| Step | Hyp | Ref
| Expression |
| 1 | | simpl3 1194 |
. 2
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋 ≈ 𝐼) → 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) |
| 2 | | drngring 20701 |
. . . . . . 7
⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) |
| 3 | | eqid 2736 |
. . . . . . . 8
⊢ (𝑅 freeLMod 𝐼) = (𝑅 freeLMod 𝐼) |
| 4 | 3 | frlmlmod 21714 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LMod) |
| 5 | 2, 4 | sylan 580 |
. . . . . 6
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LMod) |
| 6 | | eqid 2736 |
. . . . . . 7
⊢
(Base‘(𝑅
freeLMod 𝐼)) =
(Base‘(𝑅 freeLMod
𝐼)) |
| 7 | 6 | linds1 21775 |
. . . . . 6
⊢ (𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) → 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼))) |
| 8 | | eqid 2736 |
. . . . . . 7
⊢
(LSpan‘(𝑅
freeLMod 𝐼)) =
(LSpan‘(𝑅 freeLMod
𝐼)) |
| 9 | 6, 8 | lspssv 20945 |
. . . . . 6
⊢ (((𝑅 freeLMod 𝐼) ∈ LMod ∧ 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼))) |
| 10 | 5, 7, 9 | syl2an 596 |
. . . . 5
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼))) |
| 11 | 10 | 3impa 1109 |
. . . 4
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼))) |
| 12 | 11 | adantr 480 |
. . 3
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋 ≈ 𝐼) → ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼))) |
| 13 | | bren2 9002 |
. . . . . . 7
⊢ (𝑋 ≈ 𝐼 ↔ (𝑋 ≼ 𝐼 ∧ ¬ 𝑋 ≺ 𝐼)) |
| 14 | 13 | simprbi 496 |
. . . . . 6
⊢ (𝑋 ≈ 𝐼 → ¬ 𝑋 ≺ 𝐼) |
| 15 | | snfi 9062 |
. . . . . . . . . . . 12
⊢ {𝑦} ∈ Fin |
| 16 | | simp2 1137 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝐼 ∈ Fin) |
| 17 | | lindsdom 37643 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ≼ 𝐼) |
| 18 | | domfi 9208 |
. . . . . . . . . . . . 13
⊢ ((𝐼 ∈ Fin ∧ 𝑋 ≼ 𝐼) → 𝑋 ∈ Fin) |
| 19 | 16, 17, 18 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ∈ Fin) |
| 20 | | unfi 9190 |
. . . . . . . . . . . 12
⊢ (({𝑦} ∈ Fin ∧ 𝑋 ∈ Fin) → ({𝑦} ∪ 𝑋) ∈ Fin) |
| 21 | 15, 19, 20 | sylancr 587 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ({𝑦} ∪ 𝑋) ∈ Fin) |
| 22 | 21 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ({𝑦} ∪ 𝑋) ∈ Fin) |
| 23 | | vex 3468 |
. . . . . . . . . . . . . 14
⊢ 𝑦 ∈ V |
| 24 | 23 | snss 4766 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ 𝑋 ↔ {𝑦} ⊆ 𝑋) |
| 25 | 6, 8 | lspssid 20947 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 freeLMod 𝐼) ∈ LMod ∧ 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼))) → 𝑋 ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) |
| 26 | 5, 7, 25 | syl2an 596 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) |
| 27 | 26 | 3impa 1109 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) |
| 28 | 27 | sseld 3962 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (𝑦 ∈ 𝑋 → 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) |
| 29 | 24, 28 | biimtrrid 243 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ({𝑦} ⊆ 𝑋 → 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) |
| 30 | 29 | con3dimp 408 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ¬ {𝑦} ⊆ 𝑋) |
| 31 | | nsspssun 4248 |
. . . . . . . . . . 11
⊢ (¬
{𝑦} ⊆ 𝑋 ↔ 𝑋 ⊊ ({𝑦} ∪ 𝑋)) |
| 32 | 30, 31 | sylib 218 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → 𝑋 ⊊ ({𝑦} ∪ 𝑋)) |
| 33 | | php3 9228 |
. . . . . . . . . 10
⊢ ((({𝑦} ∪ 𝑋) ∈ Fin ∧ 𝑋 ⊊ ({𝑦} ∪ 𝑋)) → 𝑋 ≺ ({𝑦} ∪ 𝑋)) |
| 34 | 22, 32, 33 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → 𝑋 ≺ ({𝑦} ∪ 𝑋)) |
| 35 | 34 | adantrl 716 |
. . . . . . . 8
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → 𝑋 ≺ ({𝑦} ∪ 𝑋)) |
| 36 | | simpl1 1192 |
. . . . . . . . 9
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → 𝑅 ∈ DivRing) |
| 37 | | simpl2 1193 |
. . . . . . . . 9
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → 𝐼 ∈ Fin) |
| 38 | | snssi 4789 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) → {𝑦} ⊆ (Base‘(𝑅 freeLMod 𝐼))) |
| 39 | 38 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → {𝑦} ⊆ (Base‘(𝑅 freeLMod 𝐼))) |
| 40 | 7 | 3ad2ant3 1135 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼))) |
| 41 | | unss 4170 |
. . . . . . . . . . . 12
⊢ (({𝑦} ⊆ (Base‘(𝑅 freeLMod 𝐼)) ∧ 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼))) ↔ ({𝑦} ∪ 𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼))) |
| 42 | 41 | biimpi 216 |
. . . . . . . . . . 11
⊢ (({𝑦} ⊆ (Base‘(𝑅 freeLMod 𝐼)) ∧ 𝑋 ⊆ (Base‘(𝑅 freeLMod 𝐼))) → ({𝑦} ∪ 𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼))) |
| 43 | 39, 40, 42 | syl2anr 597 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → ({𝑦} ∪ 𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼))) |
| 44 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) |
| 45 | 28 | con3dimp 408 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ¬ 𝑦 ∈ 𝑋) |
| 46 | | difsn 4779 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
𝑦 ∈ 𝑋 → (𝑋 ∖ {𝑦}) = 𝑋) |
| 47 | 45, 46 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → (𝑋 ∖ {𝑦}) = 𝑋) |
| 48 | 47 | fveq2d 6885 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})) = ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) |
| 49 | 44, 48 | neleqtrrd 2858 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦}))) |
| 50 | 49 | adantlr 715 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦}))) |
| 51 | | difsnid 4791 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 ∈ 𝑋 → ((𝑋 ∖ {𝑧}) ∪ {𝑧}) = 𝑋) |
| 52 | 51 | fveq2d 6885 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ 𝑋 → ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑧})) = ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) |
| 53 | 52 | eleq2d 2821 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ 𝑋 → (𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑧})) ↔ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) |
| 54 | 53 | notbid 318 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 ∈ 𝑋 → (¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑧})) ↔ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) |
| 55 | 54 | biimparc 479 |
. . . . . . . . . . . . . . . . 17
⊢ ((¬
𝑦 ∈
((LSpan‘(𝑅 freeLMod
𝐼))‘𝑋) ∧ 𝑧 ∈ 𝑋) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑧}))) |
| 56 | 55 | adantll 714 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧 ∈ 𝑋) → ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑧}))) |
| 57 | 3 | frlmsca 21718 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 = (Scalar‘(𝑅 freeLMod 𝐼))) |
| 58 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 ∈
DivRing) |
| 59 | 57, 58 | eqeltrrd 2836 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) →
(Scalar‘(𝑅 freeLMod
𝐼)) ∈
DivRing) |
| 60 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(Scalar‘(𝑅
freeLMod 𝐼)) =
(Scalar‘(𝑅 freeLMod
𝐼)) |
| 61 | 60 | islvec 21067 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 freeLMod 𝐼) ∈ LVec ↔ ((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ DivRing)) |
| 62 | 5, 59, 61 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → (𝑅 freeLMod 𝐼) ∈ LVec) |
| 63 | 62 | 3adant3 1132 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (𝑅 freeLMod 𝐼) ∈ LVec) |
| 64 | 63 | ad4antr 732 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) → (𝑅 freeLMod 𝐼) ∈ LVec) |
| 65 | 7 | ssdifssd 4127 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) → (𝑋 ∖ {𝑧}) ⊆ (Base‘(𝑅 freeLMod 𝐼))) |
| 66 | 65 | 3ad2ant3 1135 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (𝑋 ∖ {𝑧}) ⊆ (Base‘(𝑅 freeLMod 𝐼))) |
| 67 | 66 | ad4antr 732 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) → (𝑋 ∖ {𝑧}) ⊆ (Base‘(𝑅 freeLMod 𝐼))) |
| 68 | | simp-4r 783 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) → 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) |
| 69 | | difundir 4271 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (({𝑦} ∪ 𝑋) ∖ {𝑧}) = (({𝑦} ∖ {𝑧}) ∪ (𝑋 ∖ {𝑧})) |
| 70 | 69 | equncomi 4140 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (({𝑦} ∪ 𝑋) ∖ {𝑧}) = ((𝑋 ∖ {𝑧}) ∪ ({𝑦} ∖ {𝑧})) |
| 71 | | elsni 4623 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑧 ∈ {𝑦} → 𝑧 = 𝑦) |
| 72 | 71 | eleq1d 2820 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑧 ∈ {𝑦} → (𝑧 ∈ 𝑋 ↔ 𝑦 ∈ 𝑋)) |
| 73 | 72 | notbid 318 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑧 ∈ {𝑦} → (¬ 𝑧 ∈ 𝑋 ↔ ¬ 𝑦 ∈ 𝑋)) |
| 74 | 45, 73 | syl5ibrcom 247 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → (𝑧 ∈ {𝑦} → ¬ 𝑧 ∈ 𝑋)) |
| 75 | 74 | con2d 134 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → (𝑧 ∈ 𝑋 → ¬ 𝑧 ∈ {𝑦})) |
| 76 | 75 | imp 406 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧 ∈ 𝑋) → ¬ 𝑧 ∈ {𝑦}) |
| 77 | | difsn 4779 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (¬
𝑧 ∈ {𝑦} → ({𝑦} ∖ {𝑧}) = {𝑦}) |
| 78 | 76, 77 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧 ∈ 𝑋) → ({𝑦} ∖ {𝑧}) = {𝑦}) |
| 79 | 78 | uneq2d 4148 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧 ∈ 𝑋) → ((𝑋 ∖ {𝑧}) ∪ ({𝑦} ∖ {𝑧})) = ((𝑋 ∖ {𝑧}) ∪ {𝑦})) |
| 80 | 70, 79 | eqtrid 2783 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧 ∈ 𝑋) → (({𝑦} ∪ 𝑋) ∖ {𝑧}) = ((𝑋 ∖ {𝑧}) ∪ {𝑦})) |
| 81 | 80 | fveq2d 6885 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧 ∈ 𝑋) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) = ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑦}))) |
| 82 | 81 | eleq2d 2821 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧 ∈ 𝑋) → (𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑦})))) |
| 83 | 82 | adantllr 719 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧 ∈ 𝑋) → (𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑦})))) |
| 84 | 83 | biimpa 476 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) → 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑦}))) |
| 85 | | drngnzr 20713 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑅 ∈ DivRing → 𝑅 ∈ NzRing) |
| 86 | 85 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → 𝑅 ∈ NzRing) |
| 87 | 57, 86 | eqeltrrd 2836 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) →
(Scalar‘(𝑅 freeLMod
𝐼)) ∈
NzRing) |
| 88 | 5, 87 | jca 511 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) → ((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing)) |
| 89 | 88 | anim1i 615 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)))) |
| 90 | 89 | 3impa 1109 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)))) |
| 91 | 8, 60 | lindsind2 21784 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝑅 freeLMod 𝐼) ∈ LMod ∧ (Scalar‘(𝑅 freeLMod 𝐼)) ∈ NzRing) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ∧ 𝑧 ∈ 𝑋) → ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑧}))) |
| 92 | 91 | 3expa 1118 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝑅 freeLMod
𝐼) ∈ LMod ∧
(Scalar‘(𝑅 freeLMod
𝐼)) ∈ NzRing) ∧
𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑧 ∈ 𝑋) → ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑧}))) |
| 93 | 90, 92 | sylan 580 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ 𝑋) → ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑧}))) |
| 94 | 93 | ad5ant14 757 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) → ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑧}))) |
| 95 | 84, 94 | eldifd 3942 |
. . . . . . . . . . . . . . . . 17
⊢
((((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) → 𝑧 ∈ (((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑦})) ∖ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑧})))) |
| 96 | | eqid 2736 |
. . . . . . . . . . . . . . . . . 18
⊢
(LSubSp‘(𝑅
freeLMod 𝐼)) =
(LSubSp‘(𝑅 freeLMod
𝐼)) |
| 97 | 6, 96, 8 | lspsolv 21109 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 freeLMod 𝐼) ∈ LVec ∧ ((𝑋 ∖ {𝑧}) ⊆ (Base‘(𝑅 freeLMod 𝐼)) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ 𝑧 ∈ (((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑦})) ∖ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑧}))))) → 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑧}))) |
| 98 | 64, 67, 68, 95, 97 | syl13anc 1374 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧 ∈ 𝑋) ∧ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) → 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘((𝑋 ∖ {𝑧}) ∪ {𝑧}))) |
| 99 | 56, 98 | mtand 815 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ∧ 𝑧 ∈ 𝑋) → ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) |
| 100 | 99 | ralrimiva 3133 |
. . . . . . . . . . . . . 14
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ∀𝑧 ∈ 𝑋 ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) |
| 101 | | ralunb 4177 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑧 ∈
({𝑦} ∪ 𝑋) ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ (∀𝑧 ∈ {𝑦} ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∧ ∀𝑧 ∈ 𝑋 ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))) |
| 102 | | id 22 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑦 → 𝑧 = 𝑦) |
| 103 | | sneq 4616 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑧 = 𝑦 → {𝑧} = {𝑦}) |
| 104 | 103 | difeq2d 4106 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑧 = 𝑦 → (({𝑦} ∪ 𝑋) ∖ {𝑧}) = (({𝑦} ∪ 𝑋) ∖ {𝑦})) |
| 105 | | uncom 4138 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ({𝑦} ∪ 𝑋) = (𝑋 ∪ {𝑦}) |
| 106 | 105 | difeq1i 4102 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (({𝑦} ∪ 𝑋) ∖ {𝑦}) = ((𝑋 ∪ {𝑦}) ∖ {𝑦}) |
| 107 | | difun2 4461 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑋 ∪ {𝑦}) ∖ {𝑦}) = (𝑋 ∖ {𝑦}) |
| 108 | 106, 107 | eqtri 2759 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (({𝑦} ∪ 𝑋) ∖ {𝑦}) = (𝑋 ∖ {𝑦}) |
| 109 | 104, 108 | eqtrdi 2787 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 = 𝑦 → (({𝑦} ∪ 𝑋) ∖ {𝑧}) = (𝑋 ∖ {𝑦})) |
| 110 | 109 | fveq2d 6885 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = 𝑦 → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) = ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦}))) |
| 111 | 102, 110 | eleq12d 2829 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 𝑦 → (𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})))) |
| 112 | 111 | notbid 318 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 𝑦 → (¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})))) |
| 113 | 23, 112 | ralsn 4662 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑧 ∈
{𝑦} ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦}))) |
| 114 | 113 | anbi1i 624 |
. . . . . . . . . . . . . . 15
⊢
((∀𝑧 ∈
{𝑦} ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∧ ∀𝑧 ∈ 𝑋 ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) ↔ (¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})) ∧ ∀𝑧 ∈ 𝑋 ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))) |
| 115 | 101, 114 | bitri 275 |
. . . . . . . . . . . . . 14
⊢
(∀𝑧 ∈
({𝑦} ∪ 𝑋) ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ (¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(𝑋 ∖ {𝑦})) ∧ ∀𝑧 ∈ 𝑋 ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))) |
| 116 | 50, 100, 115 | sylanbrc 583 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) → ∀𝑧 ∈ ({𝑦} ∪ 𝑋) ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) |
| 117 | 116 | ex 412 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → (¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) → ∀𝑧 ∈ ({𝑦} ∪ 𝑋) ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))) |
| 118 | 63 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (𝑅 freeLMod 𝐼) ∈ LVec) |
| 119 | | eldifsn 4767 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 ∈
((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) ↔ (𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∧ 𝑥 ≠
(0g‘(Scalar‘(𝑅 freeLMod 𝐼))))) |
| 120 | 119 | biimpi 216 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈
((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) → (𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∧ 𝑥 ≠
(0g‘(Scalar‘(𝑅 freeLMod 𝐼))))) |
| 121 | 120 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∧ 𝑥 ≠
(0g‘(Scalar‘(𝑅 freeLMod 𝐼))))) |
| 122 | 38, 7, 42 | syl2anr 597 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → ({𝑦} ∪ 𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼))) |
| 123 | 122 | 3ad2antl3 1188 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → ({𝑦} ∪ 𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼))) |
| 124 | 123 | sselda 3963 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) → 𝑧 ∈ (Base‘(𝑅 freeLMod 𝐼))) |
| 125 | 124 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → 𝑧 ∈ (Base‘(𝑅 freeLMod 𝐼))) |
| 126 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (
·𝑠 ‘(𝑅 freeLMod 𝐼)) = ( ·𝑠
‘(𝑅 freeLMod 𝐼)) |
| 127 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(Base‘(Scalar‘(𝑅 freeLMod 𝐼))) = (Base‘(Scalar‘(𝑅 freeLMod 𝐼))) |
| 128 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(0g‘(Scalar‘(𝑅 freeLMod 𝐼))) =
(0g‘(Scalar‘(𝑅 freeLMod 𝐼))) |
| 129 | 6, 60, 126, 127, 128, 8 | lspsnvs 21080 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 freeLMod 𝐼) ∈ LVec ∧ (𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∧ 𝑥 ≠
(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))) ∧ 𝑧 ∈ (Base‘(𝑅 freeLMod 𝐼))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘{(𝑥( ·𝑠
‘(𝑅 freeLMod 𝐼))𝑧)}) = ((LSpan‘(𝑅 freeLMod 𝐼))‘{𝑧})) |
| 130 | 118, 121,
125, 129 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → ((LSpan‘(𝑅 freeLMod 𝐼))‘{(𝑥( ·𝑠
‘(𝑅 freeLMod 𝐼))𝑧)}) = ((LSpan‘(𝑅 freeLMod 𝐼))‘{𝑧})) |
| 131 | 130 | sseq1d 3995 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (((LSpan‘(𝑅 freeLMod 𝐼))‘{(𝑥( ·𝑠
‘(𝑅 freeLMod 𝐼))𝑧)}) ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ ((LSpan‘(𝑅 freeLMod 𝐼))‘{𝑧}) ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))) |
| 132 | 5 | 3adant3 1132 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → (𝑅 freeLMod 𝐼) ∈ LMod) |
| 133 | 132 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (𝑅 freeLMod 𝐼) ∈ LMod) |
| 134 | | df-3an 1088 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ↔ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)))) |
| 135 | 122 | ssdifssd 4127 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → (({𝑦} ∪ 𝑋) ∖ {𝑧}) ⊆ (Base‘(𝑅 freeLMod 𝐼))) |
| 136 | 6, 96, 8 | lspcl 20938 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑅 freeLMod 𝐼) ∈ LMod ∧ (({𝑦} ∪ 𝑋) ∖ {𝑧}) ⊆ (Base‘(𝑅 freeLMod 𝐼))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∈ (LSubSp‘(𝑅 freeLMod 𝐼))) |
| 137 | 5, 135, 136 | syl2an 596 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ (𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∈ (LSubSp‘(𝑅 freeLMod 𝐼))) |
| 138 | 137 | anassrs 467 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin) ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∈ (LSubSp‘(𝑅 freeLMod 𝐼))) |
| 139 | 134, 138 | sylanb 581 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∈ (LSubSp‘(𝑅 freeLMod 𝐼))) |
| 140 | 139 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∈ (LSubSp‘(𝑅 freeLMod 𝐼))) |
| 141 | | eldifi 4111 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈
((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) → 𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod 𝐼)))) |
| 142 | 141 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → 𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod 𝐼)))) |
| 143 | 6, 60, 126, 127 | lmodvscl 20840 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 freeLMod 𝐼) ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ (Base‘(𝑅 freeLMod 𝐼))) → (𝑥( ·𝑠
‘(𝑅 freeLMod 𝐼))𝑧) ∈ (Base‘(𝑅 freeLMod 𝐼))) |
| 144 | 133, 142,
125, 143 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (𝑥( ·𝑠
‘(𝑅 freeLMod 𝐼))𝑧) ∈ (Base‘(𝑅 freeLMod 𝐼))) |
| 145 | 6, 96, 8, 133, 140, 144 | ellspsn5b 20957 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → ((𝑥( ·𝑠
‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ ((LSpan‘(𝑅 freeLMod 𝐼))‘{(𝑥( ·𝑠
‘(𝑅 freeLMod 𝐼))𝑧)}) ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))) |
| 146 | 132 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) → (𝑅 freeLMod 𝐼) ∈ LMod) |
| 147 | 139 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) → ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ∈ (LSubSp‘(𝑅 freeLMod 𝐼))) |
| 148 | 6, 96, 8, 146, 147, 124 | ellspsn5b 20957 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) → (𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ ((LSpan‘(𝑅 freeLMod 𝐼))‘{𝑧}) ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))) |
| 149 | 148 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ ((LSpan‘(𝑅 freeLMod 𝐼))‘{𝑧}) ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))) |
| 150 | 131, 145,
149 | 3bitr4rd 312 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ (𝑥( ·𝑠
‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))) |
| 151 | 150 | notbid 318 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) ↔ ¬ (𝑥( ·𝑠
‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))) |
| 152 | 151 | biimpd 229 |
. . . . . . . . . . . . . 14
⊢
(((((𝑅 ∈
DivRing ∧ 𝐼 ∈ Fin
∧ 𝑋 ∈
(LIndS‘(𝑅 freeLMod
𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) ∧ 𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))})) → (¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) → ¬ (𝑥( ·𝑠
‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))) |
| 153 | 152 | ralrimdva 3141 |
. . . . . . . . . . . . 13
⊢ ((((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) ∧ 𝑧 ∈ ({𝑦} ∪ 𝑋)) → (¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) → ∀𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) ¬ (𝑥( ·𝑠
‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))) |
| 154 | 153 | ralimdva 3153 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → (∀𝑧 ∈ ({𝑦} ∪ 𝑋) ¬ 𝑧 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})) → ∀𝑧 ∈ ({𝑦} ∪ 𝑋)∀𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) ¬ (𝑥( ·𝑠
‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))) |
| 155 | 117, 154 | syld 47 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼))) → (¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) → ∀𝑧 ∈ ({𝑦} ∪ 𝑋)∀𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) ¬ (𝑥( ·𝑠
‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))) |
| 156 | 155 | impr 454 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → ∀𝑧 ∈ ({𝑦} ∪ 𝑋)∀𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) ¬ (𝑥( ·𝑠
‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))) |
| 157 | | ovex 7443 |
. . . . . . . . . . 11
⊢ (𝑅 freeLMod 𝐼) ∈ V |
| 158 | 6, 126, 8, 60, 127, 128 | islinds2 21778 |
. . . . . . . . . . 11
⊢ ((𝑅 freeLMod 𝐼) ∈ V → (({𝑦} ∪ 𝑋) ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ↔ (({𝑦} ∪ 𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)) ∧ ∀𝑧 ∈ ({𝑦} ∪ 𝑋)∀𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) ¬ (𝑥( ·𝑠
‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧}))))) |
| 159 | 157, 158 | ax-mp 5 |
. . . . . . . . . 10
⊢ (({𝑦} ∪ 𝑋) ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ↔ (({𝑦} ∪ 𝑋) ⊆ (Base‘(𝑅 freeLMod 𝐼)) ∧ ∀𝑧 ∈ ({𝑦} ∪ 𝑋)∀𝑥 ∈ ((Base‘(Scalar‘(𝑅 freeLMod 𝐼))) ∖
{(0g‘(Scalar‘(𝑅 freeLMod 𝐼)))}) ¬ (𝑥( ·𝑠
‘(𝑅 freeLMod 𝐼))𝑧) ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘(({𝑦} ∪ 𝑋) ∖ {𝑧})))) |
| 160 | 43, 156, 159 | sylanbrc 583 |
. . . . . . . . 9
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → ({𝑦} ∪ 𝑋) ∈ (LIndS‘(𝑅 freeLMod 𝐼))) |
| 161 | | lindsdom 37643 |
. . . . . . . . 9
⊢ ((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ ({𝑦} ∪ 𝑋) ∈ (LIndS‘(𝑅 freeLMod 𝐼))) → ({𝑦} ∪ 𝑋) ≼ 𝐼) |
| 162 | 36, 37, 160, 161 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → ({𝑦} ∪ 𝑋) ≼ 𝐼) |
| 163 | | sdomdomtr 9129 |
. . . . . . . 8
⊢ ((𝑋 ≺ ({𝑦} ∪ 𝑋) ∧ ({𝑦} ∪ 𝑋) ≼ 𝐼) → 𝑋 ≺ 𝐼) |
| 164 | 35, 162, 163 | syl2anc 584 |
. . . . . . 7
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) → 𝑋 ≺ 𝐼) |
| 165 | 164 | stoic1a 1772 |
. . . . . 6
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ ¬ 𝑋 ≺ 𝐼) → ¬ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) |
| 166 | 14, 165 | sylan2 593 |
. . . . 5
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋 ≈ 𝐼) → ¬ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) |
| 167 | | iman 401 |
. . . . 5
⊢ ((𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) → 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) ↔ ¬ (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) ∧ ¬ 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) |
| 168 | 166, 167 | sylibr 234 |
. . . 4
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋 ≈ 𝐼) → (𝑦 ∈ (Base‘(𝑅 freeLMod 𝐼)) → 𝑦 ∈ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋))) |
| 169 | 168 | ssrdv 3969 |
. . 3
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋 ≈ 𝐼) → (Base‘(𝑅 freeLMod 𝐼)) ⊆ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋)) |
| 170 | 12, 169 | eqssd 3981 |
. 2
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋 ≈ 𝐼) → ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) = (Base‘(𝑅 freeLMod 𝐼))) |
| 171 | | eqid 2736 |
. . 3
⊢
(LBasis‘(𝑅
freeLMod 𝐼)) =
(LBasis‘(𝑅 freeLMod
𝐼)) |
| 172 | 6, 171, 8 | islbs4 21797 |
. 2
⊢ (𝑋 ∈ (LBasis‘(𝑅 freeLMod 𝐼)) ↔ (𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼)) ∧ ((LSpan‘(𝑅 freeLMod 𝐼))‘𝑋) = (Base‘(𝑅 freeLMod 𝐼)))) |
| 173 | 1, 170, 172 | sylanbrc 583 |
1
⊢ (((𝑅 ∈ DivRing ∧ 𝐼 ∈ Fin ∧ 𝑋 ∈ (LIndS‘(𝑅 freeLMod 𝐼))) ∧ 𝑋 ≈ 𝐼) → 𝑋 ∈ (LBasis‘(𝑅 freeLMod 𝐼))) |