Step | Hyp | Ref
| Expression |
1 | | xlimliminflimsup.m |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
2 | 1 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) → 𝑀 ∈
ℤ) |
3 | | xlimliminflimsup.z |
. . . . 5
⊢ 𝑍 =
(ℤ≥‘𝑀) |
4 | | xlimliminflimsup.f |
. . . . . 6
⊢ (𝜑 → 𝐹:𝑍⟶ℝ*) |
5 | 4 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) → 𝐹:𝑍⟶ℝ*) |
6 | | simpr 485 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) →
(~~>*‘𝐹) ∈
ℝ) |
7 | | xlimdm 43398 |
. . . . . . 7
⊢ (𝐹 ∈ dom ~~>* ↔ 𝐹~~>*(~~>*‘𝐹)) |
8 | 7 | biimpi 215 |
. . . . . 6
⊢ (𝐹 ∈ dom ~~>* → 𝐹~~>*(~~>*‘𝐹)) |
9 | 8 | ad2antlr 724 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) → 𝐹~~>*(~~>*‘𝐹)) |
10 | 2, 3, 5, 6, 9 | xlimxrre 43372 |
. . . 4
⊢ (((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) →
∃𝑗 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) |
11 | 3 | eluzelz2 42943 |
. . . . . . 7
⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ) |
12 | 11 | ad2antlr 724 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧
(~~>*‘𝐹) ∈
ℝ) ∧ 𝑗 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) → 𝑗 ∈
ℤ) |
13 | | eqid 2738 |
. . . . . 6
⊢
(ℤ≥‘𝑗) = (ℤ≥‘𝑗) |
14 | | simpr 485 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧
(~~>*‘𝐹) ∈
ℝ) ∧ 𝑗 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) → (𝐹 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) |
15 | 14 | frexr 42924 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧
(~~>*‘𝐹) ∈
ℝ) ∧ 𝑗 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) → (𝐹 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ*) |
16 | 9 | adantr 481 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗 ∈ 𝑍) → 𝐹~~>*(~~>*‘𝐹)) |
17 | 3, 4 | fuzxrpmcn 43369 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 ∈ (ℝ*
↑pm ℂ)) |
18 | 17 | ad3antrrr 727 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗 ∈ 𝑍) → 𝐹 ∈ (ℝ*
↑pm ℂ)) |
19 | 11 | adantl 482 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ ℤ) |
20 | 18, 19 | xlimres 43362 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗 ∈ 𝑍) → (𝐹~~>*(~~>*‘𝐹) ↔ (𝐹 ↾ (ℤ≥‘𝑗))~~>*(~~>*‘𝐹))) |
21 | 16, 20 | mpbid 231 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗 ∈ 𝑍) → (𝐹 ↾ (ℤ≥‘𝑗))~~>*(~~>*‘𝐹)) |
22 | 21 | adantr 481 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧
(~~>*‘𝐹) ∈
ℝ) ∧ 𝑗 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) → (𝐹 ↾
(ℤ≥‘𝑗))~~>*(~~>*‘𝐹)) |
23 | | simpllr 773 |
. . . . . . 7
⊢
(((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧
(~~>*‘𝐹) ∈
ℝ) ∧ 𝑗 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) →
(~~>*‘𝐹) ∈
ℝ) |
24 | 12, 13, 15, 22, 23 | xlimclimdm 43395 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧
(~~>*‘𝐹) ∈
ℝ) ∧ 𝑗 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) → (𝐹 ↾
(ℤ≥‘𝑗)) ∈ dom ⇝ ) |
25 | 12, 13, 14, 24 | climliminflimsupd 43342 |
. . . . 5
⊢
(((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧
(~~>*‘𝐹) ∈
ℝ) ∧ 𝑗 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) → (lim
inf‘(𝐹 ↾
(ℤ≥‘𝑗))) = (lim sup‘(𝐹 ↾ (ℤ≥‘𝑗)))) |
26 | 11 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝑗 ∈ ℤ) |
27 | 17 | elexd 3452 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ V) |
28 | 27 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → 𝐹 ∈ V) |
29 | 4 | fdmd 6611 |
. . . . . . . . . 10
⊢ (𝜑 → dom 𝐹 = 𝑍) |
30 | 26 | ssd 42630 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑍 ⊆ ℤ) |
31 | 29, 30 | eqsstrd 3959 |
. . . . . . . . 9
⊢ (𝜑 → dom 𝐹 ⊆ ℤ) |
32 | 31 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → dom 𝐹 ⊆ ℤ) |
33 | 26, 13, 28, 32 | liminfresuz2 43328 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (lim inf‘(𝐹 ↾ (ℤ≥‘𝑗))) = (lim inf‘𝐹)) |
34 | 33 | eqcomd 2744 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (lim inf‘𝐹) = (lim inf‘(𝐹 ↾ (ℤ≥‘𝑗)))) |
35 | 34 | ad5ant14 755 |
. . . . 5
⊢
(((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧
(~~>*‘𝐹) ∈
ℝ) ∧ 𝑗 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) → (lim
inf‘𝐹) = (lim
inf‘(𝐹 ↾
(ℤ≥‘𝑗)))) |
36 | 26, 13, 28, 32 | limsupresuz2 43250 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (lim sup‘(𝐹 ↾ (ℤ≥‘𝑗))) = (lim sup‘𝐹)) |
37 | 36 | eqcomd 2744 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (lim sup‘𝐹) = (lim sup‘(𝐹 ↾ (ℤ≥‘𝑗)))) |
38 | 37 | ad5ant14 755 |
. . . . 5
⊢
(((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧
(~~>*‘𝐹) ∈
ℝ) ∧ 𝑗 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) → (lim
sup‘𝐹) = (lim
sup‘(𝐹 ↾
(ℤ≥‘𝑗)))) |
39 | 25, 35, 38 | 3eqtr4d 2788 |
. . . 4
⊢
(((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧
(~~>*‘𝐹) ∈
ℝ) ∧ 𝑗 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶ℝ) → (lim
inf‘𝐹) = (lim
sup‘𝐹)) |
40 | 10, 39 | rexlimddv2 43364 |
. . 3
⊢ (((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) → (lim
inf‘𝐹) = (lim
sup‘𝐹)) |
41 | | simpll 764 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) = +∞) → 𝜑) |
42 | 8 | adantr 481 |
. . . . . . . 8
⊢ ((𝐹 ∈ dom ~~>* ∧
(~~>*‘𝐹) = +∞)
→ 𝐹~~>*(~~>*‘𝐹)) |
43 | | simpr 485 |
. . . . . . . 8
⊢ ((𝐹 ∈ dom ~~>* ∧
(~~>*‘𝐹) = +∞)
→ (~~>*‘𝐹) =
+∞) |
44 | 42, 43 | breqtrd 5100 |
. . . . . . 7
⊢ ((𝐹 ∈ dom ~~>* ∧
(~~>*‘𝐹) = +∞)
→ 𝐹~~>*+∞) |
45 | 44 | adantll 711 |
. . . . . 6
⊢ (((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) = +∞) → 𝐹~~>*+∞) |
46 | 17 | liminfcld 43311 |
. . . . . . . 8
⊢ (𝜑 → (lim inf‘𝐹) ∈
ℝ*) |
47 | 46 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐹~~>*+∞) → (lim inf‘𝐹) ∈
ℝ*) |
48 | 17 | limsupcld 43231 |
. . . . . . . 8
⊢ (𝜑 → (lim sup‘𝐹) ∈
ℝ*) |
49 | 48 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐹~~>*+∞) → (lim sup‘𝐹) ∈
ℝ*) |
50 | 1, 3, 4 | liminflelimsupuz 43326 |
. . . . . . . 8
⊢ (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹)) |
51 | 50 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐹~~>*+∞) → (lim inf‘𝐹) ≤ (lim sup‘𝐹)) |
52 | 49 | pnfged 43014 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐹~~>*+∞) → (lim sup‘𝐹) ≤
+∞) |
53 | 1 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐹~~>*+∞) → 𝑀 ∈ ℤ) |
54 | 4 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐹~~>*+∞) → 𝐹:𝑍⟶ℝ*) |
55 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐹~~>*+∞) → 𝐹~~>*+∞) |
56 | 53, 3, 54, 55 | xlimpnfliminf 43401 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐹~~>*+∞) → (lim inf‘𝐹) = +∞) |
57 | 52, 56 | breqtrrd 5102 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐹~~>*+∞) → (lim sup‘𝐹) ≤ (lim inf‘𝐹)) |
58 | 47, 49, 51, 57 | xrletrid 12889 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹~~>*+∞) → (lim inf‘𝐹) = (lim sup‘𝐹)) |
59 | 41, 45, 58 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) = +∞) → (lim
inf‘𝐹) = (lim
sup‘𝐹)) |
60 | 59 | adantlr 712 |
. . . 4
⊢ ((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ ¬
(~~>*‘𝐹) ∈
ℝ) ∧ (~~>*‘𝐹) = +∞) → (lim inf‘𝐹) = (lim sup‘𝐹)) |
61 | | simplll 772 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ ¬
(~~>*‘𝐹) ∈
ℝ) ∧ ¬ (~~>*‘𝐹) = +∞) → 𝜑) |
62 | 8 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝐹 ∈ dom ~~>* ∧ ¬
(~~>*‘𝐹) ∈
ℝ) ∧ ¬ (~~>*‘𝐹) = +∞) → 𝐹~~>*(~~>*‘𝐹)) |
63 | | xlimcl 43363 |
. . . . . . . . . 10
⊢ (𝐹~~>*(~~>*‘𝐹) → (~~>*‘𝐹) ∈
ℝ*) |
64 | 8, 63 | syl 17 |
. . . . . . . . 9
⊢ (𝐹 ∈ dom ~~>* →
(~~>*‘𝐹) ∈
ℝ*) |
65 | 64 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝐹 ∈ dom ~~>* ∧ ¬
(~~>*‘𝐹) ∈
ℝ) ∧ ¬ (~~>*‘𝐹) = +∞) → (~~>*‘𝐹) ∈
ℝ*) |
66 | | simplr 766 |
. . . . . . . 8
⊢ (((𝐹 ∈ dom ~~>* ∧ ¬
(~~>*‘𝐹) ∈
ℝ) ∧ ¬ (~~>*‘𝐹) = +∞) → ¬ (~~>*‘𝐹) ∈
ℝ) |
67 | | neqne 2951 |
. . . . . . . . 9
⊢ (¬
(~~>*‘𝐹) = +∞
→ (~~>*‘𝐹) ≠
+∞) |
68 | 67 | adantl 482 |
. . . . . . . 8
⊢ (((𝐹 ∈ dom ~~>* ∧ ¬
(~~>*‘𝐹) ∈
ℝ) ∧ ¬ (~~>*‘𝐹) = +∞) → (~~>*‘𝐹) ≠
+∞) |
69 | 65, 66, 68 | xrnpnfmnf 43015 |
. . . . . . 7
⊢ (((𝐹 ∈ dom ~~>* ∧ ¬
(~~>*‘𝐹) ∈
ℝ) ∧ ¬ (~~>*‘𝐹) = +∞) → (~~>*‘𝐹) = -∞) |
70 | 62, 69 | breqtrd 5100 |
. . . . . 6
⊢ (((𝐹 ∈ dom ~~>* ∧ ¬
(~~>*‘𝐹) ∈
ℝ) ∧ ¬ (~~>*‘𝐹) = +∞) → 𝐹~~>*-∞) |
71 | 70 | adantlll 715 |
. . . . 5
⊢ ((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ ¬
(~~>*‘𝐹) ∈
ℝ) ∧ ¬ (~~>*‘𝐹) = +∞) → 𝐹~~>*-∞) |
72 | 46 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹~~>*-∞) → (lim inf‘𝐹) ∈
ℝ*) |
73 | 48 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹~~>*-∞) → (lim sup‘𝐹) ∈
ℝ*) |
74 | 50 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹~~>*-∞) → (lim inf‘𝐹) ≤ (lim sup‘𝐹)) |
75 | 1 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐹~~>*-∞) → 𝑀 ∈ ℤ) |
76 | 4 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐹~~>*-∞) → 𝐹:𝑍⟶ℝ*) |
77 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐹~~>*-∞) → 𝐹~~>*-∞) |
78 | 75, 3, 76, 77 | xlimmnflimsup 43397 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐹~~>*-∞) → (lim sup‘𝐹) = -∞) |
79 | 72 | mnfled 42928 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐹~~>*-∞) → -∞ ≤ (lim
inf‘𝐹)) |
80 | 78, 79 | eqbrtrd 5096 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹~~>*-∞) → (lim sup‘𝐹) ≤ (lim inf‘𝐹)) |
81 | 72, 73, 74, 80 | xrletrid 12889 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹~~>*-∞) → (lim inf‘𝐹) = (lim sup‘𝐹)) |
82 | 61, 71, 81 | syl2anc 584 |
. . . 4
⊢ ((((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ ¬
(~~>*‘𝐹) ∈
ℝ) ∧ ¬ (~~>*‘𝐹) = +∞) → (lim inf‘𝐹) = (lim sup‘𝐹)) |
83 | 60, 82 | pm2.61dan 810 |
. . 3
⊢ (((𝜑 ∧ 𝐹 ∈ dom ~~>*) ∧ ¬
(~~>*‘𝐹) ∈
ℝ) → (lim inf‘𝐹) = (lim sup‘𝐹)) |
84 | 40, 83 | pm2.61dan 810 |
. 2
⊢ ((𝜑 ∧ 𝐹 ∈ dom ~~>*) → (lim
inf‘𝐹) = (lim
sup‘𝐹)) |
85 | 27 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (lim sup‘𝐹) = -∞) → 𝐹 ∈ V) |
86 | | mnfxr 11032 |
. . . . . 6
⊢ -∞
∈ ℝ* |
87 | 86 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ (lim sup‘𝐹) = -∞) → -∞
∈ ℝ*) |
88 | | simpr 485 |
. . . . . 6
⊢ ((𝜑 ∧ (lim sup‘𝐹) = -∞) → (lim
sup‘𝐹) =
-∞) |
89 | 1 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (lim sup‘𝐹) = -∞) → 𝑀 ∈
ℤ) |
90 | 4 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (lim sup‘𝐹) = -∞) → 𝐹:𝑍⟶ℝ*) |
91 | 89, 3, 90 | xlimmnflimsup2 43393 |
. . . . . 6
⊢ ((𝜑 ∧ (lim sup‘𝐹) = -∞) → (𝐹~~>*-∞ ↔ (lim
sup‘𝐹) =
-∞)) |
92 | 88, 91 | mpbird 256 |
. . . . 5
⊢ ((𝜑 ∧ (lim sup‘𝐹) = -∞) → 𝐹~~>*-∞) |
93 | 85, 87, 92 | breldmd 5821 |
. . . 4
⊢ ((𝜑 ∧ (lim sup‘𝐹) = -∞) → 𝐹 ∈ dom
~~>*) |
94 | 93 | adantlr 712 |
. . 3
⊢ (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) = -∞) → 𝐹 ∈ dom
~~>*) |
95 | 1 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) → 𝑀 ∈
ℤ) |
96 | 4 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) → 𝐹:𝑍⟶ℝ*) |
97 | | simpr 485 |
. . . . . . . 8
⊢ (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) → (lim
sup‘𝐹) ∈
ℝ) |
98 | 97 | renepnfd 11026 |
. . . . . . 7
⊢ (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) → (lim
sup‘𝐹) ≠
+∞) |
99 | | simplr 766 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) → (lim
inf‘𝐹) = (lim
sup‘𝐹)) |
100 | 99, 97 | eqeltrd 2839 |
. . . . . . . 8
⊢ (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) → (lim
inf‘𝐹) ∈
ℝ) |
101 | 100 | renemnfd 11027 |
. . . . . . 7
⊢ (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) → (lim
inf‘𝐹) ≠
-∞) |
102 | 95, 3, 96, 98, 101 | liminflimsupxrre 43358 |
. . . . . 6
⊢ (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) →
∃𝑚 ∈ 𝑍 (𝐹 ↾ (ℤ≥‘𝑚)):(ℤ≥‘𝑚)⟶ℝ) |
103 | 3 | eluzelz2 42943 |
. . . . . . . . 9
⊢ (𝑚 ∈ 𝑍 → 𝑚 ∈ ℤ) |
104 | 103 | ad2antlr 724 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (lim
inf‘𝐹) = (lim
sup‘𝐹)) ∧ (lim
sup‘𝐹) ∈
ℝ) ∧ 𝑚 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑚)):(ℤ≥‘𝑚)⟶ℝ) → 𝑚 ∈
ℤ) |
105 | | eqid 2738 |
. . . . . . . 8
⊢
(ℤ≥‘𝑚) = (ℤ≥‘𝑚) |
106 | | simpr 485 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (lim
inf‘𝐹) = (lim
sup‘𝐹)) ∧ (lim
sup‘𝐹) ∈
ℝ) ∧ 𝑚 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑚)):(ℤ≥‘𝑚)⟶ℝ) → (𝐹 ↾
(ℤ≥‘𝑚)):(ℤ≥‘𝑚)⟶ℝ) |
107 | | simplll 772 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) ∧ 𝑚 ∈ 𝑍) → 𝜑) |
108 | | simpl 483 |
. . . . . . . . . . . . 13
⊢ (((lim
inf‘𝐹) = (lim
sup‘𝐹) ∧ (lim
sup‘𝐹) ∈
ℝ) → (lim inf‘𝐹) = (lim sup‘𝐹)) |
109 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ (((lim
inf‘𝐹) = (lim
sup‘𝐹) ∧ (lim
sup‘𝐹) ∈
ℝ) → (lim sup‘𝐹) ∈ ℝ) |
110 | 108, 109 | eqeltrd 2839 |
. . . . . . . . . . . 12
⊢ (((lim
inf‘𝐹) = (lim
sup‘𝐹) ∧ (lim
sup‘𝐹) ∈
ℝ) → (lim inf‘𝐹) ∈ ℝ) |
111 | 110 | ad4ant23 750 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) ∧ 𝑚 ∈ 𝑍) → (lim inf‘𝐹) ∈ ℝ) |
112 | | simpr 485 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) ∧ 𝑚 ∈ 𝑍) → 𝑚 ∈ 𝑍) |
113 | 103 | 3ad2ant3 1134 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (lim inf‘𝐹) ∈ ℝ ∧ 𝑚 ∈ 𝑍) → 𝑚 ∈ ℤ) |
114 | 27 | 3ad2ant1 1132 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (lim inf‘𝐹) ∈ ℝ ∧ 𝑚 ∈ 𝑍) → 𝐹 ∈ V) |
115 | 31 | 3ad2ant1 1132 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (lim inf‘𝐹) ∈ ℝ ∧ 𝑚 ∈ 𝑍) → dom 𝐹 ⊆ ℤ) |
116 | 113, 105,
114, 115 | liminfresuz2 43328 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (lim inf‘𝐹) ∈ ℝ ∧ 𝑚 ∈ 𝑍) → (lim inf‘(𝐹 ↾ (ℤ≥‘𝑚))) = (lim inf‘𝐹)) |
117 | | simp2 1136 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (lim inf‘𝐹) ∈ ℝ ∧ 𝑚 ∈ 𝑍) → (lim inf‘𝐹) ∈ ℝ) |
118 | 116, 117 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (lim inf‘𝐹) ∈ ℝ ∧ 𝑚 ∈ 𝑍) → (lim inf‘(𝐹 ↾ (ℤ≥‘𝑚))) ∈
ℝ) |
119 | 107, 111,
112, 118 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) ∧ 𝑚 ∈ 𝑍) → (lim inf‘(𝐹 ↾ (ℤ≥‘𝑚))) ∈
ℝ) |
120 | 119 | adantr 481 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (lim
inf‘𝐹) = (lim
sup‘𝐹)) ∧ (lim
sup‘𝐹) ∈
ℝ) ∧ 𝑚 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑚)):(ℤ≥‘𝑚)⟶ℝ) → (lim
inf‘(𝐹 ↾
(ℤ≥‘𝑚))) ∈ ℝ) |
121 | | simp2 1136 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹) ∧ 𝑚 ∈ 𝑍) → (lim inf‘𝐹) = (lim sup‘𝐹)) |
122 | 103 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → 𝑚 ∈ ℤ) |
123 | 27 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → 𝐹 ∈ V) |
124 | 31 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → dom 𝐹 ⊆ ℤ) |
125 | 122, 105,
123, 124 | liminfresuz2 43328 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (lim inf‘(𝐹 ↾ (ℤ≥‘𝑚))) = (lim inf‘𝐹)) |
126 | 125 | 3adant2 1130 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹) ∧ 𝑚 ∈ 𝑍) → (lim inf‘(𝐹 ↾ (ℤ≥‘𝑚))) = (lim inf‘𝐹)) |
127 | 122, 105,
123, 124 | limsupresuz2 43250 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ 𝑍) → (lim sup‘(𝐹 ↾ (ℤ≥‘𝑚))) = (lim sup‘𝐹)) |
128 | 127 | 3adant2 1130 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹) ∧ 𝑚 ∈ 𝑍) → (lim sup‘(𝐹 ↾ (ℤ≥‘𝑚))) = (lim sup‘𝐹)) |
129 | 121, 126,
128 | 3eqtr4d 2788 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹) ∧ 𝑚 ∈ 𝑍) → (lim inf‘(𝐹 ↾ (ℤ≥‘𝑚))) = (lim sup‘(𝐹 ↾
(ℤ≥‘𝑚)))) |
130 | 129 | ad5ant124 1364 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (lim
inf‘𝐹) = (lim
sup‘𝐹)) ∧ (lim
sup‘𝐹) ∈
ℝ) ∧ 𝑚 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑚)):(ℤ≥‘𝑚)⟶ℝ) → (lim
inf‘(𝐹 ↾
(ℤ≥‘𝑚))) = (lim sup‘(𝐹 ↾ (ℤ≥‘𝑚)))) |
131 | 104, 105,
106 | climliminflimsup3 43351 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ (lim
inf‘𝐹) = (lim
sup‘𝐹)) ∧ (lim
sup‘𝐹) ∈
ℝ) ∧ 𝑚 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑚)):(ℤ≥‘𝑚)⟶ℝ) → ((𝐹 ↾
(ℤ≥‘𝑚)) ∈ dom ⇝ ↔ ((lim
inf‘(𝐹 ↾
(ℤ≥‘𝑚))) ∈ ℝ ∧ (lim
inf‘(𝐹 ↾
(ℤ≥‘𝑚))) = (lim sup‘(𝐹 ↾ (ℤ≥‘𝑚)))))) |
132 | 120, 130,
131 | mpbir2and 710 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (lim
inf‘𝐹) = (lim
sup‘𝐹)) ∧ (lim
sup‘𝐹) ∈
ℝ) ∧ 𝑚 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑚)):(ℤ≥‘𝑚)⟶ℝ) → (𝐹 ↾
(ℤ≥‘𝑚)) ∈ dom ⇝ ) |
133 | 104, 105,
106, 132 | dmclimxlim 43392 |
. . . . . . 7
⊢
(((((𝜑 ∧ (lim
inf‘𝐹) = (lim
sup‘𝐹)) ∧ (lim
sup‘𝐹) ∈
ℝ) ∧ 𝑚 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑚)):(ℤ≥‘𝑚)⟶ℝ) → (𝐹 ↾
(ℤ≥‘𝑚)) ∈ dom ~~>*) |
134 | 17 | ad4antr 729 |
. . . . . . . 8
⊢
(((((𝜑 ∧ (lim
inf‘𝐹) = (lim
sup‘𝐹)) ∧ (lim
sup‘𝐹) ∈
ℝ) ∧ 𝑚 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑚)):(ℤ≥‘𝑚)⟶ℝ) → 𝐹 ∈ (ℝ*
↑pm ℂ)) |
135 | 134, 104 | xlimresdm 43400 |
. . . . . . 7
⊢
(((((𝜑 ∧ (lim
inf‘𝐹) = (lim
sup‘𝐹)) ∧ (lim
sup‘𝐹) ∈
ℝ) ∧ 𝑚 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑚)):(ℤ≥‘𝑚)⟶ℝ) → (𝐹 ∈ dom ~~>* ↔ (𝐹 ↾
(ℤ≥‘𝑚)) ∈ dom ~~>*)) |
136 | 133, 135 | mpbird 256 |
. . . . . 6
⊢
(((((𝜑 ∧ (lim
inf‘𝐹) = (lim
sup‘𝐹)) ∧ (lim
sup‘𝐹) ∈
ℝ) ∧ 𝑚 ∈
𝑍) ∧ (𝐹 ↾ (ℤ≥‘𝑚)):(ℤ≥‘𝑚)⟶ℝ) → 𝐹 ∈ dom
~~>*) |
137 | 102, 136 | rexlimddv2 43364 |
. . . . 5
⊢ (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) → 𝐹 ∈ dom
~~>*) |
138 | 137 | adantlr 712 |
. . . 4
⊢ ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ≠ -∞) ∧ (lim
sup‘𝐹) ∈
ℝ) → 𝐹 ∈
dom ~~>*) |
139 | | simpll 764 |
. . . . 5
⊢ ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ≠ -∞) ∧ ¬
(lim sup‘𝐹) ∈
ℝ) → (𝜑 ∧ (lim
inf‘𝐹) = (lim
sup‘𝐹))) |
140 | | simpllr 773 |
. . . . . 6
⊢ ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ≠ -∞) ∧ ¬
(lim sup‘𝐹) ∈
ℝ) → (lim inf‘𝐹) = (lim sup‘𝐹)) |
141 | 48 | ad2antrr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ (lim sup‘𝐹) ≠ -∞) ∧ ¬
(lim sup‘𝐹) ∈
ℝ) → (lim sup‘𝐹) ∈
ℝ*) |
142 | | simpr 485 |
. . . . . . . 8
⊢ (((𝜑 ∧ (lim sup‘𝐹) ≠ -∞) ∧ ¬
(lim sup‘𝐹) ∈
ℝ) → ¬ (lim sup‘𝐹) ∈ ℝ) |
143 | | simplr 766 |
. . . . . . . 8
⊢ (((𝜑 ∧ (lim sup‘𝐹) ≠ -∞) ∧ ¬
(lim sup‘𝐹) ∈
ℝ) → (lim sup‘𝐹) ≠ -∞) |
144 | 141, 142,
143 | xrnmnfpnf 42633 |
. . . . . . 7
⊢ (((𝜑 ∧ (lim sup‘𝐹) ≠ -∞) ∧ ¬
(lim sup‘𝐹) ∈
ℝ) → (lim sup‘𝐹) = +∞) |
145 | 144 | adantllr 716 |
. . . . . 6
⊢ ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ≠ -∞) ∧ ¬
(lim sup‘𝐹) ∈
ℝ) → (lim sup‘𝐹) = +∞) |
146 | 140, 145 | eqtrd 2778 |
. . . . 5
⊢ ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ≠ -∞) ∧ ¬
(lim sup‘𝐹) ∈
ℝ) → (lim inf‘𝐹) = +∞) |
147 | 27 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (lim inf‘𝐹) = +∞) → 𝐹 ∈ V) |
148 | | pnfxr 11029 |
. . . . . . . 8
⊢ +∞
∈ ℝ* |
149 | 148 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ (lim inf‘𝐹) = +∞) → +∞
∈ ℝ*) |
150 | 1, 3, 4 | xlimpnfliminf2 43402 |
. . . . . . . 8
⊢ (𝜑 → (𝐹~~>*+∞ ↔ (lim inf‘𝐹) = +∞)) |
151 | 150 | biimpar 478 |
. . . . . . 7
⊢ ((𝜑 ∧ (lim inf‘𝐹) = +∞) → 𝐹~~>*+∞) |
152 | 147, 149,
151 | breldmd 5821 |
. . . . . 6
⊢ ((𝜑 ∧ (lim inf‘𝐹) = +∞) → 𝐹 ∈ dom
~~>*) |
153 | 152 | adantlr 712 |
. . . . 5
⊢ (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim inf‘𝐹) = +∞) → 𝐹 ∈ dom
~~>*) |
154 | 139, 146,
153 | syl2anc 584 |
. . . 4
⊢ ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ≠ -∞) ∧ ¬
(lim sup‘𝐹) ∈
ℝ) → 𝐹 ∈
dom ~~>*) |
155 | 138, 154 | pm2.61dan 810 |
. . 3
⊢ (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ≠ -∞) → 𝐹 ∈ dom
~~>*) |
156 | 94, 155 | pm2.61dane 3032 |
. 2
⊢ ((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) → 𝐹 ∈ dom ~~>*) |
157 | 84, 156 | impbida 798 |
1
⊢ (𝜑 → (𝐹 ∈ dom ~~>* ↔ (lim inf‘𝐹) = (lim sup‘𝐹))) |