Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupub2 Structured version   Visualization version   GIF version

Theorem limsupub2 45850
Description: A extended real valued function, with limsup that is not +∞, is eventually less than +∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
limsupub2.1 𝑗𝜑
limsupub2.2 𝑗𝐹
limsupub2.3 (𝜑𝐴 ⊆ ℝ)
limsupub2.4 (𝜑𝐹:𝐴⟶ℝ*)
limsupub2.5 (𝜑 → (lim sup‘𝐹) ≠ +∞)
Assertion
Ref Expression
limsupub2 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < +∞))
Distinct variable groups:   𝐴,𝑗,𝑘   𝑘,𝐹   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑗)   𝐹(𝑗)

Proof of Theorem limsupub2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 limsupub2.1 . . . . . . 7 𝑗𝜑
2 nfv 1915 . . . . . . 7 𝑗 𝑥 ∈ ℝ
31, 2nfan 1900 . . . . . 6 𝑗(𝜑𝑥 ∈ ℝ)
4 nfv 1915 . . . . . 6 𝑗 𝑘 ∈ ℝ
53, 4nfan 1900 . . . . 5 𝑗((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ)
6 limsupub2.4 . . . . . . . . . 10 (𝜑𝐹:𝐴⟶ℝ*)
76ffvelcdmda 7012 . . . . . . . . 9 ((𝜑𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
87ad5ant14 757 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → (𝐹𝑗) ∈ ℝ*)
9 rexr 11153 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
109ad4antlr 733 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → 𝑥 ∈ ℝ*)
11 pnfxr 11161 . . . . . . . . 9 +∞ ∈ ℝ*
1211a1i 11 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → +∞ ∈ ℝ*)
13 simpr 484 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → (𝐹𝑗) ≤ 𝑥)
14 ltpnf 13014 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 < +∞)
1514ad4antlr 733 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → 𝑥 < +∞)
168, 10, 12, 13, 15xrlelttrd 13054 . . . . . . 7 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → (𝐹𝑗) < +∞)
1716ex 412 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → ((𝐹𝑗) ≤ 𝑥 → (𝐹𝑗) < +∞))
1817imim2d 57 . . . . 5 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → ((𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → (𝑘𝑗 → (𝐹𝑗) < +∞)))
195, 18ralimdaa 3233 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < +∞)))
2019reximdva 3145 . . 3 ((𝜑𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < +∞)))
2120imp 406 . 2 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < +∞))
22 limsupub2.2 . . 3 𝑗𝐹
23 limsupub2.3 . . 3 (𝜑𝐴 ⊆ ℝ)
24 limsupub2.5 . . 3 (𝜑 → (lim sup‘𝐹) ≠ +∞)
251, 22, 23, 6, 24limsupub 45742 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
2621, 25r19.29a 3140 1 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < +∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1784  wcel 2111  wnfc 2879  wne 2928  wral 3047  wrex 3056  wss 3897   class class class wbr 5086  wf 6472  cfv 6476  cr 11000  +∞cpnf 11138  *cxr 11140   < clt 11141  cle 11142  lim supclsp 15372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-po 5519  df-so 5520  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-ico 13246  df-limsup 15373
This theorem is referenced by:  limsupubuz2  45851
  Copyright terms: Public domain W3C validator