MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustuqtop3 Structured version   Visualization version   GIF version

Theorem ustuqtop3 22854
Description: Lemma for ustuqtop 22857, similar to elnei 21721. (Contributed by Thierry Arnoux, 11-Jan-2018.)
Hypothesis
Ref Expression
utopustuq.1 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
Assertion
Ref Expression
ustuqtop3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑝𝑎)
Distinct variable groups:   𝑣,𝑝,𝑈   𝑋,𝑝,𝑣,𝑎   𝑁,𝑎,𝑝   𝑣,𝑎,𝑈   𝑋,𝑎
Allowed substitution hint:   𝑁(𝑣)

Proof of Theorem ustuqtop3
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 fnresi 6478 . . . . . . 7 ( I ↾ 𝑋) Fn 𝑋
2 fnsnfv 6745 . . . . . . 7 ((( I ↾ 𝑋) Fn 𝑋𝑝𝑋) → {(( I ↾ 𝑋)‘𝑝)} = (( I ↾ 𝑋) “ {𝑝}))
31, 2mpan 688 . . . . . 6 (𝑝𝑋 → {(( I ↾ 𝑋)‘𝑝)} = (( I ↾ 𝑋) “ {𝑝}))
43ad4antlr 731 . . . . 5 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → {(( I ↾ 𝑋)‘𝑝)} = (( I ↾ 𝑋) “ {𝑝}))
5 ustdiag 22819 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤𝑈) → ( I ↾ 𝑋) ⊆ 𝑤)
65ad5ant14 756 . . . . . 6 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → ( I ↾ 𝑋) ⊆ 𝑤)
7 imass1 5966 . . . . . 6 (( I ↾ 𝑋) ⊆ 𝑤 → (( I ↾ 𝑋) “ {𝑝}) ⊆ (𝑤 “ {𝑝}))
86, 7syl 17 . . . . 5 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → (( I ↾ 𝑋) “ {𝑝}) ⊆ (𝑤 “ {𝑝}))
94, 8eqsstrd 4007 . . . 4 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → {(( I ↾ 𝑋)‘𝑝)} ⊆ (𝑤 “ {𝑝}))
10 fvex 6685 . . . . 5 (( I ↾ 𝑋)‘𝑝) ∈ V
1110snss 4720 . . . 4 ((( I ↾ 𝑋)‘𝑝) ∈ (𝑤 “ {𝑝}) ↔ {(( I ↾ 𝑋)‘𝑝)} ⊆ (𝑤 “ {𝑝}))
129, 11sylibr 236 . . 3 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → (( I ↾ 𝑋)‘𝑝) ∈ (𝑤 “ {𝑝}))
13 fvresi 6937 . . . . 5 (𝑝𝑋 → (( I ↾ 𝑋)‘𝑝) = 𝑝)
1413eqcomd 2829 . . . 4 (𝑝𝑋𝑝 = (( I ↾ 𝑋)‘𝑝))
1514ad4antlr 731 . . 3 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑝 = (( I ↾ 𝑋)‘𝑝))
16 simpr 487 . . 3 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑎 = (𝑤 “ {𝑝}))
1712, 15, 163eltr4d 2930 . 2 (((((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) ∧ 𝑤𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑝𝑎)
18 utopustuq.1 . . . . 5 𝑁 = (𝑝𝑋 ↦ ran (𝑣𝑈 ↦ (𝑣 “ {𝑝})))
1918ustuqtoplem 22850 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ V) → (𝑎 ∈ (𝑁𝑝) ↔ ∃𝑤𝑈 𝑎 = (𝑤 “ {𝑝})))
2019elvd 3502 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) → (𝑎 ∈ (𝑁𝑝) ↔ ∃𝑤𝑈 𝑎 = (𝑤 “ {𝑝})))
2120biimpa 479 . 2 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → ∃𝑤𝑈 𝑎 = (𝑤 “ {𝑝}))
2217, 21r19.29a 3291 1 (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝𝑋) ∧ 𝑎 ∈ (𝑁𝑝)) → 𝑝𝑎)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wrex 3141  Vcvv 3496  wss 3938  {csn 4569  cmpt 5148   I cid 5461  ran crn 5558  cres 5559  cima 5560   Fn wfn 6352  cfv 6357  UnifOncust 22810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ust 22811
This theorem is referenced by:  ustuqtop  22857  utopsnneiplem  22858
  Copyright terms: Public domain W3C validator