MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustuqtop3 Structured version   Visualization version   GIF version

Theorem ustuqtop3 23501
Description: Lemma for ustuqtop 23504, similar to elnei 22368. (Contributed by Thierry Arnoux, 11-Jan-2018.)
Hypothesis
Ref Expression
utopustuq.1 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
Assertion
Ref Expression
ustuqtop3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑝𝑎)
Distinct variable groups:   𝑣,𝑝,𝑈   𝑋,𝑝,𝑣,𝑎   𝑁,𝑎,𝑝   𝑣,𝑎,𝑈   𝑋,𝑎
Allowed substitution hint:   𝑁(𝑣)

Proof of Theorem ustuqtop3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 fnresi 6618 . . . . . . 7 ( I ↾ 𝑋) Fn 𝑋
2 fnsnfv 6908 . . . . . . 7 ((( I ↾ 𝑋) Fn 𝑋𝑝𝑋) → {(( I ↾ 𝑋)‘𝑝)} = (( I ↾ 𝑋) “ {𝑝}))
31, 2mpan 688 . . . . . 6 (𝑝𝑋 → {(( I ↾ 𝑋)‘𝑝)} = (( I ↾ 𝑋) “ {𝑝}))
43ad4antlr 731 . . . . 5 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → {(( I ↾ 𝑋)‘𝑝)} = (( I ↾ 𝑋) “ {𝑝}))
5 ustdiag 23466 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤𝑈) → ( I ↾ 𝑋) ⊆ 𝑤)
65ad5ant14 756 . . . . . 6 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → ( I ↾ 𝑋) ⊆ 𝑤)
7 imass1 6044 . . . . . 6 (( I ↾ 𝑋) ⊆ 𝑤 → (( I ↾ 𝑋) “ {𝑝}) ⊆ (𝑤 “ {𝑝}))
86, 7syl 17 . . . . 5 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → (( I ↾ 𝑋) “ {𝑝}) ⊆ (𝑤 “ {𝑝}))
94, 8eqsstrd 3974 . . . 4 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → {(( I ↾ 𝑋)‘𝑝)} ⊆ (𝑤 “ {𝑝}))
10 fvex 6843 . . . . 5 (( I ↾ 𝑋)‘𝑝) ∈ V
1110snss 4738 . . . 4 ((( I ↾ 𝑋)‘𝑝) ∈ (𝑤 “ {𝑝}) ↔ {(( I ↾ 𝑋)‘𝑝)} ⊆ (𝑤 “ {𝑝}))
129, 11sylibr 233 . . 3 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → (( I ↾ 𝑋)‘𝑝) ∈ (𝑤 “ {𝑝}))
13 fvresi 7106 . . . . 5 (𝑝𝑋 → (( I ↾ 𝑋)‘𝑝) = 𝑝)
1413eqcomd 2743 . . . 4 (𝑝𝑋𝑝 = (( I ↾ 𝑋)‘𝑝))
1514ad4antlr 731 . . 3 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑝 = (( I ↾ 𝑋)‘𝑝))
16 simpr 486 . . 3 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑎 = (𝑤 “ {𝑝}))
1712, 15, 163eltr4d 2853 . 2 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑝𝑎)
18 utopustuq.1 . . . . 5 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
1918ustuqtoplem 23497 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ V) → (𝑎 ∈ (𝑁𝑝) ↔ ∃𝑤𝑈 𝑎 = (𝑤 “ {𝑝})))
2019elvd 3449 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (𝑎 ∈ (𝑁𝑝) ↔ ∃𝑤𝑈 𝑎 = (𝑤 “ {𝑝})))
2120biimpa 478 . 2 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑤𝑈 𝑎 = (𝑤 “ {𝑝}))
2217, 21r19.29a 3156 1 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑝𝑎)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1541  wcel 2106  wrex 3071  Vcvv 3442  wss 3902  {csn 4578  cmpt 5180   I cid 5522  ran crn 5626  cres 5627  cima 5628   Fn wfn 6479  cfv 6484  UnifOncust 23457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-id 5523  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-ust 23458
This theorem is referenced by:  ustuqtop  23504  utopsnneiplem  23505
  Copyright terms: Public domain W3C validator