MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restcld Structured version   Visualization version   GIF version

Theorem restcld 21782
Description: A closed set of a subspace topology is a closed set of the original topology intersected with the subset. (Contributed by FL, 11-Jul-2009.) (Proof shortened by Mario Carneiro, 15-Dec-2013.)
Hypothesis
Ref Expression
restcld.1 𝑋 = 𝐽
Assertion
Ref Expression
restcld ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐴 ∈ (Clsd‘(𝐽t 𝑆)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽   𝑥,𝑆   𝑥,𝑋

Proof of Theorem restcld
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . 5 (𝑆𝑋𝑆𝑋)
2 restcld.1 . . . . . 6 𝑋 = 𝐽
32topopn 21516 . . . . 5 (𝐽 ∈ Top → 𝑋𝐽)
4 ssexg 5229 . . . . 5 ((𝑆𝑋𝑋𝐽) → 𝑆 ∈ V)
51, 3, 4syl2anr 598 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ∈ V)
6 resttop 21770 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 ∈ V) → (𝐽t 𝑆) ∈ Top)
75, 6syldan 593 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐽t 𝑆) ∈ Top)
8 eqid 2823 . . . 4 (𝐽t 𝑆) = (𝐽t 𝑆)
98iscld 21637 . . 3 ((𝐽t 𝑆) ∈ Top → (𝐴 ∈ (Clsd‘(𝐽t 𝑆)) ↔ (𝐴 (𝐽t 𝑆) ∧ ( (𝐽t 𝑆) ∖ 𝐴) ∈ (𝐽t 𝑆))))
107, 9syl 17 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐴 ∈ (Clsd‘(𝐽t 𝑆)) ↔ (𝐴 (𝐽t 𝑆) ∧ ( (𝐽t 𝑆) ∖ 𝐴) ∈ (𝐽t 𝑆))))
112restuni 21772 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 = (𝐽t 𝑆))
1211sseq2d 4001 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐴𝑆𝐴 (𝐽t 𝑆)))
1311difeq1d 4100 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆𝐴) = ( (𝐽t 𝑆) ∖ 𝐴))
1413eleq1d 2899 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑆𝐴) ∈ (𝐽t 𝑆) ↔ ( (𝐽t 𝑆) ∖ 𝐴) ∈ (𝐽t 𝑆)))
1512, 14anbi12d 632 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝐴𝑆 ∧ (𝑆𝐴) ∈ (𝐽t 𝑆)) ↔ (𝐴 (𝐽t 𝑆) ∧ ( (𝐽t 𝑆) ∖ 𝐴) ∈ (𝐽t 𝑆))))
16 elrest 16703 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆 ∈ V) → ((𝑆𝐴) ∈ (𝐽t 𝑆) ↔ ∃𝑜𝐽 (𝑆𝐴) = (𝑜𝑆)))
175, 16syldan 593 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑆𝐴) ∈ (𝐽t 𝑆) ↔ ∃𝑜𝐽 (𝑆𝐴) = (𝑜𝑆)))
1817anbi2d 630 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝐴𝑆 ∧ (𝑆𝐴) ∈ (𝐽t 𝑆)) ↔ (𝐴𝑆 ∧ ∃𝑜𝐽 (𝑆𝐴) = (𝑜𝑆))))
192opncld 21643 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑜𝐽) → (𝑋𝑜) ∈ (Clsd‘𝐽))
2019ad5ant14 756 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) ∧ 𝑜𝐽) ∧ (𝑆𝐴) = (𝑜𝑆)) → (𝑋𝑜) ∈ (Clsd‘𝐽))
21 incom 4180 . . . . . . . . . . . 12 (𝑋𝑆) = (𝑆𝑋)
22 df-ss 3954 . . . . . . . . . . . . 13 (𝑆𝑋 ↔ (𝑆𝑋) = 𝑆)
2322biimpi 218 . . . . . . . . . . . 12 (𝑆𝑋 → (𝑆𝑋) = 𝑆)
2421, 23syl5eq 2870 . . . . . . . . . . 11 (𝑆𝑋 → (𝑋𝑆) = 𝑆)
2524ad4antlr 731 . . . . . . . . . 10 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) ∧ 𝑜𝐽) ∧ (𝑆𝐴) = (𝑜𝑆)) → (𝑋𝑆) = 𝑆)
2625difeq1d 4100 . . . . . . . . 9 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) ∧ 𝑜𝐽) ∧ (𝑆𝐴) = (𝑜𝑆)) → ((𝑋𝑆) ∖ 𝑜) = (𝑆𝑜))
27 difeq2 4095 . . . . . . . . . . 11 ((𝑆𝐴) = (𝑜𝑆) → (𝑆 ∖ (𝑆𝐴)) = (𝑆 ∖ (𝑜𝑆)))
28 difindi 4260 . . . . . . . . . . . 12 (𝑆 ∖ (𝑜𝑆)) = ((𝑆𝑜) ∪ (𝑆𝑆))
29 difid 4332 . . . . . . . . . . . . 13 (𝑆𝑆) = ∅
3029uneq2i 4138 . . . . . . . . . . . 12 ((𝑆𝑜) ∪ (𝑆𝑆)) = ((𝑆𝑜) ∪ ∅)
31 un0 4346 . . . . . . . . . . . 12 ((𝑆𝑜) ∪ ∅) = (𝑆𝑜)
3228, 30, 313eqtri 2850 . . . . . . . . . . 11 (𝑆 ∖ (𝑜𝑆)) = (𝑆𝑜)
3327, 32syl6eq 2874 . . . . . . . . . 10 ((𝑆𝐴) = (𝑜𝑆) → (𝑆 ∖ (𝑆𝐴)) = (𝑆𝑜))
3433adantl 484 . . . . . . . . 9 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) ∧ 𝑜𝐽) ∧ (𝑆𝐴) = (𝑜𝑆)) → (𝑆 ∖ (𝑆𝐴)) = (𝑆𝑜))
35 dfss4 4237 . . . . . . . . . . 11 (𝐴𝑆 ↔ (𝑆 ∖ (𝑆𝐴)) = 𝐴)
3635biimpi 218 . . . . . . . . . 10 (𝐴𝑆 → (𝑆 ∖ (𝑆𝐴)) = 𝐴)
3736ad3antlr 729 . . . . . . . . 9 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) ∧ 𝑜𝐽) ∧ (𝑆𝐴) = (𝑜𝑆)) → (𝑆 ∖ (𝑆𝐴)) = 𝐴)
3826, 34, 373eqtr2rd 2865 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) ∧ 𝑜𝐽) ∧ (𝑆𝐴) = (𝑜𝑆)) → 𝐴 = ((𝑋𝑆) ∖ 𝑜))
3921difeq1i 4097 . . . . . . . . 9 ((𝑋𝑆) ∖ 𝑜) = ((𝑆𝑋) ∖ 𝑜)
40 indif2 4249 . . . . . . . . 9 (𝑆 ∩ (𝑋𝑜)) = ((𝑆𝑋) ∖ 𝑜)
41 incom 4180 . . . . . . . . 9 (𝑆 ∩ (𝑋𝑜)) = ((𝑋𝑜) ∩ 𝑆)
4239, 40, 413eqtr2i 2852 . . . . . . . 8 ((𝑋𝑆) ∖ 𝑜) = ((𝑋𝑜) ∩ 𝑆)
4338, 42syl6eq 2874 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) ∧ 𝑜𝐽) ∧ (𝑆𝐴) = (𝑜𝑆)) → 𝐴 = ((𝑋𝑜) ∩ 𝑆))
44 ineq1 4183 . . . . . . . 8 (𝑥 = (𝑋𝑜) → (𝑥𝑆) = ((𝑋𝑜) ∩ 𝑆))
4544rspceeqv 3640 . . . . . . 7 (((𝑋𝑜) ∈ (Clsd‘𝐽) ∧ 𝐴 = ((𝑋𝑜) ∩ 𝑆)) → ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆))
4620, 43, 45syl2anc 586 . . . . . 6 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) ∧ 𝑜𝐽) ∧ (𝑆𝐴) = (𝑜𝑆)) → ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆))
4746rexlimdva2 3289 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) → (∃𝑜𝐽 (𝑆𝐴) = (𝑜𝑆) → ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆)))
4847expimpd 456 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝐴𝑆 ∧ ∃𝑜𝐽 (𝑆𝐴) = (𝑜𝑆)) → ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆)))
4918, 48sylbid 242 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝐴𝑆 ∧ (𝑆𝐴) ∈ (𝐽t 𝑆)) → ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆)))
50 difindi 4260 . . . . . . . . . 10 (𝑆 ∖ (𝑥𝑆)) = ((𝑆𝑥) ∪ (𝑆𝑆))
5129uneq2i 4138 . . . . . . . . . 10 ((𝑆𝑥) ∪ (𝑆𝑆)) = ((𝑆𝑥) ∪ ∅)
52 un0 4346 . . . . . . . . . 10 ((𝑆𝑥) ∪ ∅) = (𝑆𝑥)
5350, 51, 523eqtri 2850 . . . . . . . . 9 (𝑆 ∖ (𝑥𝑆)) = (𝑆𝑥)
54 difin2 4268 . . . . . . . . . 10 (𝑆𝑋 → (𝑆𝑥) = ((𝑋𝑥) ∩ 𝑆))
5554adantl 484 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆𝑥) = ((𝑋𝑥) ∩ 𝑆))
5653, 55syl5eq 2870 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆 ∖ (𝑥𝑆)) = ((𝑋𝑥) ∩ 𝑆))
5756adantr 483 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝑆 ∖ (𝑥𝑆)) = ((𝑋𝑥) ∩ 𝑆))
58 simpll 765 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top)
595adantr 483 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (Clsd‘𝐽)) → 𝑆 ∈ V)
602cldopn 21641 . . . . . . . . 9 (𝑥 ∈ (Clsd‘𝐽) → (𝑋𝑥) ∈ 𝐽)
6160adantl 484 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝑋𝑥) ∈ 𝐽)
62 elrestr 16704 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆 ∈ V ∧ (𝑋𝑥) ∈ 𝐽) → ((𝑋𝑥) ∩ 𝑆) ∈ (𝐽t 𝑆))
6358, 59, 61, 62syl3anc 1367 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (Clsd‘𝐽)) → ((𝑋𝑥) ∩ 𝑆) ∈ (𝐽t 𝑆))
6457, 63eqeltrd 2915 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝑆 ∖ (𝑥𝑆)) ∈ (𝐽t 𝑆))
65 inss2 4208 . . . . . 6 (𝑥𝑆) ⊆ 𝑆
6664, 65jctil 522 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (Clsd‘𝐽)) → ((𝑥𝑆) ⊆ 𝑆 ∧ (𝑆 ∖ (𝑥𝑆)) ∈ (𝐽t 𝑆)))
67 sseq1 3994 . . . . . 6 (𝐴 = (𝑥𝑆) → (𝐴𝑆 ↔ (𝑥𝑆) ⊆ 𝑆))
68 difeq2 4095 . . . . . . 7 (𝐴 = (𝑥𝑆) → (𝑆𝐴) = (𝑆 ∖ (𝑥𝑆)))
6968eleq1d 2899 . . . . . 6 (𝐴 = (𝑥𝑆) → ((𝑆𝐴) ∈ (𝐽t 𝑆) ↔ (𝑆 ∖ (𝑥𝑆)) ∈ (𝐽t 𝑆)))
7067, 69anbi12d 632 . . . . 5 (𝐴 = (𝑥𝑆) → ((𝐴𝑆 ∧ (𝑆𝐴) ∈ (𝐽t 𝑆)) ↔ ((𝑥𝑆) ⊆ 𝑆 ∧ (𝑆 ∖ (𝑥𝑆)) ∈ (𝐽t 𝑆))))
7166, 70syl5ibrcom 249 . . . 4 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝐴 = (𝑥𝑆) → (𝐴𝑆 ∧ (𝑆𝐴) ∈ (𝐽t 𝑆))))
7271rexlimdva 3286 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆) → (𝐴𝑆 ∧ (𝑆𝐴) ∈ (𝐽t 𝑆))))
7349, 72impbid 214 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝐴𝑆 ∧ (𝑆𝐴) ∈ (𝐽t 𝑆)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆)))
7410, 15, 733bitr2d 309 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐴 ∈ (Clsd‘(𝐽t 𝑆)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wrex 3141  Vcvv 3496  cdif 3935  cun 3936  cin 3937  wss 3938  c0 4293   cuni 4840  cfv 6357  (class class class)co 7158  t crest 16696  Topctop 21503  Clsdccld 21626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-oadd 8108  df-er 8291  df-en 8512  df-fin 8515  df-fi 8877  df-rest 16698  df-topgen 16719  df-top 21504  df-topon 21521  df-bases 21556  df-cld 21629
This theorem is referenced by:  restcldi  21783  restcldr  21784  restcls  21791  connsubclo  22034  cldllycmp  22105
  Copyright terms: Public domain W3C validator