Step | Hyp | Ref
| Expression |
1 | | fnresi 6545 |
. . . . . . 7
⊢ ( I
↾ 𝑋) Fn 𝑋 |
2 | | fnsnfv 6829 |
. . . . . . 7
⊢ ((( I
↾ 𝑋) Fn 𝑋 ∧ 𝑝 ∈ 𝑋) → {(( I ↾ 𝑋)‘𝑝)} = (( I ↾ 𝑋) “ {𝑝})) |
3 | 1, 2 | mpan 686 |
. . . . . 6
⊢ (𝑝 ∈ 𝑋 → {(( I ↾ 𝑋)‘𝑝)} = (( I ↾ 𝑋) “ {𝑝})) |
4 | 3 | ad4antlr 729 |
. . . . 5
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → {(( I ↾ 𝑋)‘𝑝)} = (( I ↾ 𝑋) “ {𝑝})) |
5 | | ustdiag 23268 |
. . . . . . 7
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑤 ∈ 𝑈) → ( I ↾ 𝑋) ⊆ 𝑤) |
6 | 5 | ad5ant14 754 |
. . . . . 6
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → ( I ↾ 𝑋) ⊆ 𝑤) |
7 | | imass1 5998 |
. . . . . 6
⊢ (( I
↾ 𝑋) ⊆ 𝑤 → (( I ↾ 𝑋) “ {𝑝}) ⊆ (𝑤 “ {𝑝})) |
8 | 6, 7 | syl 17 |
. . . . 5
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → (( I ↾ 𝑋) “ {𝑝}) ⊆ (𝑤 “ {𝑝})) |
9 | 4, 8 | eqsstrd 3955 |
. . . 4
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → {(( I ↾ 𝑋)‘𝑝)} ⊆ (𝑤 “ {𝑝})) |
10 | | fvex 6769 |
. . . . 5
⊢ (( I
↾ 𝑋)‘𝑝) ∈ V |
11 | 10 | snss 4716 |
. . . 4
⊢ ((( I
↾ 𝑋)‘𝑝) ∈ (𝑤 “ {𝑝}) ↔ {(( I ↾ 𝑋)‘𝑝)} ⊆ (𝑤 “ {𝑝})) |
12 | 9, 11 | sylibr 233 |
. . 3
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → (( I ↾ 𝑋)‘𝑝) ∈ (𝑤 “ {𝑝})) |
13 | | fvresi 7027 |
. . . . 5
⊢ (𝑝 ∈ 𝑋 → (( I ↾ 𝑋)‘𝑝) = 𝑝) |
14 | 13 | eqcomd 2744 |
. . . 4
⊢ (𝑝 ∈ 𝑋 → 𝑝 = (( I ↾ 𝑋)‘𝑝)) |
15 | 14 | ad4antlr 729 |
. . 3
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑝 = (( I ↾ 𝑋)‘𝑝)) |
16 | | simpr 484 |
. . 3
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑎 = (𝑤 “ {𝑝})) |
17 | 12, 15, 16 | 3eltr4d 2854 |
. 2
⊢
(((((𝑈 ∈
(UnifOn‘𝑋) ∧
𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) ∧ 𝑤 ∈ 𝑈) ∧ 𝑎 = (𝑤 “ {𝑝})) → 𝑝 ∈ 𝑎) |
18 | | utopustuq.1 |
. . . . 5
⊢ 𝑁 = (𝑝 ∈ 𝑋 ↦ ran (𝑣 ∈ 𝑈 ↦ (𝑣 “ {𝑝}))) |
19 | 18 | ustuqtoplem 23299 |
. . . 4
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ V) → (𝑎 ∈ (𝑁‘𝑝) ↔ ∃𝑤 ∈ 𝑈 𝑎 = (𝑤 “ {𝑝}))) |
20 | 19 | elvd 3429 |
. . 3
⊢ ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) → (𝑎 ∈ (𝑁‘𝑝) ↔ ∃𝑤 ∈ 𝑈 𝑎 = (𝑤 “ {𝑝}))) |
21 | 20 | biimpa 476 |
. 2
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → ∃𝑤 ∈ 𝑈 𝑎 = (𝑤 “ {𝑝})) |
22 | 17, 21 | r19.29a 3217 |
1
⊢ (((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑝 ∈ 𝑋) ∧ 𝑎 ∈ (𝑁‘𝑝)) → 𝑝 ∈ 𝑎) |