑦} ∪ 𝑋) ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ (¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})) ∧ ∀𝑧 ∈ 𝑋 ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))) |
116 | 50, 100, 115 | sylanbrc 583 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ∀𝑧 ∈ ({𝑦} ∪ 𝑋) ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) |
117 | 116 | ex 413 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → (¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) → ∀𝑧 ∈ ({𝑦} ∪ 𝑋) ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))) |
118 | 63 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (𝑅 freeLMod 𝐼) ∈ LVec) |
119 | | eldifsn 4720 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈
((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) ↔ (𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∧ 𝑥 ≠
(0g‘(Scalar‘(𝑅 freeLMod 𝐼))))) |
120 | 119 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈
((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) → (𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∧ 𝑥 ≠
(0g‘(Scalar‘(𝑅 freeLMod 𝐼))))) |
121 | 120 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∧ 𝑥 ≠
(0g‘(Scalar‘(𝑅 freeLMod 𝐼))))) |
122 | 38, 7, 42 | syl2anr 597 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → ({𝑦} ∪ 𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼))) |
123 | 122 | 3ad2antl3 1186 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → ({𝑦} ∪ 𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼))) |
124 | 123 | sselda 3921 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) → 𝑧 ∈ (Base‘(𝑅 freeLMod 𝐼))) |
125 | 124 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → 𝑧 ∈ (Base‘(𝑅 freeLMod 𝐼))) |
126 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (
·𝑠 ‘(𝑅 freeLMod 𝐼)) = ( ·𝑠
‘(𝑅 freeLMod 𝐼)) |
127 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(Base‘(Scalar‘(𝑅 freeLMod 𝐼))) = (Base‘(Scalar‘(𝑅 freeLMod 𝐼))) |
128 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(0g‘(Scalar‘(𝑅 freeLMod 𝐼))) =
(0g‘(Scalar‘(𝑅 freeLMod 𝐼))) |
129 | 6, 60, 126, 127, 128, 8 | lspsnvs 20376 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 freeLMod 𝐼) ∈ LVec ∧ (𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∧ 𝑥 ≠
(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))) ∧ 𝑧 ∈ (Base‘(𝑅 freeLMod 𝐼))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘{(𝑥( ·𝑠
‘(𝑅 freeLMod 𝐼))𝑧)}) = ((LSpan‘(𝑅 freeLMod 𝐼))‘{𝑧})) |
130 | 118, 121,
125, 129 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → ((LSpan‘(𝑅 freeLMod 𝐼))‘{(𝑥( ·𝑠
‘(𝑅 freeLMod 𝐼))𝑧)}) = ((LSpan‘(𝑅 freeLMod 𝐼))‘{𝑧})) |
131 | 130 | sseq1d 3952 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (((LSpan‘(𝑅 freeLMod 𝐼))‘{(𝑥( ·𝑠
‘(𝑅 freeLMod 𝐼))𝑧)}) ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ ((LSpan‘(𝑅 freeLMod 𝐼))‘{𝑧}) ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))) |
132 | 5 | 3adant3 1131 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (𝑅 freeLMod 𝐼) ∈ LMod) |
133 | 132 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (𝑅 freeLMod 𝐼) ∈ LMod) |
134 | | df-3an 1088 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ↔ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)))) |
135 | 122 | ssdifssd 4077 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → (({𝑦} ∪ 𝑋) ∖ {𝑧}) ⊆ (Base‘(𝑅 freeLMod 𝐼))) |
136 | 6, 96, 8 | lspcl 20238 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 freeLMod 𝐼) ∈ LMod ∧ (({𝑦} ∪ 𝑋) ∖ {𝑧}) ⊆ (Base‘(𝑅 freeLMod 𝐼))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∈ (LSubSp‘(𝑅 freeLMod 𝐼))) |
137 | 5, 135, 136 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ (𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∈ (LSubSp‘(𝑅 freeLMod 𝐼))) |
138 | 137 | anassrs 468 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∈ (LSubSp‘(𝑅 freeLMod 𝐼))) |
139 | 134, 138 | sylanb 581 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∈ (LSubSp‘(𝑅 freeLMod 𝐼))) |
140 | 139 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∈ (LSubSp‘(𝑅 freeLMod 𝐼))) |
141 | | eldifi 4061 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈
((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) → 𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod 𝐼)))) |
142 | 141 | adantl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → 𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod 𝐼)))) |
143 | 6, 60, 126, 127 | lmodvscl 20140 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 freeLMod 𝐼) ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ (Base‘(𝑅 freeLMod 𝐼))) → (𝑥( ·𝑠
‘(𝑅 freeLMod 𝐼))𝑧) ∈ (Base‘(𝑅 freeLMod 𝐼))) |
144 | 133, 142,
125, 143 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (𝑥( ·𝑠
‘(𝑅 freeLMod 𝐼))𝑧) ∈ (Base‘(𝑅 freeLMod 𝐼))) |
145 | 6, 96, 8, 133, 140, 144 | lspsnel5 20257 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → ((𝑥( ·𝑠
‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ ((LSpan‘(𝑅 freeLMod 𝐼))‘{(𝑥( ·𝑠
‘(𝑅 freeLMod 𝐼))𝑧)}) ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))) |
146 | 132 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) → (𝑅 freeLMod 𝐼) ∈ LMod) |
147 | 139 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∈ (LSubSp‘(𝑅 freeLMod 𝐼))) |
148 | 6, 96, 8, 146, 147, 124 | lspsnel5 20257 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) → (𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ ((LSpan‘(𝑅 freeLMod 𝐼))‘{𝑧}) ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))) |
149 | 148 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ ((LSpan‘(𝑅 freeLMod 𝐼))‘{𝑧}) ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))) |
150 | 131, 145,
149 | 3bitr4rd 312 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ (𝑥( ·𝑠
‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))) |
151 | 150 | notbid 318 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ ¬ (𝑥( ·𝑠
‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))) |
152 | 151 | biimpd 228 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) → ¬ (𝑥( ·𝑠
‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))) |
153 | 152 | ralrimdva 3106 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) → (¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) → ∀𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) ¬ (𝑥( ·𝑠
‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))) |
154 | 153 | ralimdva 3108 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → (∀𝑧 ∈ ({𝑦} ∪ 𝑋) ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) → ∀𝑧 ∈ ({𝑦} ∪ 𝑋)∀𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) ¬ (𝑥( ·𝑠
‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))) |
155 | 117, 154 | syld 47 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → (¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) → ∀𝑧 ∈ ({𝑦} ∪ 𝑋)∀𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) ¬ (𝑥( ·𝑠
‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))) |
156 | 155 | impr 455 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → ∀𝑧 ∈ ({𝑦} ∪ 𝑋)∀𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) ¬ (𝑥( ·𝑠
‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) |
157 | | ovex 7308 |
. . . . . . . . . . 11
⊢ (𝑅 freeLMod 𝐼) ∈ V |
158 | 6, 126, 8, 60, 127, 128 | islinds2 21020 |
. . . . . . . . . . 11
⊢ ((𝑅 freeLMod 𝐼) ∈ V → (({𝑦} ∪ 𝑋) ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ↔ (({𝑦} ∪ 𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)) ∧ ∀𝑧 ∈ ({𝑦} ∪ 𝑋)∀𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) ¬ (𝑥( ·𝑠
‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))) |
159 | 157, 158 | ax-mp 5 |
. . . . . . . . . 10
⊢ (({𝑦} ∪ 𝑋) ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ↔ (({𝑦} ∪ 𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)) ∧ ∀𝑧 ∈ ({𝑦} ∪ 𝑋)∀𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) ¬ (𝑥( ·𝑠
‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))) |
160 | 43, 156, 159 | sylanbrc 583 |
. . . . . . . . 9
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → ({𝑦} ∪ 𝑋) ∈ (LIndS‘(𝑅 freeLMod 𝐼))) |
161 | | lindsdom 35771 |
. . . . . . . . 9
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ ({𝑦} ∪ 𝑋) ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ({𝑦} ∪ 𝑋) ≼ 𝐼) |
162 | 36, 37, 160, 161 | syl3anc 1370 |
. . . . . . . 8
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → ({𝑦} ∪ 𝑋) ≼ 𝐼) |
163 | | sdomdomtr 8897 |
. . . . . . . 8
⊢ ((𝑋 ≺ ({𝑦} ∪ 𝑋) ∧ ({𝑦} ∪ 𝑋) ≼ 𝐼) → 𝑋 ≺ 𝐼) |
164 | 35, 162, 163 | syl2anc 584 |
. . . . . . 7
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → 𝑋 ≺ 𝐼) |
165 | 164 | stoic1a 1775 |
. . . . . 6
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑋 ≺ 𝐼) → ¬ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) |
166 | 14, 165 | sylan2 593 |
. . . . 5
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋 ≈ 𝐼) → ¬ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) |
167 | | iman 402 |
. . . . 5
⊢ ((𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) → 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ↔ ¬ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) |
168 | 166, 167 | sylibr 233 |
. . . 4
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋 ≈ 𝐼) → (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) → 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) |
169 | 168 | ssrdv 3927 |
. . 3
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋 ≈ 𝐼) → (Base‘(𝑅 freeLMod 𝐼)) ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) |
170 | 12, 169 | eqssd 3938 |
. 2
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋 ≈ 𝐼) → ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) = (Base‘(𝑅 freeLMod 𝐼))) |
171 | | eqid 2738 |
. . 3
⊢
(LBasis‘(𝑅
freeLMod 𝐼)) =
(LBasis‘(𝑅 freeLMod
𝐼)) |
172 | 6, 171, 8 | islbs4 21039 |
. 2
⊢ (𝑋 ∈ (LBasis‘(𝑅 freeLMod 𝐼)) ↔ (𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ∧ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) = (Base‘(𝑅 freeLMod 𝐼)))) |
173 | 1, 170, 172 | sylanbrc 583 |
1
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋 ≈ 𝐼) → 𝑋 ∈ (LBasis‘(𝑅 freeLMod 𝐼))) |