![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupub2 | Structured version Visualization version GIF version |
Description: A extended real valued function, with limsup that is not +∞, is eventually less than +∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
Ref | Expression |
---|---|
limsupub2.1 | ⊢ Ⅎ𝑗𝜑 |
limsupub2.2 | ⊢ Ⅎ𝑗𝐹 |
limsupub2.3 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
limsupub2.4 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
limsupub2.5 | ⊢ (𝜑 → (lim sup‘𝐹) ≠ +∞) |
Ref | Expression |
---|---|
limsupub2 | ⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < +∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupub2.1 | . . . . . . 7 ⊢ Ⅎ𝑗𝜑 | |
2 | nfv 1912 | . . . . . . 7 ⊢ Ⅎ𝑗 𝑥 ∈ ℝ | |
3 | 1, 2 | nfan 1897 | . . . . . 6 ⊢ Ⅎ𝑗(𝜑 ∧ 𝑥 ∈ ℝ) |
4 | nfv 1912 | . . . . . 6 ⊢ Ⅎ𝑗 𝑘 ∈ ℝ | |
5 | 3, 4 | nfan 1897 | . . . . 5 ⊢ Ⅎ𝑗((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) |
6 | limsupub2.4 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | |
7 | 6 | ffvelcdmda 7104 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐹‘𝑗) ∈ ℝ*) |
8 | 7 | ad5ant14 758 | . . . . . . . 8 ⊢ (((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) ≤ 𝑥) → (𝐹‘𝑗) ∈ ℝ*) |
9 | rexr 11305 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*) | |
10 | 9 | ad4antlr 733 | . . . . . . . 8 ⊢ (((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) ≤ 𝑥) → 𝑥 ∈ ℝ*) |
11 | pnfxr 11313 | . . . . . . . . 9 ⊢ +∞ ∈ ℝ* | |
12 | 11 | a1i 11 | . . . . . . . 8 ⊢ (((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) ≤ 𝑥) → +∞ ∈ ℝ*) |
13 | simpr 484 | . . . . . . . 8 ⊢ (((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) ≤ 𝑥) → (𝐹‘𝑗) ≤ 𝑥) | |
14 | ltpnf 13160 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → 𝑥 < +∞) | |
15 | 14 | ad4antlr 733 | . . . . . . . 8 ⊢ (((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) ≤ 𝑥) → 𝑥 < +∞) |
16 | 8, 10, 12, 13, 15 | xrlelttrd 13199 | . . . . . . 7 ⊢ (((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) ≤ 𝑥) → (𝐹‘𝑗) < +∞) |
17 | 16 | ex 412 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → ((𝐹‘𝑗) ≤ 𝑥 → (𝐹‘𝑗) < +∞)) |
18 | 17 | imim2d 57 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → ((𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) → (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < +∞))) |
19 | 5, 18 | ralimdaa 3258 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) → ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < +∞))) |
20 | 19 | reximdva 3166 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < +∞))) |
21 | 20 | imp 406 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < +∞)) |
22 | limsupub2.2 | . . 3 ⊢ Ⅎ𝑗𝐹 | |
23 | limsupub2.3 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
24 | limsupub2.5 | . . 3 ⊢ (𝜑 → (lim sup‘𝐹) ≠ +∞) | |
25 | 1, 22, 23, 6, 24 | limsupub 45660 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
26 | 21, 25 | r19.29a 3160 | 1 ⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < +∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1780 ∈ wcel 2106 Ⅎwnfc 2888 ≠ wne 2938 ∀wral 3059 ∃wrex 3068 ⊆ wss 3963 class class class wbr 5148 ⟶wf 6559 ‘cfv 6563 ℝcr 11152 +∞cpnf 11290 ℝ*cxr 11292 < clt 11293 ≤ cle 11294 lim supclsp 15503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-sup 9480 df-inf 9481 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-ico 13390 df-limsup 15504 |
This theorem is referenced by: limsupubuz2 45769 |
Copyright terms: Public domain | W3C validator |