| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupub2 | Structured version Visualization version GIF version | ||
| Description: A extended real valued function, with limsup that is not +∞, is eventually less than +∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
| Ref | Expression |
|---|---|
| limsupub2.1 | ⊢ Ⅎ𝑗𝜑 |
| limsupub2.2 | ⊢ Ⅎ𝑗𝐹 |
| limsupub2.3 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| limsupub2.4 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
| limsupub2.5 | ⊢ (𝜑 → (lim sup‘𝐹) ≠ +∞) |
| Ref | Expression |
|---|---|
| limsupub2 | ⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < +∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsupub2.1 | . . . . . . 7 ⊢ Ⅎ𝑗𝜑 | |
| 2 | nfv 1914 | . . . . . . 7 ⊢ Ⅎ𝑗 𝑥 ∈ ℝ | |
| 3 | 1, 2 | nfan 1899 | . . . . . 6 ⊢ Ⅎ𝑗(𝜑 ∧ 𝑥 ∈ ℝ) |
| 4 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑗 𝑘 ∈ ℝ | |
| 5 | 3, 4 | nfan 1899 | . . . . 5 ⊢ Ⅎ𝑗((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) |
| 6 | limsupub2.4 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | |
| 7 | 6 | ffvelcdmda 7056 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐹‘𝑗) ∈ ℝ*) |
| 8 | 7 | ad5ant14 757 | . . . . . . . 8 ⊢ (((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) ≤ 𝑥) → (𝐹‘𝑗) ∈ ℝ*) |
| 9 | rexr 11220 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*) | |
| 10 | 9 | ad4antlr 733 | . . . . . . . 8 ⊢ (((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) ≤ 𝑥) → 𝑥 ∈ ℝ*) |
| 11 | pnfxr 11228 | . . . . . . . . 9 ⊢ +∞ ∈ ℝ* | |
| 12 | 11 | a1i 11 | . . . . . . . 8 ⊢ (((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) ≤ 𝑥) → +∞ ∈ ℝ*) |
| 13 | simpr 484 | . . . . . . . 8 ⊢ (((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) ≤ 𝑥) → (𝐹‘𝑗) ≤ 𝑥) | |
| 14 | ltpnf 13080 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → 𝑥 < +∞) | |
| 15 | 14 | ad4antlr 733 | . . . . . . . 8 ⊢ (((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) ≤ 𝑥) → 𝑥 < +∞) |
| 16 | 8, 10, 12, 13, 15 | xrlelttrd 13120 | . . . . . . 7 ⊢ (((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) ≤ 𝑥) → (𝐹‘𝑗) < +∞) |
| 17 | 16 | ex 412 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → ((𝐹‘𝑗) ≤ 𝑥 → (𝐹‘𝑗) < +∞)) |
| 18 | 17 | imim2d 57 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → ((𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) → (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < +∞))) |
| 19 | 5, 18 | ralimdaa 3238 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) → ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < +∞))) |
| 20 | 19 | reximdva 3146 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < +∞))) |
| 21 | 20 | imp 406 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < +∞)) |
| 22 | limsupub2.2 | . . 3 ⊢ Ⅎ𝑗𝐹 | |
| 23 | limsupub2.3 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 24 | limsupub2.5 | . . 3 ⊢ (𝜑 → (lim sup‘𝐹) ≠ +∞) | |
| 25 | 1, 22, 23, 6, 24 | limsupub 45702 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
| 26 | 21, 25 | r19.29a 3141 | 1 ⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < +∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ⊆ wss 3914 class class class wbr 5107 ⟶wf 6507 ‘cfv 6511 ℝcr 11067 +∞cpnf 11205 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 lim supclsp 15436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-ico 13312 df-limsup 15437 |
| This theorem is referenced by: limsupubuz2 45811 |
| Copyright terms: Public domain | W3C validator |