MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustuqtop3 Structured version   Visualization version   GIF version

Theorem ustuqtop3 23113
Description: Lemma for ustuqtop 23116, similar to elnei 21980. (Contributed by Thierry Arnoux, 11-Jan-2018.)
Hypothesis
Ref Expression
utopustuq.1 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
Assertion
Ref Expression
ustuqtop3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑝𝑎)
Distinct variable groups:   𝑣,𝑝,𝑈   𝑋,𝑝,𝑣,𝑎   𝑁,𝑎,𝑝   𝑣,𝑎,𝑈   𝑋,𝑎
Allowed substitution hint:   𝑁(𝑣)

Proof of Theorem ustuqtop3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 fnresi 6495 . . . . . . 7 ( I ↾ 𝑋) Fn 𝑋
2 fnsnfv 6779 . . . . . . 7 ((( I ↾ 𝑋) Fn 𝑋𝑝𝑋) → {(( I ↾ 𝑋)‘𝑝)} = (( I ↾ 𝑋) “ {𝑝}))
31, 2mpan 690 . . . . . 6 (𝑝𝑋 → {(( I ↾ 𝑋)‘𝑝)} = (( I ↾ 𝑋) “ {𝑝}))
43ad4antlr 733 . . . . 5 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → {(( I ↾ 𝑋)‘𝑝)} = (( I ↾ 𝑋) “ {𝑝}))
5 ustdiag 23078 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤𝑈) → ( I ↾ 𝑋) ⊆ 𝑤)
65ad5ant14 758 . . . . . 6 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → ( I ↾ 𝑋) ⊆ 𝑤)
7 imass1 5958 . . . . . 6 (( I ↾ 𝑋) ⊆ 𝑤 → (( I ↾ 𝑋) “ {𝑝}) ⊆ (𝑤 “ {𝑝}))
86, 7syl 17 . . . . 5 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → (( I ↾ 𝑋) “ {𝑝}) ⊆ (𝑤 “ {𝑝}))
94, 8eqsstrd 3929 . . . 4 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → {(( I ↾ 𝑋)‘𝑝)} ⊆ (𝑤 “ {𝑝}))
10 fvex 6719 . . . . 5 (( I ↾ 𝑋)‘𝑝) ∈ V
1110snss 4689 . . . 4 ((( I ↾ 𝑋)‘𝑝) ∈ (𝑤 “ {𝑝}) ↔ {(( I ↾ 𝑋)‘𝑝)} ⊆ (𝑤 “ {𝑝}))
129, 11sylibr 237 . . 3 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → (( I ↾ 𝑋)‘𝑝) ∈ (𝑤 “ {𝑝}))
13 fvresi 6977 . . . . 5 (𝑝𝑋 → (( I ↾ 𝑋)‘𝑝) = 𝑝)
1413eqcomd 2740 . . . 4 (𝑝𝑋𝑝 = (( I ↾ 𝑋)‘𝑝))
1514ad4antlr 733 . . 3 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑝 = (( I ↾ 𝑋)‘𝑝))
16 simpr 488 . . 3 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑎 = (𝑤 “ {𝑝}))
1712, 15, 163eltr4d 2849 . 2 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑝𝑎)
18 utopustuq.1 . . . . 5 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
1918ustuqtoplem 23109 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ V) → (𝑎 ∈ (𝑁𝑝) ↔ ∃𝑤𝑈 𝑎 = (𝑤 “ {𝑝})))
2019elvd 3408 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (𝑎 ∈ (𝑁𝑝) ↔ ∃𝑤𝑈 𝑎 = (𝑤 “ {𝑝})))
2120biimpa 480 . 2 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑤𝑈 𝑎 = (𝑤 “ {𝑝}))
2217, 21r19.29a 3201 1 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑝𝑎)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wrex 3055  Vcvv 3401  wss 3857  {csn 4531  cmpt 5124   I cid 5443  ran crn 5541  cres 5542  cima 5543   Fn wfn 6364  cfv 6369  UnifOncust 23069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-id 5444  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-ust 23070
This theorem is referenced by:  ustuqtop  23116  utopsnneiplem  23117
  Copyright terms: Public domain W3C validator