| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > limsupub2 | Structured version Visualization version GIF version | ||
| Description: A extended real valued function, with limsup that is not +∞, is eventually less than +∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.) |
| Ref | Expression |
|---|---|
| limsupub2.1 | ⊢ Ⅎ𝑗𝜑 |
| limsupub2.2 | ⊢ Ⅎ𝑗𝐹 |
| limsupub2.3 | ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| limsupub2.4 | ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
| limsupub2.5 | ⊢ (𝜑 → (lim sup‘𝐹) ≠ +∞) |
| Ref | Expression |
|---|---|
| limsupub2 | ⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < +∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limsupub2.1 | . . . . . . 7 ⊢ Ⅎ𝑗𝜑 | |
| 2 | nfv 1914 | . . . . . . 7 ⊢ Ⅎ𝑗 𝑥 ∈ ℝ | |
| 3 | 1, 2 | nfan 1899 | . . . . . 6 ⊢ Ⅎ𝑗(𝜑 ∧ 𝑥 ∈ ℝ) |
| 4 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑗 𝑘 ∈ ℝ | |
| 5 | 3, 4 | nfan 1899 | . . . . 5 ⊢ Ⅎ𝑗((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) |
| 6 | limsupub2.4 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) | |
| 7 | 6 | ffvelcdmda 7022 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → (𝐹‘𝑗) ∈ ℝ*) |
| 8 | 7 | ad5ant14 757 | . . . . . . . 8 ⊢ (((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) ≤ 𝑥) → (𝐹‘𝑗) ∈ ℝ*) |
| 9 | rexr 11180 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*) | |
| 10 | 9 | ad4antlr 733 | . . . . . . . 8 ⊢ (((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) ≤ 𝑥) → 𝑥 ∈ ℝ*) |
| 11 | pnfxr 11188 | . . . . . . . . 9 ⊢ +∞ ∈ ℝ* | |
| 12 | 11 | a1i 11 | . . . . . . . 8 ⊢ (((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) ≤ 𝑥) → +∞ ∈ ℝ*) |
| 13 | simpr 484 | . . . . . . . 8 ⊢ (((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) ≤ 𝑥) → (𝐹‘𝑗) ≤ 𝑥) | |
| 14 | ltpnf 13041 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → 𝑥 < +∞) | |
| 15 | 14 | ad4antlr 733 | . . . . . . . 8 ⊢ (((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) ≤ 𝑥) → 𝑥 < +∞) |
| 16 | 8, 10, 12, 13, 15 | xrlelttrd 13081 | . . . . . . 7 ⊢ (((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) ∧ (𝐹‘𝑗) ≤ 𝑥) → (𝐹‘𝑗) < +∞) |
| 17 | 16 | ex 412 | . . . . . 6 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → ((𝐹‘𝑗) ≤ 𝑥 → (𝐹‘𝑗) < +∞)) |
| 18 | 17 | imim2d 57 | . . . . 5 ⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → ((𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) → (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < +∞))) |
| 19 | 5, 18 | ralimdaa 3230 | . . . 4 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) → ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < +∞))) |
| 20 | 19 | reximdva 3142 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < +∞))) |
| 21 | 20 | imp 406 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < +∞)) |
| 22 | limsupub2.2 | . . 3 ⊢ Ⅎ𝑗𝐹 | |
| 23 | limsupub2.3 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) | |
| 24 | limsupub2.5 | . . 3 ⊢ (𝜑 → (lim sup‘𝐹) ≠ +∞) | |
| 25 | 1, 22, 23, 6, 24 | limsupub 45705 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
| 26 | 21, 25 | r19.29a 3137 | 1 ⊢ (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < +∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ⊆ wss 3905 class class class wbr 5095 ⟶wf 6482 ‘cfv 6486 ℝcr 11027 +∞cpnf 11165 ℝ*cxr 11167 < clt 11168 ≤ cle 11169 lim supclsp 15396 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-ico 13273 df-limsup 15397 |
| This theorem is referenced by: limsupubuz2 45814 |
| Copyright terms: Public domain | W3C validator |