MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restcld Structured version   Visualization version   GIF version

Theorem restcld 23195
Description: A closed set of a subspace topology is a closed set of the original topology intersected with the subset. (Contributed by FL, 11-Jul-2009.) (Proof shortened by Mario Carneiro, 15-Dec-2013.)
Hypothesis
Ref Expression
restcld.1 𝑋 = 𝐽
Assertion
Ref Expression
restcld ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐴 ∈ (Clsd‘(𝐽t 𝑆)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐽   𝑥,𝑆   𝑥,𝑋

Proof of Theorem restcld
Dummy variable 𝑜 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . 5 (𝑆𝑋𝑆𝑋)
2 restcld.1 . . . . . 6 𝑋 = 𝐽
32topopn 22927 . . . . 5 (𝐽 ∈ Top → 𝑋𝐽)
4 ssexg 5328 . . . . 5 ((𝑆𝑋𝑋𝐽) → 𝑆 ∈ V)
51, 3, 4syl2anr 597 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 ∈ V)
6 resttop 23183 . . . 4 ((𝐽 ∈ Top ∧ 𝑆 ∈ V) → (𝐽t 𝑆) ∈ Top)
75, 6syldan 591 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐽t 𝑆) ∈ Top)
8 eqid 2734 . . . 4 (𝐽t 𝑆) = (𝐽t 𝑆)
98iscld 23050 . . 3 ((𝐽t 𝑆) ∈ Top → (𝐴 ∈ (Clsd‘(𝐽t 𝑆)) ↔ (𝐴 (𝐽t 𝑆) ∧ ( (𝐽t 𝑆) ∖ 𝐴) ∈ (𝐽t 𝑆))))
107, 9syl 17 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐴 ∈ (Clsd‘(𝐽t 𝑆)) ↔ (𝐴 (𝐽t 𝑆) ∧ ( (𝐽t 𝑆) ∖ 𝐴) ∈ (𝐽t 𝑆))))
112restuni 23185 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → 𝑆 = (𝐽t 𝑆))
1211sseq2d 4027 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐴𝑆𝐴 (𝐽t 𝑆)))
1311difeq1d 4134 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆𝐴) = ( (𝐽t 𝑆) ∖ 𝐴))
1413eleq1d 2823 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑆𝐴) ∈ (𝐽t 𝑆) ↔ ( (𝐽t 𝑆) ∖ 𝐴) ∈ (𝐽t 𝑆)))
1512, 14anbi12d 632 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝐴𝑆 ∧ (𝑆𝐴) ∈ (𝐽t 𝑆)) ↔ (𝐴 (𝐽t 𝑆) ∧ ( (𝐽t 𝑆) ∖ 𝐴) ∈ (𝐽t 𝑆))))
16 elrest 17473 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑆 ∈ V) → ((𝑆𝐴) ∈ (𝐽t 𝑆) ↔ ∃𝑜𝐽 (𝑆𝐴) = (𝑜𝑆)))
175, 16syldan 591 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝑆𝐴) ∈ (𝐽t 𝑆) ↔ ∃𝑜𝐽 (𝑆𝐴) = (𝑜𝑆)))
1817anbi2d 630 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝐴𝑆 ∧ (𝑆𝐴) ∈ (𝐽t 𝑆)) ↔ (𝐴𝑆 ∧ ∃𝑜𝐽 (𝑆𝐴) = (𝑜𝑆))))
192opncld 23056 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑜𝐽) → (𝑋𝑜) ∈ (Clsd‘𝐽))
2019ad5ant14 758 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) ∧ 𝑜𝐽) ∧ (𝑆𝐴) = (𝑜𝑆)) → (𝑋𝑜) ∈ (Clsd‘𝐽))
21 incom 4216 . . . . . . . . . . . 12 (𝑋𝑆) = (𝑆𝑋)
22 dfss2 3980 . . . . . . . . . . . . 13 (𝑆𝑋 ↔ (𝑆𝑋) = 𝑆)
2322biimpi 216 . . . . . . . . . . . 12 (𝑆𝑋 → (𝑆𝑋) = 𝑆)
2421, 23eqtrid 2786 . . . . . . . . . . 11 (𝑆𝑋 → (𝑋𝑆) = 𝑆)
2524ad4antlr 733 . . . . . . . . . 10 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) ∧ 𝑜𝐽) ∧ (𝑆𝐴) = (𝑜𝑆)) → (𝑋𝑆) = 𝑆)
2625difeq1d 4134 . . . . . . . . 9 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) ∧ 𝑜𝐽) ∧ (𝑆𝐴) = (𝑜𝑆)) → ((𝑋𝑆) ∖ 𝑜) = (𝑆𝑜))
27 difeq2 4129 . . . . . . . . . . 11 ((𝑆𝐴) = (𝑜𝑆) → (𝑆 ∖ (𝑆𝐴)) = (𝑆 ∖ (𝑜𝑆)))
28 difindi 4297 . . . . . . . . . . . 12 (𝑆 ∖ (𝑜𝑆)) = ((𝑆𝑜) ∪ (𝑆𝑆))
29 difid 4381 . . . . . . . . . . . . 13 (𝑆𝑆) = ∅
3029uneq2i 4174 . . . . . . . . . . . 12 ((𝑆𝑜) ∪ (𝑆𝑆)) = ((𝑆𝑜) ∪ ∅)
31 un0 4399 . . . . . . . . . . . 12 ((𝑆𝑜) ∪ ∅) = (𝑆𝑜)
3228, 30, 313eqtri 2766 . . . . . . . . . . 11 (𝑆 ∖ (𝑜𝑆)) = (𝑆𝑜)
3327, 32eqtrdi 2790 . . . . . . . . . 10 ((𝑆𝐴) = (𝑜𝑆) → (𝑆 ∖ (𝑆𝐴)) = (𝑆𝑜))
3433adantl 481 . . . . . . . . 9 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) ∧ 𝑜𝐽) ∧ (𝑆𝐴) = (𝑜𝑆)) → (𝑆 ∖ (𝑆𝐴)) = (𝑆𝑜))
35 dfss4 4274 . . . . . . . . . . 11 (𝐴𝑆 ↔ (𝑆 ∖ (𝑆𝐴)) = 𝐴)
3635biimpi 216 . . . . . . . . . 10 (𝐴𝑆 → (𝑆 ∖ (𝑆𝐴)) = 𝐴)
3736ad3antlr 731 . . . . . . . . 9 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) ∧ 𝑜𝐽) ∧ (𝑆𝐴) = (𝑜𝑆)) → (𝑆 ∖ (𝑆𝐴)) = 𝐴)
3826, 34, 373eqtr2rd 2781 . . . . . . . 8 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) ∧ 𝑜𝐽) ∧ (𝑆𝐴) = (𝑜𝑆)) → 𝐴 = ((𝑋𝑆) ∖ 𝑜))
3921difeq1i 4131 . . . . . . . . 9 ((𝑋𝑆) ∖ 𝑜) = ((𝑆𝑋) ∖ 𝑜)
40 indif2 4286 . . . . . . . . 9 (𝑆 ∩ (𝑋𝑜)) = ((𝑆𝑋) ∖ 𝑜)
41 incom 4216 . . . . . . . . 9 (𝑆 ∩ (𝑋𝑜)) = ((𝑋𝑜) ∩ 𝑆)
4239, 40, 413eqtr2i 2768 . . . . . . . 8 ((𝑋𝑆) ∖ 𝑜) = ((𝑋𝑜) ∩ 𝑆)
4338, 42eqtrdi 2790 . . . . . . 7 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) ∧ 𝑜𝐽) ∧ (𝑆𝐴) = (𝑜𝑆)) → 𝐴 = ((𝑋𝑜) ∩ 𝑆))
44 ineq1 4220 . . . . . . . 8 (𝑥 = (𝑋𝑜) → (𝑥𝑆) = ((𝑋𝑜) ∩ 𝑆))
4544rspceeqv 3644 . . . . . . 7 (((𝑋𝑜) ∈ (Clsd‘𝐽) ∧ 𝐴 = ((𝑋𝑜) ∩ 𝑆)) → ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆))
4620, 43, 45syl2anc 584 . . . . . 6 (((((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) ∧ 𝑜𝐽) ∧ (𝑆𝐴) = (𝑜𝑆)) → ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆))
4746rexlimdva2 3154 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝐴𝑆) → (∃𝑜𝐽 (𝑆𝐴) = (𝑜𝑆) → ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆)))
4847expimpd 453 . . . 4 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝐴𝑆 ∧ ∃𝑜𝐽 (𝑆𝐴) = (𝑜𝑆)) → ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆)))
4918, 48sylbid 240 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝐴𝑆 ∧ (𝑆𝐴) ∈ (𝐽t 𝑆)) → ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆)))
50 difindi 4297 . . . . . . . . . 10 (𝑆 ∖ (𝑥𝑆)) = ((𝑆𝑥) ∪ (𝑆𝑆))
5129uneq2i 4174 . . . . . . . . . 10 ((𝑆𝑥) ∪ (𝑆𝑆)) = ((𝑆𝑥) ∪ ∅)
52 un0 4399 . . . . . . . . . 10 ((𝑆𝑥) ∪ ∅) = (𝑆𝑥)
5350, 51, 523eqtri 2766 . . . . . . . . 9 (𝑆 ∖ (𝑥𝑆)) = (𝑆𝑥)
54 difin2 4306 . . . . . . . . . 10 (𝑆𝑋 → (𝑆𝑥) = ((𝑋𝑥) ∩ 𝑆))
5554adantl 481 . . . . . . . . 9 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆𝑥) = ((𝑋𝑥) ∩ 𝑆))
5653, 55eqtrid 2786 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑆 ∖ (𝑥𝑆)) = ((𝑋𝑥) ∩ 𝑆))
5756adantr 480 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝑆 ∖ (𝑥𝑆)) = ((𝑋𝑥) ∩ 𝑆))
58 simpll 767 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (Clsd‘𝐽)) → 𝐽 ∈ Top)
595adantr 480 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (Clsd‘𝐽)) → 𝑆 ∈ V)
602cldopn 23054 . . . . . . . . 9 (𝑥 ∈ (Clsd‘𝐽) → (𝑋𝑥) ∈ 𝐽)
6160adantl 481 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝑋𝑥) ∈ 𝐽)
62 elrestr 17474 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝑆 ∈ V ∧ (𝑋𝑥) ∈ 𝐽) → ((𝑋𝑥) ∩ 𝑆) ∈ (𝐽t 𝑆))
6358, 59, 61, 62syl3anc 1370 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (Clsd‘𝐽)) → ((𝑋𝑥) ∩ 𝑆) ∈ (𝐽t 𝑆))
6457, 63eqeltrd 2838 . . . . . 6 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝑆 ∖ (𝑥𝑆)) ∈ (𝐽t 𝑆))
65 inss2 4245 . . . . . 6 (𝑥𝑆) ⊆ 𝑆
6664, 65jctil 519 . . . . 5 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (Clsd‘𝐽)) → ((𝑥𝑆) ⊆ 𝑆 ∧ (𝑆 ∖ (𝑥𝑆)) ∈ (𝐽t 𝑆)))
67 sseq1 4020 . . . . . 6 (𝐴 = (𝑥𝑆) → (𝐴𝑆 ↔ (𝑥𝑆) ⊆ 𝑆))
68 difeq2 4129 . . . . . . 7 (𝐴 = (𝑥𝑆) → (𝑆𝐴) = (𝑆 ∖ (𝑥𝑆)))
6968eleq1d 2823 . . . . . 6 (𝐴 = (𝑥𝑆) → ((𝑆𝐴) ∈ (𝐽t 𝑆) ↔ (𝑆 ∖ (𝑥𝑆)) ∈ (𝐽t 𝑆)))
7067, 69anbi12d 632 . . . . 5 (𝐴 = (𝑥𝑆) → ((𝐴𝑆 ∧ (𝑆𝐴) ∈ (𝐽t 𝑆)) ↔ ((𝑥𝑆) ⊆ 𝑆 ∧ (𝑆 ∖ (𝑥𝑆)) ∈ (𝐽t 𝑆))))
7166, 70syl5ibrcom 247 . . . 4 (((𝐽 ∈ Top ∧ 𝑆𝑋) ∧ 𝑥 ∈ (Clsd‘𝐽)) → (𝐴 = (𝑥𝑆) → (𝐴𝑆 ∧ (𝑆𝐴) ∈ (𝐽t 𝑆))))
7271rexlimdva 3152 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆) → (𝐴𝑆 ∧ (𝑆𝐴) ∈ (𝐽t 𝑆))))
7349, 72impbid 212 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((𝐴𝑆 ∧ (𝑆𝐴) ∈ (𝐽t 𝑆)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆)))
7410, 15, 733bitr2d 307 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝐴 ∈ (Clsd‘(𝐽t 𝑆)) ↔ ∃𝑥 ∈ (Clsd‘𝐽)𝐴 = (𝑥𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wrex 3067  Vcvv 3477  cdif 3959  cun 3960  cin 3961  wss 3962  c0 4338   cuni 4911  cfv 6562  (class class class)co 7430  t crest 17466  Topctop 22914  Clsdccld 23039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-en 8984  df-fin 8987  df-fi 9448  df-rest 17468  df-topgen 17489  df-top 22915  df-topon 22932  df-bases 22968  df-cld 23042
This theorem is referenced by:  restcldi  23196  restcldr  23197  restcls  23204  connsubclo  23447  cldllycmp  23518  iscnrm3rlem2  48737
  Copyright terms: Public domain W3C validator