Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimliminflimsup Structured version   Visualization version   GIF version

Theorem xlimliminflimsup 46022
Description: A sequence of extended reals converges if and only if its inferior limit and its superior limit are equal. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
xlimliminflimsup.m (𝜑𝑀 ∈ ℤ)
xlimliminflimsup.z 𝑍 = (ℤ𝑀)
xlimliminflimsup.f (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
xlimliminflimsup (𝜑 → (𝐹 ∈ dom ~~>* ↔ (lim inf‘𝐹) = (lim sup‘𝐹)))

Proof of Theorem xlimliminflimsup
Dummy variables 𝑗 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xlimliminflimsup.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
21ad2antrr 726 . . . . 5 (((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) → 𝑀 ∈ ℤ)
3 xlimliminflimsup.z . . . . 5 𝑍 = (ℤ𝑀)
4 xlimliminflimsup.f . . . . . 6 (𝜑𝐹:𝑍⟶ℝ*)
54ad2antrr 726 . . . . 5 (((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) → 𝐹:𝑍⟶ℝ*)
6 simpr 484 . . . . 5 (((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) → (~~>*‘𝐹) ∈ ℝ)
7 xlimdm 46017 . . . . . . 7 (𝐹 ∈ dom ~~>* ↔ 𝐹~~>*(~~>*‘𝐹))
87biimpi 216 . . . . . 6 (𝐹 ∈ dom ~~>* → 𝐹~~>*(~~>*‘𝐹))
98ad2antlr 727 . . . . 5 (((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) → 𝐹~~>*(~~>*‘𝐹))
102, 3, 5, 6, 9xlimxrre 45991 . . . 4 (((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
113eluzelz2 45563 . . . . . . 7 (𝑗𝑍𝑗 ∈ ℤ)
1211ad2antlr 727 . . . . . 6 (((((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → 𝑗 ∈ ℤ)
13 eqid 2733 . . . . . 6 (ℤ𝑗) = (ℤ𝑗)
14 simpr 484 . . . . . 6 (((((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
1514frexr 45545 . . . . . . 7 (((((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ*)
169adantr 480 . . . . . . . . 9 ((((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗𝑍) → 𝐹~~>*(~~>*‘𝐹))
173, 4fuzxrpmcn 45988 . . . . . . . . . . 11 (𝜑𝐹 ∈ (ℝ*pm ℂ))
1817ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗𝑍) → 𝐹 ∈ (ℝ*pm ℂ))
1911adantl 481 . . . . . . . . . 10 ((((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗𝑍) → 𝑗 ∈ ℤ)
2018, 19xlimres 45981 . . . . . . . . 9 ((((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗𝑍) → (𝐹~~>*(~~>*‘𝐹) ↔ (𝐹 ↾ (ℤ𝑗))~~>*(~~>*‘𝐹)))
2116, 20mpbid 232 . . . . . . . 8 ((((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗𝑍) → (𝐹 ↾ (ℤ𝑗))~~>*(~~>*‘𝐹))
2221adantr 480 . . . . . . 7 (((((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → (𝐹 ↾ (ℤ𝑗))~~>*(~~>*‘𝐹))
23 simpllr 775 . . . . . . 7 (((((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → (~~>*‘𝐹) ∈ ℝ)
2412, 13, 15, 22, 23xlimclimdm 46014 . . . . . 6 (((((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → (𝐹 ↾ (ℤ𝑗)) ∈ dom ⇝ )
2512, 13, 14, 24climliminflimsupd 45961 . . . . 5 (((((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → (lim inf‘(𝐹 ↾ (ℤ𝑗))) = (lim sup‘(𝐹 ↾ (ℤ𝑗))))
2611adantl 481 . . . . . . . 8 ((𝜑𝑗𝑍) → 𝑗 ∈ ℤ)
2717elexd 3461 . . . . . . . . 9 (𝜑𝐹 ∈ V)
2827adantr 480 . . . . . . . 8 ((𝜑𝑗𝑍) → 𝐹 ∈ V)
294fdmd 6669 . . . . . . . . . 10 (𝜑 → dom 𝐹 = 𝑍)
3026ssd 45241 . . . . . . . . . 10 (𝜑𝑍 ⊆ ℤ)
3129, 30eqsstrd 3965 . . . . . . . . 9 (𝜑 → dom 𝐹 ⊆ ℤ)
3231adantr 480 . . . . . . . 8 ((𝜑𝑗𝑍) → dom 𝐹 ⊆ ℤ)
3326, 13, 28, 32liminfresuz2 45947 . . . . . . 7 ((𝜑𝑗𝑍) → (lim inf‘(𝐹 ↾ (ℤ𝑗))) = (lim inf‘𝐹))
3433eqcomd 2739 . . . . . 6 ((𝜑𝑗𝑍) → (lim inf‘𝐹) = (lim inf‘(𝐹 ↾ (ℤ𝑗))))
3534ad5ant14 757 . . . . 5 (((((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → (lim inf‘𝐹) = (lim inf‘(𝐹 ↾ (ℤ𝑗))))
3626, 13, 28, 32limsupresuz2 45869 . . . . . . 7 ((𝜑𝑗𝑍) → (lim sup‘(𝐹 ↾ (ℤ𝑗))) = (lim sup‘𝐹))
3736eqcomd 2739 . . . . . 6 ((𝜑𝑗𝑍) → (lim sup‘𝐹) = (lim sup‘(𝐹 ↾ (ℤ𝑗))))
3837ad5ant14 757 . . . . 5 (((((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → (lim sup‘𝐹) = (lim sup‘(𝐹 ↾ (ℤ𝑗))))
3925, 35, 383eqtr4d 2778 . . . 4 (((((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → (lim inf‘𝐹) = (lim sup‘𝐹))
4010, 39rexlimddv2 45983 . . 3 (((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) → (lim inf‘𝐹) = (lim sup‘𝐹))
41 simpll 766 . . . . . 6 (((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) = +∞) → 𝜑)
428adantr 480 . . . . . . . 8 ((𝐹 ∈ dom ~~>* ∧ (~~>*‘𝐹) = +∞) → 𝐹~~>*(~~>*‘𝐹))
43 simpr 484 . . . . . . . 8 ((𝐹 ∈ dom ~~>* ∧ (~~>*‘𝐹) = +∞) → (~~>*‘𝐹) = +∞)
4442, 43breqtrd 5121 . . . . . . 7 ((𝐹 ∈ dom ~~>* ∧ (~~>*‘𝐹) = +∞) → 𝐹~~>*+∞)
4544adantll 714 . . . . . 6 (((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) = +∞) → 𝐹~~>*+∞)
4617liminfcld 45930 . . . . . . . 8 (𝜑 → (lim inf‘𝐹) ∈ ℝ*)
4746adantr 480 . . . . . . 7 ((𝜑𝐹~~>*+∞) → (lim inf‘𝐹) ∈ ℝ*)
4817limsupcld 45850 . . . . . . . 8 (𝜑 → (lim sup‘𝐹) ∈ ℝ*)
4948adantr 480 . . . . . . 7 ((𝜑𝐹~~>*+∞) → (lim sup‘𝐹) ∈ ℝ*)
501, 3, 4liminflelimsupuz 45945 . . . . . . . 8 (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
5150adantr 480 . . . . . . 7 ((𝜑𝐹~~>*+∞) → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
5249pnfged 13036 . . . . . . . 8 ((𝜑𝐹~~>*+∞) → (lim sup‘𝐹) ≤ +∞)
531adantr 480 . . . . . . . . 9 ((𝜑𝐹~~>*+∞) → 𝑀 ∈ ℤ)
544adantr 480 . . . . . . . . 9 ((𝜑𝐹~~>*+∞) → 𝐹:𝑍⟶ℝ*)
55 simpr 484 . . . . . . . . 9 ((𝜑𝐹~~>*+∞) → 𝐹~~>*+∞)
5653, 3, 54, 55xlimpnfliminf 46020 . . . . . . . 8 ((𝜑𝐹~~>*+∞) → (lim inf‘𝐹) = +∞)
5752, 56breqtrrd 5123 . . . . . . 7 ((𝜑𝐹~~>*+∞) → (lim sup‘𝐹) ≤ (lim inf‘𝐹))
5847, 49, 51, 57xrletrid 13060 . . . . . 6 ((𝜑𝐹~~>*+∞) → (lim inf‘𝐹) = (lim sup‘𝐹))
5941, 45, 58syl2anc 584 . . . . 5 (((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) = +∞) → (lim inf‘𝐹) = (lim sup‘𝐹))
6059adantlr 715 . . . 4 ((((𝜑𝐹 ∈ dom ~~>*) ∧ ¬ (~~>*‘𝐹) ∈ ℝ) ∧ (~~>*‘𝐹) = +∞) → (lim inf‘𝐹) = (lim sup‘𝐹))
61 simplll 774 . . . . 5 ((((𝜑𝐹 ∈ dom ~~>*) ∧ ¬ (~~>*‘𝐹) ∈ ℝ) ∧ ¬ (~~>*‘𝐹) = +∞) → 𝜑)
628ad2antrr 726 . . . . . . 7 (((𝐹 ∈ dom ~~>* ∧ ¬ (~~>*‘𝐹) ∈ ℝ) ∧ ¬ (~~>*‘𝐹) = +∞) → 𝐹~~>*(~~>*‘𝐹))
63 xlimcl 45982 . . . . . . . . . 10 (𝐹~~>*(~~>*‘𝐹) → (~~>*‘𝐹) ∈ ℝ*)
648, 63syl 17 . . . . . . . . 9 (𝐹 ∈ dom ~~>* → (~~>*‘𝐹) ∈ ℝ*)
6564ad2antrr 726 . . . . . . . 8 (((𝐹 ∈ dom ~~>* ∧ ¬ (~~>*‘𝐹) ∈ ℝ) ∧ ¬ (~~>*‘𝐹) = +∞) → (~~>*‘𝐹) ∈ ℝ*)
66 simplr 768 . . . . . . . 8 (((𝐹 ∈ dom ~~>* ∧ ¬ (~~>*‘𝐹) ∈ ℝ) ∧ ¬ (~~>*‘𝐹) = +∞) → ¬ (~~>*‘𝐹) ∈ ℝ)
67 neqne 2937 . . . . . . . . 9 (¬ (~~>*‘𝐹) = +∞ → (~~>*‘𝐹) ≠ +∞)
6867adantl 481 . . . . . . . 8 (((𝐹 ∈ dom ~~>* ∧ ¬ (~~>*‘𝐹) ∈ ℝ) ∧ ¬ (~~>*‘𝐹) = +∞) → (~~>*‘𝐹) ≠ +∞)
6965, 66, 68xrnpnfmnf 45634 . . . . . . 7 (((𝐹 ∈ dom ~~>* ∧ ¬ (~~>*‘𝐹) ∈ ℝ) ∧ ¬ (~~>*‘𝐹) = +∞) → (~~>*‘𝐹) = -∞)
7062, 69breqtrd 5121 . . . . . 6 (((𝐹 ∈ dom ~~>* ∧ ¬ (~~>*‘𝐹) ∈ ℝ) ∧ ¬ (~~>*‘𝐹) = +∞) → 𝐹~~>*-∞)
7170adantlll 718 . . . . 5 ((((𝜑𝐹 ∈ dom ~~>*) ∧ ¬ (~~>*‘𝐹) ∈ ℝ) ∧ ¬ (~~>*‘𝐹) = +∞) → 𝐹~~>*-∞)
7246adantr 480 . . . . . 6 ((𝜑𝐹~~>*-∞) → (lim inf‘𝐹) ∈ ℝ*)
7348adantr 480 . . . . . 6 ((𝜑𝐹~~>*-∞) → (lim sup‘𝐹) ∈ ℝ*)
7450adantr 480 . . . . . 6 ((𝜑𝐹~~>*-∞) → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
751adantr 480 . . . . . . . 8 ((𝜑𝐹~~>*-∞) → 𝑀 ∈ ℤ)
764adantr 480 . . . . . . . 8 ((𝜑𝐹~~>*-∞) → 𝐹:𝑍⟶ℝ*)
77 simpr 484 . . . . . . . 8 ((𝜑𝐹~~>*-∞) → 𝐹~~>*-∞)
7875, 3, 76, 77xlimmnflimsup 46016 . . . . . . 7 ((𝜑𝐹~~>*-∞) → (lim sup‘𝐹) = -∞)
7972mnfled 13041 . . . . . . 7 ((𝜑𝐹~~>*-∞) → -∞ ≤ (lim inf‘𝐹))
8078, 79eqbrtrd 5117 . . . . . 6 ((𝜑𝐹~~>*-∞) → (lim sup‘𝐹) ≤ (lim inf‘𝐹))
8172, 73, 74, 80xrletrid 13060 . . . . 5 ((𝜑𝐹~~>*-∞) → (lim inf‘𝐹) = (lim sup‘𝐹))
8261, 71, 81syl2anc 584 . . . 4 ((((𝜑𝐹 ∈ dom ~~>*) ∧ ¬ (~~>*‘𝐹) ∈ ℝ) ∧ ¬ (~~>*‘𝐹) = +∞) → (lim inf‘𝐹) = (lim sup‘𝐹))
8360, 82pm2.61dan 812 . . 3 (((𝜑𝐹 ∈ dom ~~>*) ∧ ¬ (~~>*‘𝐹) ∈ ℝ) → (lim inf‘𝐹) = (lim sup‘𝐹))
8440, 83pm2.61dan 812 . 2 ((𝜑𝐹 ∈ dom ~~>*) → (lim inf‘𝐹) = (lim sup‘𝐹))
8527adantr 480 . . . . 5 ((𝜑 ∧ (lim sup‘𝐹) = -∞) → 𝐹 ∈ V)
86 mnfxr 11180 . . . . . 6 -∞ ∈ ℝ*
8786a1i 11 . . . . 5 ((𝜑 ∧ (lim sup‘𝐹) = -∞) → -∞ ∈ ℝ*)
88 simpr 484 . . . . . 6 ((𝜑 ∧ (lim sup‘𝐹) = -∞) → (lim sup‘𝐹) = -∞)
891adantr 480 . . . . . . 7 ((𝜑 ∧ (lim sup‘𝐹) = -∞) → 𝑀 ∈ ℤ)
904adantr 480 . . . . . . 7 ((𝜑 ∧ (lim sup‘𝐹) = -∞) → 𝐹:𝑍⟶ℝ*)
9189, 3, 90xlimmnflimsup2 46012 . . . . . 6 ((𝜑 ∧ (lim sup‘𝐹) = -∞) → (𝐹~~>*-∞ ↔ (lim sup‘𝐹) = -∞))
9288, 91mpbird 257 . . . . 5 ((𝜑 ∧ (lim sup‘𝐹) = -∞) → 𝐹~~>*-∞)
9385, 87, 92breldmd 5858 . . . 4 ((𝜑 ∧ (lim sup‘𝐹) = -∞) → 𝐹 ∈ dom ~~>*)
9493adantlr 715 . . 3 (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) = -∞) → 𝐹 ∈ dom ~~>*)
951ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) → 𝑀 ∈ ℤ)
964ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) → 𝐹:𝑍⟶ℝ*)
97 simpr 484 . . . . . . . 8 (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) → (lim sup‘𝐹) ∈ ℝ)
9897renepnfd 11174 . . . . . . 7 (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) → (lim sup‘𝐹) ≠ +∞)
99 simplr 768 . . . . . . . . 9 (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) → (lim inf‘𝐹) = (lim sup‘𝐹))
10099, 97eqeltrd 2833 . . . . . . . 8 (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) → (lim inf‘𝐹) ∈ ℝ)
101100renemnfd 11175 . . . . . . 7 (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) → (lim inf‘𝐹) ≠ -∞)
10295, 3, 96, 98, 101liminflimsupxrre 45977 . . . . . 6 (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) → ∃𝑚𝑍 (𝐹 ↾ (ℤ𝑚)):(ℤ𝑚)⟶ℝ)
1033eluzelz2 45563 . . . . . . . . 9 (𝑚𝑍𝑚 ∈ ℤ)
104103ad2antlr 727 . . . . . . . 8 (((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) ∧ 𝑚𝑍) ∧ (𝐹 ↾ (ℤ𝑚)):(ℤ𝑚)⟶ℝ) → 𝑚 ∈ ℤ)
105 eqid 2733 . . . . . . . 8 (ℤ𝑚) = (ℤ𝑚)
106 simpr 484 . . . . . . . 8 (((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) ∧ 𝑚𝑍) ∧ (𝐹 ↾ (ℤ𝑚)):(ℤ𝑚)⟶ℝ) → (𝐹 ↾ (ℤ𝑚)):(ℤ𝑚)⟶ℝ)
107 simplll 774 . . . . . . . . . . 11 ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) ∧ 𝑚𝑍) → 𝜑)
108 simpl 482 . . . . . . . . . . . . 13 (((lim inf‘𝐹) = (lim sup‘𝐹) ∧ (lim sup‘𝐹) ∈ ℝ) → (lim inf‘𝐹) = (lim sup‘𝐹))
109 simpr 484 . . . . . . . . . . . . 13 (((lim inf‘𝐹) = (lim sup‘𝐹) ∧ (lim sup‘𝐹) ∈ ℝ) → (lim sup‘𝐹) ∈ ℝ)
110108, 109eqeltrd 2833 . . . . . . . . . . . 12 (((lim inf‘𝐹) = (lim sup‘𝐹) ∧ (lim sup‘𝐹) ∈ ℝ) → (lim inf‘𝐹) ∈ ℝ)
111110ad4ant23 753 . . . . . . . . . . 11 ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) ∧ 𝑚𝑍) → (lim inf‘𝐹) ∈ ℝ)
112 simpr 484 . . . . . . . . . . 11 ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) ∧ 𝑚𝑍) → 𝑚𝑍)
1131033ad2ant3 1135 . . . . . . . . . . . . 13 ((𝜑 ∧ (lim inf‘𝐹) ∈ ℝ ∧ 𝑚𝑍) → 𝑚 ∈ ℤ)
114273ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑 ∧ (lim inf‘𝐹) ∈ ℝ ∧ 𝑚𝑍) → 𝐹 ∈ V)
115313ad2ant1 1133 . . . . . . . . . . . . 13 ((𝜑 ∧ (lim inf‘𝐹) ∈ ℝ ∧ 𝑚𝑍) → dom 𝐹 ⊆ ℤ)
116113, 105, 114, 115liminfresuz2 45947 . . . . . . . . . . . 12 ((𝜑 ∧ (lim inf‘𝐹) ∈ ℝ ∧ 𝑚𝑍) → (lim inf‘(𝐹 ↾ (ℤ𝑚))) = (lim inf‘𝐹))
117 simp2 1137 . . . . . . . . . . . 12 ((𝜑 ∧ (lim inf‘𝐹) ∈ ℝ ∧ 𝑚𝑍) → (lim inf‘𝐹) ∈ ℝ)
118116, 117eqeltrd 2833 . . . . . . . . . . 11 ((𝜑 ∧ (lim inf‘𝐹) ∈ ℝ ∧ 𝑚𝑍) → (lim inf‘(𝐹 ↾ (ℤ𝑚))) ∈ ℝ)
119107, 111, 112, 118syl3anc 1373 . . . . . . . . . 10 ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) ∧ 𝑚𝑍) → (lim inf‘(𝐹 ↾ (ℤ𝑚))) ∈ ℝ)
120119adantr 480 . . . . . . . . 9 (((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) ∧ 𝑚𝑍) ∧ (𝐹 ↾ (ℤ𝑚)):(ℤ𝑚)⟶ℝ) → (lim inf‘(𝐹 ↾ (ℤ𝑚))) ∈ ℝ)
121 simp2 1137 . . . . . . . . . . 11 ((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹) ∧ 𝑚𝑍) → (lim inf‘𝐹) = (lim sup‘𝐹))
122103adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑚𝑍) → 𝑚 ∈ ℤ)
12327adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑚𝑍) → 𝐹 ∈ V)
12431adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑚𝑍) → dom 𝐹 ⊆ ℤ)
125122, 105, 123, 124liminfresuz2 45947 . . . . . . . . . . . 12 ((𝜑𝑚𝑍) → (lim inf‘(𝐹 ↾ (ℤ𝑚))) = (lim inf‘𝐹))
1261253adant2 1131 . . . . . . . . . . 11 ((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹) ∧ 𝑚𝑍) → (lim inf‘(𝐹 ↾ (ℤ𝑚))) = (lim inf‘𝐹))
127122, 105, 123, 124limsupresuz2 45869 . . . . . . . . . . . 12 ((𝜑𝑚𝑍) → (lim sup‘(𝐹 ↾ (ℤ𝑚))) = (lim sup‘𝐹))
1281273adant2 1131 . . . . . . . . . . 11 ((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹) ∧ 𝑚𝑍) → (lim sup‘(𝐹 ↾ (ℤ𝑚))) = (lim sup‘𝐹))
129121, 126, 1283eqtr4d 2778 . . . . . . . . . 10 ((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹) ∧ 𝑚𝑍) → (lim inf‘(𝐹 ↾ (ℤ𝑚))) = (lim sup‘(𝐹 ↾ (ℤ𝑚))))
130129ad5ant124 1367 . . . . . . . . 9 (((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) ∧ 𝑚𝑍) ∧ (𝐹 ↾ (ℤ𝑚)):(ℤ𝑚)⟶ℝ) → (lim inf‘(𝐹 ↾ (ℤ𝑚))) = (lim sup‘(𝐹 ↾ (ℤ𝑚))))
131104, 105, 106climliminflimsup3 45970 . . . . . . . . 9 (((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) ∧ 𝑚𝑍) ∧ (𝐹 ↾ (ℤ𝑚)):(ℤ𝑚)⟶ℝ) → ((𝐹 ↾ (ℤ𝑚)) ∈ dom ⇝ ↔ ((lim inf‘(𝐹 ↾ (ℤ𝑚))) ∈ ℝ ∧ (lim inf‘(𝐹 ↾ (ℤ𝑚))) = (lim sup‘(𝐹 ↾ (ℤ𝑚))))))
132120, 130, 131mpbir2and 713 . . . . . . . 8 (((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) ∧ 𝑚𝑍) ∧ (𝐹 ↾ (ℤ𝑚)):(ℤ𝑚)⟶ℝ) → (𝐹 ↾ (ℤ𝑚)) ∈ dom ⇝ )
133104, 105, 106, 132dmclimxlim 46011 . . . . . . 7 (((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) ∧ 𝑚𝑍) ∧ (𝐹 ↾ (ℤ𝑚)):(ℤ𝑚)⟶ℝ) → (𝐹 ↾ (ℤ𝑚)) ∈ dom ~~>*)
13417ad4antr 732 . . . . . . . 8 (((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) ∧ 𝑚𝑍) ∧ (𝐹 ↾ (ℤ𝑚)):(ℤ𝑚)⟶ℝ) → 𝐹 ∈ (ℝ*pm ℂ))
135134, 104xlimresdm 46019 . . . . . . 7 (((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) ∧ 𝑚𝑍) ∧ (𝐹 ↾ (ℤ𝑚)):(ℤ𝑚)⟶ℝ) → (𝐹 ∈ dom ~~>* ↔ (𝐹 ↾ (ℤ𝑚)) ∈ dom ~~>*))
136133, 135mpbird 257 . . . . . 6 (((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) ∧ 𝑚𝑍) ∧ (𝐹 ↾ (ℤ𝑚)):(ℤ𝑚)⟶ℝ) → 𝐹 ∈ dom ~~>*)
137102, 136rexlimddv2 45983 . . . . 5 (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) → 𝐹 ∈ dom ~~>*)
138137adantlr 715 . . . 4 ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ≠ -∞) ∧ (lim sup‘𝐹) ∈ ℝ) → 𝐹 ∈ dom ~~>*)
139 simpll 766 . . . . 5 ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ≠ -∞) ∧ ¬ (lim sup‘𝐹) ∈ ℝ) → (𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)))
140 simpllr 775 . . . . . 6 ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ≠ -∞) ∧ ¬ (lim sup‘𝐹) ∈ ℝ) → (lim inf‘𝐹) = (lim sup‘𝐹))
14148ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (lim sup‘𝐹) ≠ -∞) ∧ ¬ (lim sup‘𝐹) ∈ ℝ) → (lim sup‘𝐹) ∈ ℝ*)
142 simpr 484 . . . . . . . 8 (((𝜑 ∧ (lim sup‘𝐹) ≠ -∞) ∧ ¬ (lim sup‘𝐹) ∈ ℝ) → ¬ (lim sup‘𝐹) ∈ ℝ)
143 simplr 768 . . . . . . . 8 (((𝜑 ∧ (lim sup‘𝐹) ≠ -∞) ∧ ¬ (lim sup‘𝐹) ∈ ℝ) → (lim sup‘𝐹) ≠ -∞)
144141, 142, 143xrnmnfpnf 45244 . . . . . . 7 (((𝜑 ∧ (lim sup‘𝐹) ≠ -∞) ∧ ¬ (lim sup‘𝐹) ∈ ℝ) → (lim sup‘𝐹) = +∞)
145144adantllr 719 . . . . . 6 ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ≠ -∞) ∧ ¬ (lim sup‘𝐹) ∈ ℝ) → (lim sup‘𝐹) = +∞)
146140, 145eqtrd 2768 . . . . 5 ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ≠ -∞) ∧ ¬ (lim sup‘𝐹) ∈ ℝ) → (lim inf‘𝐹) = +∞)
14727adantr 480 . . . . . . 7 ((𝜑 ∧ (lim inf‘𝐹) = +∞) → 𝐹 ∈ V)
148 pnfxr 11177 . . . . . . . 8 +∞ ∈ ℝ*
149148a1i 11 . . . . . . 7 ((𝜑 ∧ (lim inf‘𝐹) = +∞) → +∞ ∈ ℝ*)
1501, 3, 4xlimpnfliminf2 46021 . . . . . . . 8 (𝜑 → (𝐹~~>*+∞ ↔ (lim inf‘𝐹) = +∞))
151150biimpar 477 . . . . . . 7 ((𝜑 ∧ (lim inf‘𝐹) = +∞) → 𝐹~~>*+∞)
152147, 149, 151breldmd 5858 . . . . . 6 ((𝜑 ∧ (lim inf‘𝐹) = +∞) → 𝐹 ∈ dom ~~>*)
153152adantlr 715 . . . . 5 (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim inf‘𝐹) = +∞) → 𝐹 ∈ dom ~~>*)
154139, 146, 153syl2anc 584 . . . 4 ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ≠ -∞) ∧ ¬ (lim sup‘𝐹) ∈ ℝ) → 𝐹 ∈ dom ~~>*)
155138, 154pm2.61dan 812 . . 3 (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ≠ -∞) → 𝐹 ∈ dom ~~>*)
15694, 155pm2.61dane 3016 . 2 ((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) → 𝐹 ∈ dom ~~>*)
15784, 156impbida 800 1 (𝜑 → (𝐹 ∈ dom ~~>* ↔ (lim inf‘𝐹) = (lim sup‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  Vcvv 3437  wss 3898   class class class wbr 5095  dom cdm 5621  cres 5623  wf 6485  cfv 6489  (class class class)co 7355  pm cpm 8760  cc 11015  cr 11016  +∞cpnf 11154  -∞cmnf 11155  *cxr 11156  cle 11158  cz 12479  cuz 12742  lim supclsp 15384  cli 15398  lim infclsi 45911  ~~>*clsxlim 45978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-pm 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fi 9306  df-sup 9337  df-inf 9338  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-ioo 13256  df-ioc 13257  df-ico 13258  df-icc 13259  df-fz 13415  df-fzo 13562  df-fl 13703  df-ceil 13704  df-seq 13916  df-exp 13976  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-limsup 15385  df-clim 15402  df-rlim 15403  df-struct 17065  df-slot 17100  df-ndx 17112  df-base 17128  df-plusg 17181  df-mulr 17182  df-starv 17183  df-tset 17187  df-ple 17188  df-ds 17190  df-unif 17191  df-rest 17333  df-topn 17334  df-topgen 17354  df-ordt 17413  df-ps 18480  df-tsr 18481  df-psmet 21292  df-xmet 21293  df-met 21294  df-bl 21295  df-mopn 21296  df-cnfld 21301  df-top 22829  df-topon 22846  df-topsp 22868  df-bases 22881  df-lm 23164  df-haus 23250  df-xms 24255  df-ms 24256  df-liminf 45912  df-xlim 45979
This theorem is referenced by:  xlimlimsupleliminf  46023
  Copyright terms: Public domain W3C validator