Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimliminflimsup Structured version   Visualization version   GIF version

Theorem xlimliminflimsup 43403
Description: A sequence of extended reals converges if and only if its inferior limit and its superior limit are equal. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
xlimliminflimsup.m (𝜑𝑀 ∈ ℤ)
xlimliminflimsup.z 𝑍 = (ℤ𝑀)
xlimliminflimsup.f (𝜑𝐹:𝑍⟶ℝ*)
Assertion
Ref Expression
xlimliminflimsup (𝜑 → (𝐹 ∈ dom ~~>* ↔ (lim inf‘𝐹) = (lim sup‘𝐹)))

Proof of Theorem xlimliminflimsup
Dummy variables 𝑗 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xlimliminflimsup.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
21ad2antrr 723 . . . . 5 (((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) → 𝑀 ∈ ℤ)
3 xlimliminflimsup.z . . . . 5 𝑍 = (ℤ𝑀)
4 xlimliminflimsup.f . . . . . 6 (𝜑𝐹:𝑍⟶ℝ*)
54ad2antrr 723 . . . . 5 (((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) → 𝐹:𝑍⟶ℝ*)
6 simpr 485 . . . . 5 (((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) → (~~>*‘𝐹) ∈ ℝ)
7 xlimdm 43398 . . . . . . 7 (𝐹 ∈ dom ~~>* ↔ 𝐹~~>*(~~>*‘𝐹))
87biimpi 215 . . . . . 6 (𝐹 ∈ dom ~~>* → 𝐹~~>*(~~>*‘𝐹))
98ad2antlr 724 . . . . 5 (((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) → 𝐹~~>*(~~>*‘𝐹))
102, 3, 5, 6, 9xlimxrre 43372 . . . 4 (((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) → ∃𝑗𝑍 (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
113eluzelz2 42943 . . . . . . 7 (𝑗𝑍𝑗 ∈ ℤ)
1211ad2antlr 724 . . . . . 6 (((((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → 𝑗 ∈ ℤ)
13 eqid 2738 . . . . . 6 (ℤ𝑗) = (ℤ𝑗)
14 simpr 485 . . . . . 6 (((((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ)
1514frexr 42924 . . . . . . 7 (((((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ*)
169adantr 481 . . . . . . . . 9 ((((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗𝑍) → 𝐹~~>*(~~>*‘𝐹))
173, 4fuzxrpmcn 43369 . . . . . . . . . . 11 (𝜑𝐹 ∈ (ℝ*pm ℂ))
1817ad3antrrr 727 . . . . . . . . . 10 ((((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗𝑍) → 𝐹 ∈ (ℝ*pm ℂ))
1911adantl 482 . . . . . . . . . 10 ((((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗𝑍) → 𝑗 ∈ ℤ)
2018, 19xlimres 43362 . . . . . . . . 9 ((((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗𝑍) → (𝐹~~>*(~~>*‘𝐹) ↔ (𝐹 ↾ (ℤ𝑗))~~>*(~~>*‘𝐹)))
2116, 20mpbid 231 . . . . . . . 8 ((((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗𝑍) → (𝐹 ↾ (ℤ𝑗))~~>*(~~>*‘𝐹))
2221adantr 481 . . . . . . 7 (((((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → (𝐹 ↾ (ℤ𝑗))~~>*(~~>*‘𝐹))
23 simpllr 773 . . . . . . 7 (((((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → (~~>*‘𝐹) ∈ ℝ)
2412, 13, 15, 22, 23xlimclimdm 43395 . . . . . 6 (((((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → (𝐹 ↾ (ℤ𝑗)) ∈ dom ⇝ )
2512, 13, 14, 24climliminflimsupd 43342 . . . . 5 (((((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → (lim inf‘(𝐹 ↾ (ℤ𝑗))) = (lim sup‘(𝐹 ↾ (ℤ𝑗))))
2611adantl 482 . . . . . . . 8 ((𝜑𝑗𝑍) → 𝑗 ∈ ℤ)
2717elexd 3452 . . . . . . . . 9 (𝜑𝐹 ∈ V)
2827adantr 481 . . . . . . . 8 ((𝜑𝑗𝑍) → 𝐹 ∈ V)
294fdmd 6611 . . . . . . . . . 10 (𝜑 → dom 𝐹 = 𝑍)
3026ssd 42630 . . . . . . . . . 10 (𝜑𝑍 ⊆ ℤ)
3129, 30eqsstrd 3959 . . . . . . . . 9 (𝜑 → dom 𝐹 ⊆ ℤ)
3231adantr 481 . . . . . . . 8 ((𝜑𝑗𝑍) → dom 𝐹 ⊆ ℤ)
3326, 13, 28, 32liminfresuz2 43328 . . . . . . 7 ((𝜑𝑗𝑍) → (lim inf‘(𝐹 ↾ (ℤ𝑗))) = (lim inf‘𝐹))
3433eqcomd 2744 . . . . . 6 ((𝜑𝑗𝑍) → (lim inf‘𝐹) = (lim inf‘(𝐹 ↾ (ℤ𝑗))))
3534ad5ant14 755 . . . . 5 (((((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → (lim inf‘𝐹) = (lim inf‘(𝐹 ↾ (ℤ𝑗))))
3626, 13, 28, 32limsupresuz2 43250 . . . . . . 7 ((𝜑𝑗𝑍) → (lim sup‘(𝐹 ↾ (ℤ𝑗))) = (lim sup‘𝐹))
3736eqcomd 2744 . . . . . 6 ((𝜑𝑗𝑍) → (lim sup‘𝐹) = (lim sup‘(𝐹 ↾ (ℤ𝑗))))
3837ad5ant14 755 . . . . 5 (((((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → (lim sup‘𝐹) = (lim sup‘(𝐹 ↾ (ℤ𝑗))))
3925, 35, 383eqtr4d 2788 . . . 4 (((((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) ∧ 𝑗𝑍) ∧ (𝐹 ↾ (ℤ𝑗)):(ℤ𝑗)⟶ℝ) → (lim inf‘𝐹) = (lim sup‘𝐹))
4010, 39rexlimddv2 43364 . . 3 (((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) ∈ ℝ) → (lim inf‘𝐹) = (lim sup‘𝐹))
41 simpll 764 . . . . . 6 (((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) = +∞) → 𝜑)
428adantr 481 . . . . . . . 8 ((𝐹 ∈ dom ~~>* ∧ (~~>*‘𝐹) = +∞) → 𝐹~~>*(~~>*‘𝐹))
43 simpr 485 . . . . . . . 8 ((𝐹 ∈ dom ~~>* ∧ (~~>*‘𝐹) = +∞) → (~~>*‘𝐹) = +∞)
4442, 43breqtrd 5100 . . . . . . 7 ((𝐹 ∈ dom ~~>* ∧ (~~>*‘𝐹) = +∞) → 𝐹~~>*+∞)
4544adantll 711 . . . . . 6 (((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) = +∞) → 𝐹~~>*+∞)
4617liminfcld 43311 . . . . . . . 8 (𝜑 → (lim inf‘𝐹) ∈ ℝ*)
4746adantr 481 . . . . . . 7 ((𝜑𝐹~~>*+∞) → (lim inf‘𝐹) ∈ ℝ*)
4817limsupcld 43231 . . . . . . . 8 (𝜑 → (lim sup‘𝐹) ∈ ℝ*)
4948adantr 481 . . . . . . 7 ((𝜑𝐹~~>*+∞) → (lim sup‘𝐹) ∈ ℝ*)
501, 3, 4liminflelimsupuz 43326 . . . . . . . 8 (𝜑 → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
5150adantr 481 . . . . . . 7 ((𝜑𝐹~~>*+∞) → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
5249pnfged 43014 . . . . . . . 8 ((𝜑𝐹~~>*+∞) → (lim sup‘𝐹) ≤ +∞)
531adantr 481 . . . . . . . . 9 ((𝜑𝐹~~>*+∞) → 𝑀 ∈ ℤ)
544adantr 481 . . . . . . . . 9 ((𝜑𝐹~~>*+∞) → 𝐹:𝑍⟶ℝ*)
55 simpr 485 . . . . . . . . 9 ((𝜑𝐹~~>*+∞) → 𝐹~~>*+∞)
5653, 3, 54, 55xlimpnfliminf 43401 . . . . . . . 8 ((𝜑𝐹~~>*+∞) → (lim inf‘𝐹) = +∞)
5752, 56breqtrrd 5102 . . . . . . 7 ((𝜑𝐹~~>*+∞) → (lim sup‘𝐹) ≤ (lim inf‘𝐹))
5847, 49, 51, 57xrletrid 12889 . . . . . 6 ((𝜑𝐹~~>*+∞) → (lim inf‘𝐹) = (lim sup‘𝐹))
5941, 45, 58syl2anc 584 . . . . 5 (((𝜑𝐹 ∈ dom ~~>*) ∧ (~~>*‘𝐹) = +∞) → (lim inf‘𝐹) = (lim sup‘𝐹))
6059adantlr 712 . . . 4 ((((𝜑𝐹 ∈ dom ~~>*) ∧ ¬ (~~>*‘𝐹) ∈ ℝ) ∧ (~~>*‘𝐹) = +∞) → (lim inf‘𝐹) = (lim sup‘𝐹))
61 simplll 772 . . . . 5 ((((𝜑𝐹 ∈ dom ~~>*) ∧ ¬ (~~>*‘𝐹) ∈ ℝ) ∧ ¬ (~~>*‘𝐹) = +∞) → 𝜑)
628ad2antrr 723 . . . . . . 7 (((𝐹 ∈ dom ~~>* ∧ ¬ (~~>*‘𝐹) ∈ ℝ) ∧ ¬ (~~>*‘𝐹) = +∞) → 𝐹~~>*(~~>*‘𝐹))
63 xlimcl 43363 . . . . . . . . . 10 (𝐹~~>*(~~>*‘𝐹) → (~~>*‘𝐹) ∈ ℝ*)
648, 63syl 17 . . . . . . . . 9 (𝐹 ∈ dom ~~>* → (~~>*‘𝐹) ∈ ℝ*)
6564ad2antrr 723 . . . . . . . 8 (((𝐹 ∈ dom ~~>* ∧ ¬ (~~>*‘𝐹) ∈ ℝ) ∧ ¬ (~~>*‘𝐹) = +∞) → (~~>*‘𝐹) ∈ ℝ*)
66 simplr 766 . . . . . . . 8 (((𝐹 ∈ dom ~~>* ∧ ¬ (~~>*‘𝐹) ∈ ℝ) ∧ ¬ (~~>*‘𝐹) = +∞) → ¬ (~~>*‘𝐹) ∈ ℝ)
67 neqne 2951 . . . . . . . . 9 (¬ (~~>*‘𝐹) = +∞ → (~~>*‘𝐹) ≠ +∞)
6867adantl 482 . . . . . . . 8 (((𝐹 ∈ dom ~~>* ∧ ¬ (~~>*‘𝐹) ∈ ℝ) ∧ ¬ (~~>*‘𝐹) = +∞) → (~~>*‘𝐹) ≠ +∞)
6965, 66, 68xrnpnfmnf 43015 . . . . . . 7 (((𝐹 ∈ dom ~~>* ∧ ¬ (~~>*‘𝐹) ∈ ℝ) ∧ ¬ (~~>*‘𝐹) = +∞) → (~~>*‘𝐹) = -∞)
7062, 69breqtrd 5100 . . . . . 6 (((𝐹 ∈ dom ~~>* ∧ ¬ (~~>*‘𝐹) ∈ ℝ) ∧ ¬ (~~>*‘𝐹) = +∞) → 𝐹~~>*-∞)
7170adantlll 715 . . . . 5 ((((𝜑𝐹 ∈ dom ~~>*) ∧ ¬ (~~>*‘𝐹) ∈ ℝ) ∧ ¬ (~~>*‘𝐹) = +∞) → 𝐹~~>*-∞)
7246adantr 481 . . . . . 6 ((𝜑𝐹~~>*-∞) → (lim inf‘𝐹) ∈ ℝ*)
7348adantr 481 . . . . . 6 ((𝜑𝐹~~>*-∞) → (lim sup‘𝐹) ∈ ℝ*)
7450adantr 481 . . . . . 6 ((𝜑𝐹~~>*-∞) → (lim inf‘𝐹) ≤ (lim sup‘𝐹))
751adantr 481 . . . . . . . 8 ((𝜑𝐹~~>*-∞) → 𝑀 ∈ ℤ)
764adantr 481 . . . . . . . 8 ((𝜑𝐹~~>*-∞) → 𝐹:𝑍⟶ℝ*)
77 simpr 485 . . . . . . . 8 ((𝜑𝐹~~>*-∞) → 𝐹~~>*-∞)
7875, 3, 76, 77xlimmnflimsup 43397 . . . . . . 7 ((𝜑𝐹~~>*-∞) → (lim sup‘𝐹) = -∞)
7972mnfled 42928 . . . . . . 7 ((𝜑𝐹~~>*-∞) → -∞ ≤ (lim inf‘𝐹))
8078, 79eqbrtrd 5096 . . . . . 6 ((𝜑𝐹~~>*-∞) → (lim sup‘𝐹) ≤ (lim inf‘𝐹))
8172, 73, 74, 80xrletrid 12889 . . . . 5 ((𝜑𝐹~~>*-∞) → (lim inf‘𝐹) = (lim sup‘𝐹))
8261, 71, 81syl2anc 584 . . . 4 ((((𝜑𝐹 ∈ dom ~~>*) ∧ ¬ (~~>*‘𝐹) ∈ ℝ) ∧ ¬ (~~>*‘𝐹) = +∞) → (lim inf‘𝐹) = (lim sup‘𝐹))
8360, 82pm2.61dan 810 . . 3 (((𝜑𝐹 ∈ dom ~~>*) ∧ ¬ (~~>*‘𝐹) ∈ ℝ) → (lim inf‘𝐹) = (lim sup‘𝐹))
8440, 83pm2.61dan 810 . 2 ((𝜑𝐹 ∈ dom ~~>*) → (lim inf‘𝐹) = (lim sup‘𝐹))
8527adantr 481 . . . . 5 ((𝜑 ∧ (lim sup‘𝐹) = -∞) → 𝐹 ∈ V)
86 mnfxr 11032 . . . . . 6 -∞ ∈ ℝ*
8786a1i 11 . . . . 5 ((𝜑 ∧ (lim sup‘𝐹) = -∞) → -∞ ∈ ℝ*)
88 simpr 485 . . . . . 6 ((𝜑 ∧ (lim sup‘𝐹) = -∞) → (lim sup‘𝐹) = -∞)
891adantr 481 . . . . . . 7 ((𝜑 ∧ (lim sup‘𝐹) = -∞) → 𝑀 ∈ ℤ)
904adantr 481 . . . . . . 7 ((𝜑 ∧ (lim sup‘𝐹) = -∞) → 𝐹:𝑍⟶ℝ*)
9189, 3, 90xlimmnflimsup2 43393 . . . . . 6 ((𝜑 ∧ (lim sup‘𝐹) = -∞) → (𝐹~~>*-∞ ↔ (lim sup‘𝐹) = -∞))
9288, 91mpbird 256 . . . . 5 ((𝜑 ∧ (lim sup‘𝐹) = -∞) → 𝐹~~>*-∞)
9385, 87, 92breldmd 5821 . . . 4 ((𝜑 ∧ (lim sup‘𝐹) = -∞) → 𝐹 ∈ dom ~~>*)
9493adantlr 712 . . 3 (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) = -∞) → 𝐹 ∈ dom ~~>*)
951ad2antrr 723 . . . . . . 7 (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) → 𝑀 ∈ ℤ)
964ad2antrr 723 . . . . . . 7 (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) → 𝐹:𝑍⟶ℝ*)
97 simpr 485 . . . . . . . 8 (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) → (lim sup‘𝐹) ∈ ℝ)
9897renepnfd 11026 . . . . . . 7 (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) → (lim sup‘𝐹) ≠ +∞)
99 simplr 766 . . . . . . . . 9 (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) → (lim inf‘𝐹) = (lim sup‘𝐹))
10099, 97eqeltrd 2839 . . . . . . . 8 (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) → (lim inf‘𝐹) ∈ ℝ)
101100renemnfd 11027 . . . . . . 7 (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) → (lim inf‘𝐹) ≠ -∞)
10295, 3, 96, 98, 101liminflimsupxrre 43358 . . . . . 6 (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) → ∃𝑚𝑍 (𝐹 ↾ (ℤ𝑚)):(ℤ𝑚)⟶ℝ)
1033eluzelz2 42943 . . . . . . . . 9 (𝑚𝑍𝑚 ∈ ℤ)
104103ad2antlr 724 . . . . . . . 8 (((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) ∧ 𝑚𝑍) ∧ (𝐹 ↾ (ℤ𝑚)):(ℤ𝑚)⟶ℝ) → 𝑚 ∈ ℤ)
105 eqid 2738 . . . . . . . 8 (ℤ𝑚) = (ℤ𝑚)
106 simpr 485 . . . . . . . 8 (((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) ∧ 𝑚𝑍) ∧ (𝐹 ↾ (ℤ𝑚)):(ℤ𝑚)⟶ℝ) → (𝐹 ↾ (ℤ𝑚)):(ℤ𝑚)⟶ℝ)
107 simplll 772 . . . . . . . . . . 11 ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) ∧ 𝑚𝑍) → 𝜑)
108 simpl 483 . . . . . . . . . . . . 13 (((lim inf‘𝐹) = (lim sup‘𝐹) ∧ (lim sup‘𝐹) ∈ ℝ) → (lim inf‘𝐹) = (lim sup‘𝐹))
109 simpr 485 . . . . . . . . . . . . 13 (((lim inf‘𝐹) = (lim sup‘𝐹) ∧ (lim sup‘𝐹) ∈ ℝ) → (lim sup‘𝐹) ∈ ℝ)
110108, 109eqeltrd 2839 . . . . . . . . . . . 12 (((lim inf‘𝐹) = (lim sup‘𝐹) ∧ (lim sup‘𝐹) ∈ ℝ) → (lim inf‘𝐹) ∈ ℝ)
111110ad4ant23 750 . . . . . . . . . . 11 ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) ∧ 𝑚𝑍) → (lim inf‘𝐹) ∈ ℝ)
112 simpr 485 . . . . . . . . . . 11 ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) ∧ 𝑚𝑍) → 𝑚𝑍)
1131033ad2ant3 1134 . . . . . . . . . . . . 13 ((𝜑 ∧ (lim inf‘𝐹) ∈ ℝ ∧ 𝑚𝑍) → 𝑚 ∈ ℤ)
114273ad2ant1 1132 . . . . . . . . . . . . 13 ((𝜑 ∧ (lim inf‘𝐹) ∈ ℝ ∧ 𝑚𝑍) → 𝐹 ∈ V)
115313ad2ant1 1132 . . . . . . . . . . . . 13 ((𝜑 ∧ (lim inf‘𝐹) ∈ ℝ ∧ 𝑚𝑍) → dom 𝐹 ⊆ ℤ)
116113, 105, 114, 115liminfresuz2 43328 . . . . . . . . . . . 12 ((𝜑 ∧ (lim inf‘𝐹) ∈ ℝ ∧ 𝑚𝑍) → (lim inf‘(𝐹 ↾ (ℤ𝑚))) = (lim inf‘𝐹))
117 simp2 1136 . . . . . . . . . . . 12 ((𝜑 ∧ (lim inf‘𝐹) ∈ ℝ ∧ 𝑚𝑍) → (lim inf‘𝐹) ∈ ℝ)
118116, 117eqeltrd 2839 . . . . . . . . . . 11 ((𝜑 ∧ (lim inf‘𝐹) ∈ ℝ ∧ 𝑚𝑍) → (lim inf‘(𝐹 ↾ (ℤ𝑚))) ∈ ℝ)
119107, 111, 112, 118syl3anc 1370 . . . . . . . . . 10 ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) ∧ 𝑚𝑍) → (lim inf‘(𝐹 ↾ (ℤ𝑚))) ∈ ℝ)
120119adantr 481 . . . . . . . . 9 (((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) ∧ 𝑚𝑍) ∧ (𝐹 ↾ (ℤ𝑚)):(ℤ𝑚)⟶ℝ) → (lim inf‘(𝐹 ↾ (ℤ𝑚))) ∈ ℝ)
121 simp2 1136 . . . . . . . . . . 11 ((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹) ∧ 𝑚𝑍) → (lim inf‘𝐹) = (lim sup‘𝐹))
122103adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑚𝑍) → 𝑚 ∈ ℤ)
12327adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑚𝑍) → 𝐹 ∈ V)
12431adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑚𝑍) → dom 𝐹 ⊆ ℤ)
125122, 105, 123, 124liminfresuz2 43328 . . . . . . . . . . . 12 ((𝜑𝑚𝑍) → (lim inf‘(𝐹 ↾ (ℤ𝑚))) = (lim inf‘𝐹))
1261253adant2 1130 . . . . . . . . . . 11 ((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹) ∧ 𝑚𝑍) → (lim inf‘(𝐹 ↾ (ℤ𝑚))) = (lim inf‘𝐹))
127122, 105, 123, 124limsupresuz2 43250 . . . . . . . . . . . 12 ((𝜑𝑚𝑍) → (lim sup‘(𝐹 ↾ (ℤ𝑚))) = (lim sup‘𝐹))
1281273adant2 1130 . . . . . . . . . . 11 ((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹) ∧ 𝑚𝑍) → (lim sup‘(𝐹 ↾ (ℤ𝑚))) = (lim sup‘𝐹))
129121, 126, 1283eqtr4d 2788 . . . . . . . . . 10 ((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹) ∧ 𝑚𝑍) → (lim inf‘(𝐹 ↾ (ℤ𝑚))) = (lim sup‘(𝐹 ↾ (ℤ𝑚))))
130129ad5ant124 1364 . . . . . . . . 9 (((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) ∧ 𝑚𝑍) ∧ (𝐹 ↾ (ℤ𝑚)):(ℤ𝑚)⟶ℝ) → (lim inf‘(𝐹 ↾ (ℤ𝑚))) = (lim sup‘(𝐹 ↾ (ℤ𝑚))))
131104, 105, 106climliminflimsup3 43351 . . . . . . . . 9 (((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) ∧ 𝑚𝑍) ∧ (𝐹 ↾ (ℤ𝑚)):(ℤ𝑚)⟶ℝ) → ((𝐹 ↾ (ℤ𝑚)) ∈ dom ⇝ ↔ ((lim inf‘(𝐹 ↾ (ℤ𝑚))) ∈ ℝ ∧ (lim inf‘(𝐹 ↾ (ℤ𝑚))) = (lim sup‘(𝐹 ↾ (ℤ𝑚))))))
132120, 130, 131mpbir2and 710 . . . . . . . 8 (((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) ∧ 𝑚𝑍) ∧ (𝐹 ↾ (ℤ𝑚)):(ℤ𝑚)⟶ℝ) → (𝐹 ↾ (ℤ𝑚)) ∈ dom ⇝ )
133104, 105, 106, 132dmclimxlim 43392 . . . . . . 7 (((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) ∧ 𝑚𝑍) ∧ (𝐹 ↾ (ℤ𝑚)):(ℤ𝑚)⟶ℝ) → (𝐹 ↾ (ℤ𝑚)) ∈ dom ~~>*)
13417ad4antr 729 . . . . . . . 8 (((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) ∧ 𝑚𝑍) ∧ (𝐹 ↾ (ℤ𝑚)):(ℤ𝑚)⟶ℝ) → 𝐹 ∈ (ℝ*pm ℂ))
135134, 104xlimresdm 43400 . . . . . . 7 (((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) ∧ 𝑚𝑍) ∧ (𝐹 ↾ (ℤ𝑚)):(ℤ𝑚)⟶ℝ) → (𝐹 ∈ dom ~~>* ↔ (𝐹 ↾ (ℤ𝑚)) ∈ dom ~~>*))
136133, 135mpbird 256 . . . . . 6 (((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) ∧ 𝑚𝑍) ∧ (𝐹 ↾ (ℤ𝑚)):(ℤ𝑚)⟶ℝ) → 𝐹 ∈ dom ~~>*)
137102, 136rexlimddv2 43364 . . . . 5 (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ∈ ℝ) → 𝐹 ∈ dom ~~>*)
138137adantlr 712 . . . 4 ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ≠ -∞) ∧ (lim sup‘𝐹) ∈ ℝ) → 𝐹 ∈ dom ~~>*)
139 simpll 764 . . . . 5 ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ≠ -∞) ∧ ¬ (lim sup‘𝐹) ∈ ℝ) → (𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)))
140 simpllr 773 . . . . . 6 ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ≠ -∞) ∧ ¬ (lim sup‘𝐹) ∈ ℝ) → (lim inf‘𝐹) = (lim sup‘𝐹))
14148ad2antrr 723 . . . . . . . 8 (((𝜑 ∧ (lim sup‘𝐹) ≠ -∞) ∧ ¬ (lim sup‘𝐹) ∈ ℝ) → (lim sup‘𝐹) ∈ ℝ*)
142 simpr 485 . . . . . . . 8 (((𝜑 ∧ (lim sup‘𝐹) ≠ -∞) ∧ ¬ (lim sup‘𝐹) ∈ ℝ) → ¬ (lim sup‘𝐹) ∈ ℝ)
143 simplr 766 . . . . . . . 8 (((𝜑 ∧ (lim sup‘𝐹) ≠ -∞) ∧ ¬ (lim sup‘𝐹) ∈ ℝ) → (lim sup‘𝐹) ≠ -∞)
144141, 142, 143xrnmnfpnf 42633 . . . . . . 7 (((𝜑 ∧ (lim sup‘𝐹) ≠ -∞) ∧ ¬ (lim sup‘𝐹) ∈ ℝ) → (lim sup‘𝐹) = +∞)
145144adantllr 716 . . . . . 6 ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ≠ -∞) ∧ ¬ (lim sup‘𝐹) ∈ ℝ) → (lim sup‘𝐹) = +∞)
146140, 145eqtrd 2778 . . . . 5 ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ≠ -∞) ∧ ¬ (lim sup‘𝐹) ∈ ℝ) → (lim inf‘𝐹) = +∞)
14727adantr 481 . . . . . . 7 ((𝜑 ∧ (lim inf‘𝐹) = +∞) → 𝐹 ∈ V)
148 pnfxr 11029 . . . . . . . 8 +∞ ∈ ℝ*
149148a1i 11 . . . . . . 7 ((𝜑 ∧ (lim inf‘𝐹) = +∞) → +∞ ∈ ℝ*)
1501, 3, 4xlimpnfliminf2 43402 . . . . . . . 8 (𝜑 → (𝐹~~>*+∞ ↔ (lim inf‘𝐹) = +∞))
151150biimpar 478 . . . . . . 7 ((𝜑 ∧ (lim inf‘𝐹) = +∞) → 𝐹~~>*+∞)
152147, 149, 151breldmd 5821 . . . . . 6 ((𝜑 ∧ (lim inf‘𝐹) = +∞) → 𝐹 ∈ dom ~~>*)
153152adantlr 712 . . . . 5 (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim inf‘𝐹) = +∞) → 𝐹 ∈ dom ~~>*)
154139, 146, 153syl2anc 584 . . . 4 ((((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ≠ -∞) ∧ ¬ (lim sup‘𝐹) ∈ ℝ) → 𝐹 ∈ dom ~~>*)
155138, 154pm2.61dan 810 . . 3 (((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) ∧ (lim sup‘𝐹) ≠ -∞) → 𝐹 ∈ dom ~~>*)
15694, 155pm2.61dane 3032 . 2 ((𝜑 ∧ (lim inf‘𝐹) = (lim sup‘𝐹)) → 𝐹 ∈ dom ~~>*)
15784, 156impbida 798 1 (𝜑 → (𝐹 ∈ dom ~~>* ↔ (lim inf‘𝐹) = (lim sup‘𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  wss 3887   class class class wbr 5074  dom cdm 5589  cres 5591  wf 6429  cfv 6433  (class class class)co 7275  pm cpm 8616  cc 10869  cr 10870  +∞cpnf 11006  -∞cmnf 11007  *cxr 11008  cle 11010  cz 12319  cuz 12582  lim supclsp 15179  cli 15193  lim infclsi 43292  ~~>*clsxlim 43359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fi 9170  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-ceil 13513  df-seq 13722  df-exp 13783  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-starv 16977  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-rest 17133  df-topn 17134  df-topgen 17154  df-ordt 17212  df-ps 18284  df-tsr 18285  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-lm 22380  df-haus 22466  df-xms 23473  df-ms 23474  df-liminf 43293  df-xlim 43360
This theorem is referenced by:  xlimlimsupleliminf  43404
  Copyright terms: Public domain W3C validator