MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restcld Structured version   Visualization version   GIF version

Theorem restcld 21756
Description: A closed set of a subspace topology is a closed set of the original topology intersected with the subset. (Contributed by FL, 11-Jul-2009.) (Proof shortened by Mario Carneiro, 15-Dec-2013.)
Hypothesis
Ref Expression
restcld.1 𝑋 = 𝐽
Assertion
Ref Expression
restcld ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐴 ∈ (Clsd‘(𝐽t 𝑆)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽   𝑥,𝑆   𝑥,𝑋

Proof of Theorem restcld
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . 5 (𝑆𝑋𝑆𝑋)
2 restcld.1 . . . . . 6 𝑋 = 𝐽
32topopn 21490 . . . . 5 (𝐽 ∈ Top → 𝑋𝐽)
4 ssexg 5200 . . . . 5 ((𝑆𝑋𝑋𝐽) → 𝑆 ∈ V)
51, 3, 4syl2anr 599 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ∈ V)
6 resttop 21744 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 ∈ V) → (𝐽t 𝑆) ∈ Top)
75, 6syldan 594 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐽t 𝑆) ∈ Top)
8 eqid 2821 . . . 4 (𝐽t 𝑆) = (𝐽t 𝑆)
98iscld 21611 . . 3 ((𝐽t 𝑆) ∈ Top → (𝐴 ∈ (Clsd‘(𝐽t 𝑆)) ↔ (𝐴 (𝐽t 𝑆) ∧ ( (𝐽t 𝑆) ∖ 𝐴) ∈ (𝐽t 𝑆))))
107, 9syl 17 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐴 ∈ (Clsd‘(𝐽t 𝑆)) ↔ (𝐴 (𝐽t 𝑆) ∧ ( (𝐽t 𝑆) ∖ 𝐴) ∈ (𝐽t 𝑆))))
112restuni 21746 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 = (𝐽t 𝑆))
1211sseq2d 3975 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐴𝑆𝐴 (𝐽t 𝑆)))
1311difeq1d 4074 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆𝐴) = ( (𝐽t 𝑆) ∖ 𝐴))
1413eleq1d 2896 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑆𝐴) ∈ (𝐽t 𝑆) ↔ ( (𝐽t 𝑆) ∖ 𝐴) ∈ (𝐽t 𝑆)))
1512, 14anbi12d 633 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝐴𝑆 ∧ (𝑆𝐴) ∈ (𝐽t 𝑆)) ↔ (𝐴 (𝐽t 𝑆) ∧ ( (𝐽t 𝑆) ∖ 𝐴) ∈ (𝐽t 𝑆))))
16 elrest 16680 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆 ∈ V) → ((𝑆𝐴) ∈ (𝐽t 𝑆) ↔ ∃𝑜𝐽 (𝑆𝐴) = (𝑜𝑆)))
175, 16syldan 594 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑆𝐴) ∈ (𝐽t 𝑆) ↔ ∃𝑜𝐽 (𝑆𝐴) = (𝑜𝑆)))
1817anbi2d 631 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝐴𝑆 ∧ (𝑆𝐴) ∈ (𝐽t 𝑆)) ↔ (𝐴𝑆 ∧ ∃𝑜𝐽 (𝑆𝐴) = (𝑜𝑆))))
192opncld 21617 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑜𝐽) → (𝑋𝑜) ∈ (Clsd‘𝐽))
2019ad5ant14 757 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) ∧ 𝑜𝐽) ∧ (𝑆𝐴) = (𝑜𝑆)) → (𝑋𝑜) ∈ (Clsd‘𝐽))
21 incom 4153 . . . . . . . . . . . 12 (𝑋𝑆) = (𝑆𝑋)
22 df-ss 3927 . . . . . . . . . . . . 13 (𝑆𝑋 ↔ (𝑆𝑋) = 𝑆)
2322biimpi 219 . . . . . . . . . . . 12 (𝑆𝑋 → (𝑆𝑋) = 𝑆)
2421, 23syl5eq 2868 . . . . . . . . . . 11 (𝑆𝑋 → (𝑋𝑆) = 𝑆)
2524ad4antlr 732 . . . . . . . . . 10 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) ∧ 𝑜𝐽) ∧ (𝑆𝐴) = (𝑜𝑆)) → (𝑋𝑆) = 𝑆)
2625difeq1d 4074 . . . . . . . . 9 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) ∧ 𝑜𝐽) ∧ (𝑆𝐴) = (𝑜𝑆)) → ((𝑋𝑆) ∖ 𝑜) = (𝑆𝑜))
27 difeq2 4069 . . . . . . . . . . 11 ((𝑆𝐴) = (𝑜𝑆) → (𝑆 ∖ (𝑆𝐴)) = (𝑆 ∖ (𝑜𝑆)))
28 difindi 4233 . . . . . . . . . . . 12 (𝑆 ∖ (𝑜𝑆)) = ((𝑆𝑜) ∪ (𝑆𝑆))
29 difid 4303 . . . . . . . . . . . . 13 (𝑆𝑆) = ∅
3029uneq2i 4112 . . . . . . . . . . . 12 ((𝑆𝑜) ∪ (𝑆𝑆)) = ((𝑆𝑜) ∪ ∅)
31 un0 4317 . . . . . . . . . . . 12 ((𝑆𝑜) ∪ ∅) = (𝑆𝑜)
3228, 30, 313eqtri 2848 . . . . . . . . . . 11 (𝑆 ∖ (𝑜𝑆)) = (𝑆𝑜)
3327, 32syl6eq 2872 . . . . . . . . . 10 ((𝑆𝐴) = (𝑜𝑆) → (𝑆 ∖ (𝑆𝐴)) = (𝑆𝑜))
3433adantl 485 . . . . . . . . 9 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) ∧ 𝑜𝐽) ∧ (𝑆𝐴) = (𝑜𝑆)) → (𝑆 ∖ (𝑆𝐴)) = (𝑆𝑜))
35 dfss4 4210 . . . . . . . . . . 11 (𝐴𝑆 ↔ (𝑆 ∖ (𝑆𝐴)) = 𝐴)
3635biimpi 219 . . . . . . . . . 10 (𝐴𝑆 → (𝑆 ∖ (𝑆𝐴)) = 𝐴)
3736ad3antlr 730 . . . . . . . . 9 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) ∧ 𝑜𝐽) ∧ (𝑆𝐴) = (𝑜𝑆)) → (𝑆 ∖ (𝑆𝐴)) = 𝐴)
3826, 34, 373eqtr2rd 2863 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) ∧ 𝑜𝐽) ∧ (𝑆𝐴) = (𝑜𝑆)) → 𝐴 = ((𝑋𝑆) ∖ 𝑜))
3921difeq1i 4071 . . . . . . . . 9 ((𝑋𝑆) ∖ 𝑜) = ((𝑆𝑋) ∖ 𝑜)
40 indif2 4222 . . . . . . . . 9 (𝑆 ∩ (𝑋𝑜)) = ((𝑆𝑋) ∖ 𝑜)
41 incom 4153 . . . . . . . . 9 (𝑆 ∩ (𝑋𝑜)) = ((𝑋𝑜) ∩ 𝑆)
4239, 40, 413eqtr2i 2850 . . . . . . . 8 ((𝑋𝑆) ∖ 𝑜) = ((𝑋𝑜) ∩ 𝑆)
4338, 42syl6eq 2872 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) ∧ 𝑜𝐽) ∧ (𝑆𝐴) = (𝑜𝑆)) → 𝐴 = ((𝑋𝑜) ∩ 𝑆))
44 ineq1 4156 . . . . . . . 8 (𝑥 = (𝑋𝑜) → (𝑥𝑆) = ((𝑋𝑜) ∩ 𝑆))
4544rspceeqv 3615 . . . . . . 7 (((𝑋𝑜) ∈ (Clsd‘𝐽) ∧ 𝐴 = ((𝑋𝑜) ∩ 𝑆)) → ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆))
4620, 43, 45syl2anc 587 . . . . . 6 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) ∧ 𝑜𝐽) ∧ (𝑆𝐴) = (𝑜𝑆)) → ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆))
4746rexlimdva2 3273 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) → (∃𝑜𝐽 (𝑆𝐴) = (𝑜𝑆) → ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆)))
4847expimpd 457 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝐴𝑆 ∧ ∃𝑜𝐽 (𝑆𝐴) = (𝑜𝑆)) → ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆)))
4918, 48sylbid 243 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝐴𝑆 ∧ (𝑆𝐴) ∈ (𝐽t 𝑆)) → ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆)))
50 difindi 4233 . . . . . . . . . 10 (𝑆 ∖ (𝑥𝑆)) = ((𝑆𝑥) ∪ (𝑆𝑆))
5129uneq2i 4112 . . . . . . . . . 10 ((𝑆𝑥) ∪ (𝑆𝑆)) = ((𝑆𝑥) ∪ ∅)
52 un0 4317 . . . . . . . . . 10 ((𝑆𝑥) ∪ ∅) = (𝑆𝑥)
5350, 51, 523eqtri 2848 . . . . . . . . 9 (𝑆 ∖ (𝑥𝑆)) = (𝑆𝑥)
54 difin2 4241 . . . . . . . . . 10 (𝑆𝑋 → (𝑆𝑥) = ((𝑋𝑥) ∩ 𝑆))
5554adantl 485 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆𝑥) = ((𝑋𝑥) ∩ 𝑆))
5653, 55syl5eq 2868 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆 ∖ (𝑥𝑆)) = ((𝑋𝑥) ∩ 𝑆))
5756adantr 484 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝑆 ∖ (𝑥𝑆)) = ((𝑋𝑥) ∩ 𝑆))
58 simpll 766 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top)
595adantr 484 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (Clsd‘𝐽)) → 𝑆 ∈ V)
602cldopn 21615 . . . . . . . . 9 (𝑥 ∈ (Clsd‘𝐽) → (𝑋𝑥) ∈ 𝐽)
6160adantl 485 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝑋𝑥) ∈ 𝐽)
62 elrestr 16681 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆 ∈ V ∧ (𝑋𝑥) ∈ 𝐽) → ((𝑋𝑥) ∩ 𝑆) ∈ (𝐽t 𝑆))
6358, 59, 61, 62syl3anc 1368 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (Clsd‘𝐽)) → ((𝑋𝑥) ∩ 𝑆) ∈ (𝐽t 𝑆))
6457, 63eqeltrd 2912 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝑆 ∖ (𝑥𝑆)) ∈ (𝐽t 𝑆))
65 inss2 4181 . . . . . 6 (𝑥𝑆) ⊆ 𝑆
6664, 65jctil 523 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (Clsd‘𝐽)) → ((𝑥𝑆) ⊆ 𝑆 ∧ (𝑆 ∖ (𝑥𝑆)) ∈ (𝐽t 𝑆)))
67 sseq1 3968 . . . . . 6 (𝐴 = (𝑥𝑆) → (𝐴𝑆 ↔ (𝑥𝑆) ⊆ 𝑆))
68 difeq2 4069 . . . . . . 7 (𝐴 = (𝑥𝑆) → (𝑆𝐴) = (𝑆 ∖ (𝑥𝑆)))
6968eleq1d 2896 . . . . . 6 (𝐴 = (𝑥𝑆) → ((𝑆𝐴) ∈ (𝐽t 𝑆) ↔ (𝑆 ∖ (𝑥𝑆)) ∈ (𝐽t 𝑆)))
7067, 69anbi12d 633 . . . . 5 (𝐴 = (𝑥𝑆) → ((𝐴𝑆 ∧ (𝑆𝐴) ∈ (𝐽t 𝑆)) ↔ ((𝑥𝑆) ⊆ 𝑆 ∧ (𝑆 ∖ (𝑥𝑆)) ∈ (𝐽t 𝑆))))
7166, 70syl5ibrcom 250 . . . 4 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝐴 = (𝑥𝑆) → (𝐴𝑆 ∧ (𝑆𝐴) ∈ (𝐽t 𝑆))))
7271rexlimdva 3270 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆) → (𝐴𝑆 ∧ (𝑆𝐴) ∈ (𝐽t 𝑆))))
7349, 72impbid 215 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝐴𝑆 ∧ (𝑆𝐴) ∈ (𝐽t 𝑆)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆)))
7410, 15, 733bitr2d 310 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐴 ∈ (Clsd‘(𝐽t 𝑆)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wrex 3127  Vcvv 3471  cdif 3907  cun 3908  cin 3909  wss 3910  c0 4266   cuni 4811  cfv 6328  (class class class)co 7130  t crest 16673  Topctop 21477  Clsdccld 21600
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-ral 3131  df-rex 3132  df-reu 3133  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-oadd 8081  df-er 8264  df-en 8485  df-fin 8488  df-fi 8851  df-rest 16675  df-topgen 16696  df-top 21478  df-topon 21495  df-bases 21530  df-cld 21603
This theorem is referenced by:  restcldi  21757  restcldr  21758  restcls  21765  connsubclo  22008  cldllycmp  22079
  Copyright terms: Public domain W3C validator