MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustuqtop3 Structured version   Visualization version   GIF version

Theorem ustuqtop3 23755
Description: Lemma for ustuqtop 23758, similar to elnei 22622. (Contributed by Thierry Arnoux, 11-Jan-2018.)
Hypothesis
Ref Expression
utopustuq.1 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑝})))
Assertion
Ref Expression
ustuqtop3 (((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋) ∧ π‘Ž ∈ (π‘β€˜π‘)) β†’ 𝑝 ∈ π‘Ž)
Distinct variable groups:   𝑣,𝑝,π‘ˆ   𝑋,𝑝,𝑣,π‘Ž   𝑁,π‘Ž,𝑝   𝑣,π‘Ž,π‘ˆ   𝑋,π‘Ž
Allowed substitution hint:   𝑁(𝑣)

Proof of Theorem ustuqtop3
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 fnresi 6679 . . . . . . 7 ( I β†Ύ 𝑋) Fn 𝑋
2 fnsnfv 6970 . . . . . . 7 ((( I β†Ύ 𝑋) Fn 𝑋 ∧ 𝑝 ∈ 𝑋) β†’ {(( I β†Ύ 𝑋)β€˜π‘)} = (( I β†Ύ 𝑋) β€œ {𝑝}))
31, 2mpan 688 . . . . . 6 (𝑝 ∈ 𝑋 β†’ {(( I β†Ύ 𝑋)β€˜π‘)} = (( I β†Ύ 𝑋) β€œ {𝑝}))
43ad4antlr 731 . . . . 5 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋) ∧ π‘Ž ∈ (π‘β€˜π‘)) ∧ 𝑀 ∈ π‘ˆ) ∧ π‘Ž = (𝑀 β€œ {𝑝})) β†’ {(( I β†Ύ 𝑋)β€˜π‘)} = (( I β†Ύ 𝑋) β€œ {𝑝}))
5 ustdiag 23720 . . . . . . 7 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑀 ∈ π‘ˆ) β†’ ( I β†Ύ 𝑋) βŠ† 𝑀)
65ad5ant14 756 . . . . . 6 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋) ∧ π‘Ž ∈ (π‘β€˜π‘)) ∧ 𝑀 ∈ π‘ˆ) ∧ π‘Ž = (𝑀 β€œ {𝑝})) β†’ ( I β†Ύ 𝑋) βŠ† 𝑀)
7 imass1 6100 . . . . . 6 (( I β†Ύ 𝑋) βŠ† 𝑀 β†’ (( I β†Ύ 𝑋) β€œ {𝑝}) βŠ† (𝑀 β€œ {𝑝}))
86, 7syl 17 . . . . 5 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋) ∧ π‘Ž ∈ (π‘β€˜π‘)) ∧ 𝑀 ∈ π‘ˆ) ∧ π‘Ž = (𝑀 β€œ {𝑝})) β†’ (( I β†Ύ 𝑋) β€œ {𝑝}) βŠ† (𝑀 β€œ {𝑝}))
94, 8eqsstrd 4020 . . . 4 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋) ∧ π‘Ž ∈ (π‘β€˜π‘)) ∧ 𝑀 ∈ π‘ˆ) ∧ π‘Ž = (𝑀 β€œ {𝑝})) β†’ {(( I β†Ύ 𝑋)β€˜π‘)} βŠ† (𝑀 β€œ {𝑝}))
10 fvex 6904 . . . . 5 (( I β†Ύ 𝑋)β€˜π‘) ∈ V
1110snss 4789 . . . 4 ((( I β†Ύ 𝑋)β€˜π‘) ∈ (𝑀 β€œ {𝑝}) ↔ {(( I β†Ύ 𝑋)β€˜π‘)} βŠ† (𝑀 β€œ {𝑝}))
129, 11sylibr 233 . . 3 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋) ∧ π‘Ž ∈ (π‘β€˜π‘)) ∧ 𝑀 ∈ π‘ˆ) ∧ π‘Ž = (𝑀 β€œ {𝑝})) β†’ (( I β†Ύ 𝑋)β€˜π‘) ∈ (𝑀 β€œ {𝑝}))
13 fvresi 7173 . . . . 5 (𝑝 ∈ 𝑋 β†’ (( I β†Ύ 𝑋)β€˜π‘) = 𝑝)
1413eqcomd 2738 . . . 4 (𝑝 ∈ 𝑋 β†’ 𝑝 = (( I β†Ύ 𝑋)β€˜π‘))
1514ad4antlr 731 . . 3 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋) ∧ π‘Ž ∈ (π‘β€˜π‘)) ∧ 𝑀 ∈ π‘ˆ) ∧ π‘Ž = (𝑀 β€œ {𝑝})) β†’ 𝑝 = (( I β†Ύ 𝑋)β€˜π‘))
16 simpr 485 . . 3 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋) ∧ π‘Ž ∈ (π‘β€˜π‘)) ∧ 𝑀 ∈ π‘ˆ) ∧ π‘Ž = (𝑀 β€œ {𝑝})) β†’ π‘Ž = (𝑀 β€œ {𝑝}))
1712, 15, 163eltr4d 2848 . 2 (((((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋) ∧ π‘Ž ∈ (π‘β€˜π‘)) ∧ 𝑀 ∈ π‘ˆ) ∧ π‘Ž = (𝑀 β€œ {𝑝})) β†’ 𝑝 ∈ π‘Ž)
18 utopustuq.1 . . . . 5 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ π‘ˆ ↦ (𝑣 β€œ {𝑝})))
1918ustuqtoplem 23751 . . . 4 (((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋) ∧ π‘Ž ∈ V) β†’ (π‘Ž ∈ (π‘β€˜π‘) ↔ βˆƒπ‘€ ∈ π‘ˆ π‘Ž = (𝑀 β€œ {𝑝})))
2019elvd 3481 . . 3 ((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋) β†’ (π‘Ž ∈ (π‘β€˜π‘) ↔ βˆƒπ‘€ ∈ π‘ˆ π‘Ž = (𝑀 β€œ {𝑝})))
2120biimpa 477 . 2 (((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋) ∧ π‘Ž ∈ (π‘β€˜π‘)) β†’ βˆƒπ‘€ ∈ π‘ˆ π‘Ž = (𝑀 β€œ {𝑝}))
2217, 21r19.29a 3162 1 (((π‘ˆ ∈ (UnifOnβ€˜π‘‹) ∧ 𝑝 ∈ 𝑋) ∧ π‘Ž ∈ (π‘β€˜π‘)) β†’ 𝑝 ∈ π‘Ž)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070  Vcvv 3474   βŠ† wss 3948  {csn 4628   ↦ cmpt 5231   I cid 5573  ran crn 5677   β†Ύ cres 5678   β€œ cima 5679   Fn wfn 6538  β€˜cfv 6543  UnifOncust 23711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ust 23712
This theorem is referenced by:  ustuqtop  23758  utopsnneiplem  23759
  Copyright terms: Public domain W3C validator