| Step | Hyp | Ref
| Expression |
| 1 | | xlimliminflimsup.m |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 2 | 1 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) → 𝑀 ∈
ℤ) |
| 3 | | xlimliminflimsup.z |
. . . . 5
⊢ 𝑍 =
(ℤ≥‘𝑀) |
| 4 | | xlimliminflimsup.f |
. . . . . 6
⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
| 5 | 4 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) → 𝐹:𝑍⟶ℝ*) |
| 6 | | simpr 484 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) →
(~~>*‘𝐹) ∈
ℝ) |
| 7 | | xlimdm 45877 |
. . . . . . 7
⊢ (𝐹 ∈ dom ~~>* ↔ 𝐹~~>*(~~>*‘𝐹)) |
| 8 | 7 | biimpi 216 |
. . . . . 6
⊢ (𝐹 ∈ dom ~~>* → 𝐹~~>*(~~>*‘𝐹)) |
| 9 | 8 | ad2antlr 727 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) → 𝐹~~>*(~~>*‘𝐹)) |
| 10 | 2, 3, 5, 6, 9 | xlimxrre 45851 |
. . . 4
⊢ (((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) →
∃𝑗 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) |
| 11 | 3 | eluzelz2 45419 |
. . . . . . 7
⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ) |
| 12 | 11 | ad2antlr 727 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧
(~~>*‘𝐹) ∈
ℝ) ∧ 𝑗 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) → 𝑗 ∈
ℤ) |
| 13 | | eqid 2736 |
. . . . . 6
⊢
(ℤ≥‘𝑗) = (ℤ≥‘𝑗) |
| 14 | | simpr 484 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧
(~~>*‘𝐹) ∈
ℝ) ∧ 𝑗 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) → (𝐹 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) |
| 15 | 14 | frexr 45401 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧
(~~>*‘𝐹) ∈
ℝ) ∧ 𝑗 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) → (𝐹 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ*) |
| 16 | 9 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗 ∈ 𝑍) → 𝐹~~>*(~~>*‘𝐹)) |
| 17 | 3, 4 | fuzxrpmcn 45848 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ (ℝ*
↑pm ℂ)) |
| 18 | 17 | ad3antrrr 730 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗 ∈ 𝑍) → 𝐹 ∈ (ℝ*
↑pm ℂ)) |
| 19 | 11 | adantl 481 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ ℤ) |
| 20 | 18, 19 | xlimres 45841 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗 ∈ 𝑍) → (𝐹~~>*(~~>*‘𝐹) ↔ (𝐹 ↾ (ℤ≥‘𝑗))~~>*(~~>*‘𝐹))) |
| 21 | 16, 20 | mpbid 232 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗 ∈ 𝑍) → (𝐹 ↾ (ℤ≥‘𝑗))~~>*(~~>*‘𝐹)) |
| 22 | 21 | adantr 480 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧
(~~>*‘𝐹) ∈
ℝ) ∧ 𝑗 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) → (𝐹 ↾
(ℤ≥‘𝑗))~~>*(~~>*‘𝐹)) |
| 23 | | simpllr 775 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧
(~~>*‘𝐹) ∈
ℝ) ∧ 𝑗 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) →
(~~>*‘𝐹) ∈
ℝ) |
| 24 | 12, 13, 15, 22, 23 | xlimclimdm 45874 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧
(~~>*‘𝐹) ∈
ℝ) ∧ 𝑗 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) → (𝐹 ↾
(ℤ≥‘𝑗)) ∈ dom ⇝ ) |
| 25 | 12, 13, 14, 24 | climliminflimsupd 45821 |
. . . . 5
⊢
(((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧
(~~>*‘𝐹) ∈
ℝ) ∧ 𝑗 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) → (lim
inf‘(𝐹 ↾
(ℤ≥‘𝑗))) = (lim sup‘(𝐹 ↾ (ℤ≥‘𝑗)))) |
| 26 | 11 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ ℤ) |
| 27 | 17 | elexd 3503 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ V) |
| 28 | 27 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐹 ∈ V) |
| 29 | 4 | fdmd 6745 |
. . . . . . . . . 10
⊢ (𝜑 → dom 𝐹 = 𝑍) |
| 30 | 26 | ssd 45090 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ⊆ ℤ) |
| 31 | 29, 30 | eqsstrd 4017 |
. . . . . . . . 9
⊢ (𝜑 → dom 𝐹 ⊆ ℤ) |
| 32 | 31 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → dom 𝐹 ⊆ ℤ) |
| 33 | 26, 13, 28, 32 | liminfresuz2 45807 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (lim inf‘(𝐹 ↾ (ℤ≥‘𝑗))) = (lim inf‘𝐹)) |
| 34 | 33 | eqcomd 2742 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (lim inf‘𝐹) = (lim inf‘(𝐹 ↾ (ℤ≥‘𝑗)))) |
| 35 | 34 | ad5ant14 757 |
. . . . 5
⊢
(((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧
(~~>*‘𝐹) ∈
ℝ) ∧ 𝑗 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) → (lim
inf‘𝐹) = (lim
inf‘(𝐹 ↾
(ℤ≥‘𝑗)))) |
| 36 | 26, 13, 28, 32 | limsupresuz2 45729 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (lim sup‘(𝐹 ↾ (ℤ≥‘𝑗))) = (lim sup‘𝐹)) |
| 37 | 36 | eqcomd 2742 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (lim sup‘𝐹) = (lim sup‘(𝐹 ↾ (ℤ≥‘𝑗)))) |
| 38 | 37 | ad5ant14 757 |
. . . . 5
⊢
(((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧
(~~>*‘𝐹) ∈
ℝ) ∧ 𝑗 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) → (lim
sup‘𝐹) = (lim
sup‘(𝐹 ↾
(ℤ≥‘𝑗)))) |
| 39 | 25, 35, 38 | 3eqtr4d 2786 |
. . . 4
⊢
(((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧
(~~>*‘𝐹) ∈
ℝ) ∧ 𝑗 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) → (lim
inf‘𝐹) = (lim
sup‘𝐹)) |
| 40 | 10, 39 | rexlimddv2 45843 |
. . 3
⊢ (((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) → (lim
inf‘𝐹) = (lim
sup‘𝐹)) |
| 41 | | simpll 766 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) = +∞) → 𝜑) |
| 42 | 8 | adantr 480 |
. . . . . . . 8
⊢ ((𝐹 ∈ dom ~~>* ∧
(~~>*‘𝐹) = +∞)
→ 𝐹~~>*(~~>*‘𝐹)) |
| 43 | | simpr 484 |
. . . . . . . 8
⊢ ((𝐹 ∈ dom ~~>* ∧
(~~>*‘𝐹) = +∞)
→ (~~>*‘𝐹) =
+∞) |
| 44 | 42, 43 | breqtrd 5168 |
. . . . . . 7
⊢ ((𝐹 ∈ dom ~~>* ∧
(~~>*‘𝐹) = +∞)
→ 𝐹~~>*+∞) |
| 45 | 44 | adantll 714 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) = +∞) → 𝐹~~>*+∞) |
| 46 | 17 | liminfcld 45790 |
. . . . . . . 8
⊢ (𝜑 → (lim inf‘𝐹) ∈
ℝ*) |
| 47 | 46 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐹~~>*+∞) → (lim inf‘𝐹) ∈
ℝ*) |
| 48 | 17 | limsupcld 45710 |
. . . . . . . 8
⊢ (𝜑 → (lim sup‘𝐹) ∈
ℝ*) |
| 49 | 48 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐹~~>*+∞) → (lim sup‘𝐹) ∈
ℝ*) |
| 50 | 1, 3, 4 | liminflelimsupuz 45805 |
. . . . . . . 8
⊢ (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹)) |
| 51 | 50 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐹~~>*+∞) → (lim inf‘𝐹) ≤ (lim sup‘𝐹)) |
| 52 | 49 | pnfged 13174 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐹~~>*+∞) → (lim sup‘𝐹) ≤
+∞) |
| 53 | 1 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐹~~>*+∞) → 𝑀 ∈ ℤ) |
| 54 | 4 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐹~~>*+∞) → 𝐹:𝑍⟶ℝ*) |
| 55 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐹~~>*+∞) → 𝐹~~>*+∞) |
| 56 | 53, 3, 54, 55 | xlimpnfliminf 45880 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐹~~>*+∞) → (lim inf‘𝐹) = +∞) |
| 57 | 52, 56 | breqtrrd 5170 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐹~~>*+∞) → (lim sup‘𝐹) ≤ (lim inf‘𝐹)) |
| 58 | 47, 49, 51, 57 | xrletrid 13198 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹~~>*+∞) → (lim inf‘𝐹) = (lim sup‘𝐹)) |
| 59 | 41, 45, 58 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) = +∞) → (lim
inf‘𝐹) = (lim
sup‘𝐹)) |
| 60 | 59 | adantlr 715 |
. . . 4
⊢ ((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ ¬
(~~>*‘𝐹) ∈
ℝ) ∧ (~~>*‘𝐹) = +∞) → (lim inf‘𝐹) = (lim sup‘𝐹)) |
| 61 | | simplll 774 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ ¬
(~~>*‘𝐹) ∈
ℝ) ∧ ¬ (~~>*‘𝐹) = +∞) → 𝜑) |
| 62 | 8 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝐹 ∈ dom ~~>* ∧ ¬
(~~>*‘𝐹) ∈
ℝ) ∧ ¬ (~~>*‘𝐹) = +∞) → 𝐹~~>*(~~>*‘𝐹)) |
| 63 | | xlimcl 45842 |
. . . . . . . . . 10
⊢ (𝐹~~>*(~~>*‘𝐹) → (~~>*‘𝐹) ∈
ℝ*) |
| 64 | 8, 63 | syl 17 |
. . . . . . . . 9
⊢ (𝐹 ∈ dom ~~>* →
(~~>*‘𝐹) ∈
ℝ*) |
| 65 | 64 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝐹 ∈ dom ~~>* ∧ ¬
(~~>*‘𝐹) ∈
ℝ) ∧ ¬ (~~>*‘𝐹) = +∞) → (~~>*‘𝐹) ∈
ℝ*) |
| 66 | | simplr 768 |
. . . . . . . 8
⊢ (((𝐹 ∈ dom ~~>* ∧ ¬
(~~>*‘𝐹) ∈
ℝ) ∧ ¬ (~~>*‘𝐹) = +∞) → ¬ (~~>*‘𝐹) ∈
ℝ) |
| 67 | | neqne 2947 |
. . . . . . . . 9
⊢ (¬
(~~>*‘𝐹) = +∞
→ (~~>*‘𝐹) ≠
+∞) |
| 68 | 67 | adantl 481 |
. . . . . . . 8
⊢ (((𝐹 ∈ dom ~~>* ∧ ¬
(~~>*‘𝐹) ∈
ℝ) ∧ ¬ (~~>*‘𝐹) = +∞) → (~~>*‘𝐹) ≠
+∞) |
| 69 | 65, 66, 68 | xrnpnfmnf 45490 |
. . . . . . 7
⊢ (((𝐹 ∈ dom ~~>* ∧ ¬
(~~>*‘𝐹) ∈
ℝ) ∧ ¬ (~~>*‘𝐹) = +∞) → (~~>*‘𝐹) = -∞) |
| 70 | 62, 69 | breqtrd 5168 |
. . . . . 6
⊢ (((𝐹 ∈ dom ~~>* ∧ ¬
(~~>*‘𝐹) ∈
ℝ) ∧ ¬ (~~>*‘𝐹) = +∞) → 𝐹~~>*-∞) |
| 71 | 70 | adantlll 718 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ ¬
(~~>*‘𝐹) ∈
ℝ) ∧ ¬ (~~>*‘𝐹) = +∞) → 𝐹~~>*-∞) |
| 72 | 46 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹~~>*-∞) → (lim inf‘𝐹) ∈
ℝ*) |
| 73 | 48 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹~~>*-∞) → (lim sup‘𝐹) ∈
ℝ*) |
| 74 | 50 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹~~>*-∞) → (lim inf‘𝐹) ≤ (lim sup‘𝐹)) |
| 75 | 1 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐹~~>*-∞) → 𝑀 ∈ ℤ) |
| 76 | 4 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐹~~>*-∞) → 𝐹:𝑍⟶ℝ*) |
| 77 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐹~~>*-∞) → 𝐹~~>*-∞) |
| 78 | 75, 3, 76, 77 | xlimmnflimsup 45876 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐹~~>*-∞) → (lim sup‘𝐹) = -∞) |
| 79 | 72 | mnfled 13179 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐹~~>*-∞) → -∞ ≤ (lim
inf‘𝐹)) |
| 80 | 78, 79 | eqbrtrd 5164 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹~~>*-∞) → (lim sup‘𝐹) ≤ (lim inf‘𝐹)) |
| 81 | 72, 73, 74, 80 | xrletrid 13198 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹~~>*-∞) → (lim inf‘𝐹) = (lim sup‘𝐹)) |
| 82 | 61, 71, 81 | syl2anc 584 |
. . . 4
⊢ ((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ ¬
(~~>*‘𝐹) ∈
ℝ) ∧ ¬ (~~>*‘𝐹) = +∞) → (lim inf‘𝐹) = (lim sup‘𝐹)) |
| 83 | 60, 82 | pm2.61dan 812 |
. . 3
⊢ (((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ ¬
(~~>*‘𝐹) ∈
ℝ) → (lim inf‘𝐹) = (lim sup‘𝐹)) |
| 84 | 40, 83 | pm2.61dan 812 |
. 2
⊢ ((𝜑 ∧ 𝐹 ∈ dom ~~>*) → (lim
inf‘𝐹) = (lim
sup‘𝐹)) |
| 85 | 27 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (lim sup‘𝐹) = -∞) → 𝐹 ∈ V) |
| 86 | | mnfxr 11319 |
. . . . . 6
⊢ -∞
∈ ℝ* |
| 87 | 86 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ (lim sup‘𝐹) = -∞) → -∞
∈ ℝ*) |
| 88 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ (lim sup‘𝐹) = -∞) → (lim
sup‘𝐹) =
-∞) |
| 89 | 1 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (lim sup‘𝐹) = -∞) → 𝑀 ∈
ℤ) |
| 90 | 4 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (lim sup‘𝐹) = -∞) → 𝐹:𝑍⟶ℝ*) |
| 91 | 89, 3, 90 | xlimmnflimsup2 45872 |
. . . . . 6
⊢ ((𝜑 ∧ (lim sup‘𝐹) = -∞) → (𝐹~~>*-∞ ↔ (lim
sup‘𝐹) =
-∞)) |
| 92 | 88, 91 | mpbird 257 |
. . . . 5
⊢ ((𝜑 ∧ (lim sup‘𝐹) = -∞) → 𝐹~~>*-∞) |
| 93 | 85, 87, 92 | breldmd 5922 |
. . . 4
⊢ ((𝜑 ∧ (lim sup‘𝐹) = -∞) → 𝐹 ∈ dom
~~>*) |
| 94 | 93 | adantlr 715 |
. . 3
⊢ (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) = -∞) → 𝐹 ∈ dom
~~>*) |
| 95 | 1 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) → 𝑀 ∈
ℤ) |
| 96 | 4 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) → 𝐹:𝑍⟶ℝ*) |
| 97 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) → (lim
sup‘𝐹) ∈
ℝ) |
| 98 | 97 | renepnfd 11313 |
. . . . . . 7
⊢ (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) → (lim
sup‘𝐹) ≠
+∞) |
| 99 | | simplr 768 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) → (lim
inf‘𝐹) = (lim
sup‘𝐹)) |
| 100 | 99, 97 | eqeltrd 2840 |
. . . . . . . 8
⊢ (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) → (lim
inf‘𝐹) ∈
ℝ) |
| 101 | 100 | renemnfd 11314 |
. . . . . . 7
⊢ (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) → (lim
inf‘𝐹) ≠
-∞) |
| 102 | 95, 3, 96, 98, 101 | liminflimsupxrre 45837 |
. . . . . 6
⊢ (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) →
∃𝑚 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑚)):(ℤ≥‘𝑚)⟶ℝ) |
| 103 | 3 | eluzelz2 45419 |
. . . . . . . . 9
⊢ (𝑚 ∈ 𝑍 → 𝑚 ∈ ℤ) |
| 104 | 103 | ad2antlr 727 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (lim
inf‘𝐹) = (lim
sup‘𝐹)) ∧ (lim
sup‘𝐹) ∈
ℝ) ∧ 𝑚 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑚)):(ℤ≥‘𝑚)⟶ℝ) → 𝑚 ∈
ℤ) |
| 105 | | eqid 2736 |
. . . . . . . 8
⊢
(ℤ≥‘𝑚) = (ℤ≥‘𝑚) |
| 106 | | simpr 484 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (lim
inf‘𝐹) = (lim
sup‘𝐹)) ∧ (lim
sup‘𝐹) ∈
ℝ) ∧ 𝑚 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑚)):(ℤ≥‘𝑚)⟶ℝ) → (𝐹 ↾
(ℤ≥‘𝑚)):(ℤ≥‘𝑚)⟶ℝ) |
| 107 | | simplll 774 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) ∧ 𝑚 ∈ 𝑍) → 𝜑) |
| 108 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ (((lim
inf‘𝐹) = (lim
sup‘𝐹) ∧ (lim
sup‘𝐹) ∈
ℝ) → (lim inf‘𝐹) = (lim sup‘𝐹)) |
| 109 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((lim
inf‘𝐹) = (lim
sup‘𝐹) ∧ (lim
sup‘𝐹) ∈
ℝ) → (lim sup‘𝐹) ∈ ℝ) |
| 110 | 108, 109 | eqeltrd 2840 |
. . . . . . . . . . . 12
⊢ (((lim
inf‘𝐹) = (lim
sup‘𝐹) ∧ (lim
sup‘𝐹) ∈
ℝ) → (lim inf‘𝐹) ∈ ℝ) |
| 111 | 110 | ad4ant23 753 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) ∧ 𝑚 ∈ 𝑍) → (lim inf‘𝐹) ∈ ℝ) |
| 112 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) ∧ 𝑚 ∈ 𝑍) → 𝑚 ∈ 𝑍) |
| 113 | 103 | 3ad2ant3 1135 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (lim inf‘𝐹) ∈ ℝ ∧ 𝑚 ∈ 𝑍) → 𝑚 ∈ ℤ) |
| 114 | 27 | 3ad2ant1 1133 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (lim inf‘𝐹) ∈ ℝ ∧ 𝑚 ∈ 𝑍) → 𝐹 ∈ V) |
| 115 | 31 | 3ad2ant1 1133 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (lim inf‘𝐹) ∈ ℝ ∧ 𝑚 ∈ 𝑍) → dom 𝐹 ⊆ ℤ) |
| 116 | 113, 105,
114, 115 | liminfresuz2 45807 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (lim inf‘𝐹) ∈ ℝ ∧ 𝑚 ∈ 𝑍) → (lim inf‘(𝐹 ↾ (ℤ≥‘𝑚))) = (lim inf‘𝐹)) |
| 117 | | simp2 1137 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (lim inf‘𝐹) ∈ ℝ ∧ 𝑚 ∈ 𝑍) → (lim inf‘𝐹) ∈ ℝ) |
| 118 | 116, 117 | eqeltrd 2840 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (lim inf‘𝐹) ∈ ℝ ∧ 𝑚 ∈ 𝑍) → (lim inf‘(𝐹 ↾ (ℤ≥‘𝑚))) ∈
ℝ) |
| 119 | 107, 111,
112, 118 | syl3anc 1372 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) ∧ 𝑚 ∈ 𝑍) → (lim inf‘(𝐹 ↾ (ℤ≥‘𝑚))) ∈
ℝ) |
| 120 | 119 | adantr 480 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (lim
inf‘𝐹) = (lim
sup‘𝐹)) ∧ (lim
sup‘𝐹) ∈
ℝ) ∧ 𝑚 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑚)):(ℤ≥‘𝑚)⟶ℝ) → (lim
inf‘(𝐹 ↾
(ℤ≥‘𝑚))) ∈ ℝ) |
| 121 | | simp2 1137 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹) ∧ 𝑚 ∈ 𝑍) → (lim inf‘𝐹) = (lim sup‘𝐹)) |
| 122 | 103 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → 𝑚 ∈ ℤ) |
| 123 | 27 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → 𝐹 ∈ V) |
| 124 | 31 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → dom 𝐹 ⊆ ℤ) |
| 125 | 122, 105,
123, 124 | liminfresuz2 45807 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (lim inf‘(𝐹 ↾ (ℤ≥‘𝑚))) = (lim inf‘𝐹)) |
| 126 | 125 | 3adant2 1131 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹) ∧ 𝑚 ∈ 𝑍) → (lim inf‘(𝐹 ↾ (ℤ≥‘𝑚))) = (lim inf‘𝐹)) |
| 127 | 122, 105,
123, 124 | limsupresuz2 45729 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (lim sup‘(𝐹 ↾ (ℤ≥‘𝑚))) = (lim sup‘𝐹)) |
| 128 | 127 | 3adant2 1131 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹) ∧ 𝑚 ∈ 𝑍) → (lim sup‘(𝐹 ↾ (ℤ≥‘𝑚))) = (lim sup‘𝐹)) |
| 129 | 121, 126,
128 | 3eqtr4d 2786 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹) ∧ 𝑚 ∈ 𝑍) → (lim inf‘(𝐹 ↾ (ℤ≥‘𝑚))) = (lim sup‘(𝐹 ↾
(ℤ≥‘𝑚)))) |
| 130 | 129 | ad5ant124 1366 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (lim
inf‘𝐹) = (lim
sup‘𝐹)) ∧ (lim
sup‘𝐹) ∈
ℝ) ∧ 𝑚 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑚)):(ℤ≥‘𝑚)⟶ℝ) → (lim
inf‘(𝐹 ↾
(ℤ≥‘𝑚))) = (lim sup‘(𝐹 ↾ (ℤ≥‘𝑚)))) |
| 131 | 104, 105,
106 | climliminflimsup3 45830 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (lim
inf‘𝐹) = (lim
sup‘𝐹)) ∧ (lim
sup‘𝐹) ∈
ℝ) ∧ 𝑚 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑚)):(ℤ≥‘𝑚)⟶ℝ) → ((𝐹 ↾
(ℤ≥‘𝑚)) ∈ dom ⇝ ↔ ((lim
inf‘(𝐹 ↾
(ℤ≥‘𝑚))) ∈ ℝ ∧ (lim
inf‘(𝐹 ↾
(ℤ≥‘𝑚))) = (lim sup‘(𝐹 ↾ (ℤ≥‘𝑚)))))) |
| 132 | 120, 130,
131 | mpbir2and 713 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (lim
inf‘𝐹) = (lim
sup‘𝐹)) ∧ (lim
sup‘𝐹) ∈
ℝ) ∧ 𝑚 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑚)):(ℤ≥‘𝑚)⟶ℝ) → (𝐹 ↾
(ℤ≥‘𝑚)) ∈ dom ⇝ ) |
| 133 | 104, 105,
106, 132 | dmclimxlim 45871 |
. . . . . . 7
⊢
(((((𝜑 ∧ (lim
inf‘𝐹) = (lim
sup‘𝐹)) ∧ (lim
sup‘𝐹) ∈
ℝ) ∧ 𝑚 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑚)):(ℤ≥‘𝑚)⟶ℝ) → (𝐹 ↾
(ℤ≥‘𝑚)) ∈ dom ~~>*) |
| 134 | 17 | ad4antr 732 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (lim
inf‘𝐹) = (lim
sup‘𝐹)) ∧ (lim
sup‘𝐹) ∈
ℝ) ∧ 𝑚 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑚)):(ℤ≥‘𝑚)⟶ℝ) → 𝐹 ∈ (ℝ*
↑pm ℂ)) |
| 135 | 134, 104 | xlimresdm 45879 |
. . . . . . 7
⊢
(((((𝜑 ∧ (lim
inf‘𝐹) = (lim
sup‘𝐹)) ∧ (lim
sup‘𝐹) ∈
ℝ) ∧ 𝑚 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑚)):(ℤ≥‘𝑚)⟶ℝ) → (𝐹 ∈ dom ~~>* ↔ (𝐹 ↾
(ℤ≥‘𝑚)) ∈ dom ~~>*)) |
| 136 | 133, 135 | mpbird 257 |
. . . . . 6
⊢
(((((𝜑 ∧ (lim
inf‘𝐹) = (lim
sup‘𝐹)) ∧ (lim
sup‘𝐹) ∈
ℝ) ∧ 𝑚 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑚)):(ℤ≥‘𝑚)⟶ℝ) → 𝐹 ∈ dom
~~>*) |
| 137 | 102, 136 | rexlimddv2 45843 |
. . . . 5
⊢ (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) → 𝐹 ∈ dom
~~>*) |
| 138 | 137 | adantlr 715 |
. . . 4
⊢ ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ≠ -∞) ∧ (lim
sup‘𝐹) ∈
ℝ) → 𝐹 ∈
dom ~~>*) |
| 139 | | simpll 766 |
. . . . 5
⊢ ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ≠ -∞) ∧ ¬
(lim sup‘𝐹) ∈
ℝ) → (𝜑 ∧ (lim
inf‘𝐹) = (lim
sup‘𝐹))) |
| 140 | | simpllr 775 |
. . . . . 6
⊢ ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ≠ -∞) ∧ ¬
(lim sup‘𝐹) ∈
ℝ) → (lim inf‘𝐹) = (lim sup‘𝐹)) |
| 141 | 48 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (lim sup‘𝐹) ≠ -∞) ∧ ¬
(lim sup‘𝐹) ∈
ℝ) → (lim sup‘𝐹) ∈
ℝ*) |
| 142 | | simpr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ (lim sup‘𝐹) ≠ -∞) ∧ ¬
(lim sup‘𝐹) ∈
ℝ) → ¬ (lim sup‘𝐹) ∈ ℝ) |
| 143 | | simplr 768 |
. . . . . . . 8
⊢ (((𝜑 ∧ (lim sup‘𝐹) ≠ -∞) ∧ ¬
(lim sup‘𝐹) ∈
ℝ) → (lim sup‘𝐹) ≠ -∞) |
| 144 | 141, 142,
143 | xrnmnfpnf 45093 |
. . . . . . 7
⊢ (((𝜑 ∧ (lim sup‘𝐹) ≠ -∞) ∧ ¬
(lim sup‘𝐹) ∈
ℝ) → (lim sup‘𝐹) = +∞) |
| 145 | 144 | adantllr 719 |
. . . . . 6
⊢ ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ≠ -∞) ∧ ¬
(lim sup‘𝐹) ∈
ℝ) → (lim sup‘𝐹) = +∞) |
| 146 | 140, 145 | eqtrd 2776 |
. . . . 5
⊢ ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ≠ -∞) ∧ ¬
(lim sup‘𝐹) ∈
ℝ) → (lim inf‘𝐹) = +∞) |
| 147 | 27 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (lim inf‘𝐹) = +∞) → 𝐹 ∈ V) |
| 148 | | pnfxr 11316 |
. . . . . . . 8
⊢ +∞
∈ ℝ* |
| 149 | 148 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ (lim inf‘𝐹) = +∞) → +∞
∈ ℝ*) |
| 150 | 1, 3, 4 | xlimpnfliminf2 45881 |
. . . . . . . 8
⊢ (𝜑 → (𝐹~~>*+∞ ↔ (lim inf‘𝐹) = +∞)) |
| 151 | 150 | biimpar 477 |
. . . . . . 7
⊢ ((𝜑 ∧ (lim inf‘𝐹) = +∞) → 𝐹~~>*+∞) |
| 152 | 147, 149,
151 | breldmd 5922 |
. . . . . 6
⊢ ((𝜑 ∧ (lim inf‘𝐹) = +∞) → 𝐹 ∈ dom
~~>*) |
| 153 | 152 | adantlr 715 |
. . . . 5
⊢ (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim inf‘𝐹) = +∞) → 𝐹 ∈ dom
~~>*) |
| 154 | 139, 146,
153 | syl2anc 584 |
. . . 4
⊢ ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ≠ -∞) ∧ ¬
(lim sup‘𝐹) ∈
ℝ) → 𝐹 ∈
dom ~~>*) |
| 155 | 138, 154 | pm2.61dan 812 |
. . 3
⊢ (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ≠ -∞) → 𝐹 ∈ dom
~~>*) |
| 156 | 94, 155 | pm2.61dane 3028 |
. 2
⊢ ((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) → 𝐹 ∈ dom ~~>*) |
| 157 | 84, 156 | impbida 800 |
1
⊢ (𝜑 → (𝐹 ∈ dom ~~>* ↔ (lim inf‘𝐹) = (lim sup‘𝐹))) |