![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupub2 | Structured version Visualization version GIF version |
Description: A extended real valued function, with limsup that is not +∞, is eventually less than +∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
Ref | Expression |
---|---|
limsupub2.1 | ⊢ Ⅎ𝑗𝜑 |
limsupub2.2 | ⊢ Ⅎ𝑗𝐹 |
limsupub2.3 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
limsupub2.4 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
limsupub2.5 | ⊢ (𝜑 → (lim sup‘𝐹) ≠ +∞) |
Ref | Expression |
---|---|
limsupub2 | ⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < +∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsupub2.1 | . . . . . . 7 ⊢ Ⅎ𝑗𝜑 | |
2 | nfv 1913 | . . . . . . 7 ⊢ Ⅎ𝑗 𝑥 ∈ ℝ | |
3 | 1, 2 | nfan 1898 | . . . . . 6 ⊢ Ⅎ𝑗(𝜑 ∧ 𝑥 ∈ ℝ) |
4 | nfv 1913 | . . . . . 6 ⊢ Ⅎ𝑗 𝑘 ∈ ℝ | |
5 | 3, 4 | nfan 1898 | . . . . 5 ⊢ Ⅎ𝑗((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) |
6 | limsupub2.4 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | |
7 | 6 | ffvelcdmda 7118 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐹‘𝑗) ∈ ℝ*) |
8 | 7 | ad5ant14 757 | . . . . . . . 8 ⊢ (((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) ≤ 𝑥) → (𝐹‘𝑗) ∈ ℝ*) |
9 | rexr 11336 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*) | |
10 | 9 | ad4antlr 732 | . . . . . . . 8 ⊢ (((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) ≤ 𝑥) → 𝑥 ∈ ℝ*) |
11 | pnfxr 11344 | . . . . . . . . 9 ⊢ +∞ ∈ ℝ* | |
12 | 11 | a1i 11 | . . . . . . . 8 ⊢ (((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) ≤ 𝑥) → +∞ ∈ ℝ*) |
13 | simpr 484 | . . . . . . . 8 ⊢ (((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) ≤ 𝑥) → (𝐹‘𝑗) ≤ 𝑥) | |
14 | ltpnf 13183 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → 𝑥 < +∞) | |
15 | 14 | ad4antlr 732 | . . . . . . . 8 ⊢ (((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) ≤ 𝑥) → 𝑥 < +∞) |
16 | 8, 10, 12, 13, 15 | xrlelttrd 13222 | . . . . . . 7 ⊢ (((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) ≤ 𝑥) → (𝐹‘𝑗) < +∞) |
17 | 16 | ex 412 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → ((𝐹‘𝑗) ≤ 𝑥 → (𝐹‘𝑗) < +∞)) |
18 | 17 | imim2d 57 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → ((𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) → (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < +∞))) |
19 | 5, 18 | ralimdaa 3266 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) → ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < +∞))) |
20 | 19 | reximdva 3174 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < +∞))) |
21 | 20 | imp 406 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < +∞)) |
22 | limsupub2.2 | . . 3 ⊢ Ⅎ𝑗𝐹 | |
23 | limsupub2.3 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
24 | limsupub2.5 | . . 3 ⊢ (𝜑 → (lim sup‘𝐹) ≠ +∞) | |
25 | 1, 22, 23, 6, 24 | limsupub 45625 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
26 | 21, 25 | r19.29a 3168 | 1 ⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < +∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1781 ∈ wcel 2108 Ⅎwnfc 2893 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 class class class wbr 5166 ⟶wf 6569 ‘cfv 6573 ℝcr 11183 +∞cpnf 11321 ℝ*cxr 11323 < clt 11324 ≤ cle 11325 lim supclsp 15516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-ico 13413 df-limsup 15517 |
This theorem is referenced by: limsupubuz2 45734 |
Copyright terms: Public domain | W3C validator |