Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupub2 Structured version   Visualization version   GIF version

Theorem limsupub2 44365
Description: A extended real valued function, with limsup that is not +∞, is eventually less than +∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
limsupub2.1 𝑗𝜑
limsupub2.2 𝑗𝐹
limsupub2.3 (𝜑𝐴 ⊆ ℝ)
limsupub2.4 (𝜑𝐹:𝐴⟶ℝ*)
limsupub2.5 (𝜑 → (lim sup‘𝐹) ≠ +∞)
Assertion
Ref Expression
limsupub2 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < +∞))
Distinct variable groups:   𝐴,𝑗,𝑘   𝑘,𝐹   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑗)   𝐹(𝑗)

Proof of Theorem limsupub2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 limsupub2.1 . . . . . . 7 𝑗𝜑
2 nfv 1917 . . . . . . 7 𝑗 𝑥 ∈ ℝ
31, 2nfan 1902 . . . . . 6 𝑗(𝜑𝑥 ∈ ℝ)
4 nfv 1917 . . . . . 6 𝑗 𝑘 ∈ ℝ
53, 4nfan 1902 . . . . 5 𝑗((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ)
6 limsupub2.4 . . . . . . . . . 10 (𝜑𝐹:𝐴⟶ℝ*)
76ffvelcdmda 7072 . . . . . . . . 9 ((𝜑𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
87ad5ant14 756 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → (𝐹𝑗) ∈ ℝ*)
9 rexr 11244 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
109ad4antlr 731 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → 𝑥 ∈ ℝ*)
11 pnfxr 11252 . . . . . . . . 9 +∞ ∈ ℝ*
1211a1i 11 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → +∞ ∈ ℝ*)
13 simpr 485 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → (𝐹𝑗) ≤ 𝑥)
14 ltpnf 13084 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 < +∞)
1514ad4antlr 731 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → 𝑥 < +∞)
168, 10, 12, 13, 15xrlelttrd 13123 . . . . . . 7 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → (𝐹𝑗) < +∞)
1716ex 413 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → ((𝐹𝑗) ≤ 𝑥 → (𝐹𝑗) < +∞))
1817imim2d 57 . . . . 5 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → ((𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → (𝑘𝑗 → (𝐹𝑗) < +∞)))
195, 18ralimdaa 3257 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < +∞)))
2019reximdva 3168 . . 3 ((𝜑𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < +∞)))
2120imp 407 . 2 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < +∞))
22 limsupub2.2 . . 3 𝑗𝐹
23 limsupub2.3 . . 3 (𝜑𝐴 ⊆ ℝ)
24 limsupub2.5 . . 3 (𝜑 → (lim sup‘𝐹) ≠ +∞)
251, 22, 23, 6, 24limsupub 44257 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
2621, 25r19.29a 3162 1 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < +∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wnf 1785  wcel 2106  wnfc 2883  wne 2940  wral 3061  wrex 3070  wss 3945   class class class wbr 5142  wf 6529  cfv 6533  cr 11093  +∞cpnf 11229  *cxr 11231   < clt 11232  cle 11233  lim supclsp 15398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709  ax-cnex 11150  ax-resscn 11151  ax-1cn 11152  ax-icn 11153  ax-addcl 11154  ax-addrcl 11155  ax-mulcl 11156  ax-mulrcl 11157  ax-mulcom 11158  ax-addass 11159  ax-mulass 11160  ax-distr 11161  ax-i2m1 11162  ax-1ne0 11163  ax-1rid 11164  ax-rnegex 11165  ax-rrecex 11166  ax-cnre 11167  ax-pre-lttri 11168  ax-pre-lttrn 11169  ax-pre-ltadd 11170  ax-pre-mulgt0 11171  ax-pre-sup 11172
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5568  df-po 5582  df-so 5583  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7350  df-ov 7397  df-oprab 7398  df-mpo 7399  df-er 8688  df-en 8925  df-dom 8926  df-sdom 8927  df-sup 9421  df-inf 9422  df-pnf 11234  df-mnf 11235  df-xr 11236  df-ltxr 11237  df-le 11238  df-sub 11430  df-neg 11431  df-ico 13314  df-limsup 15399
This theorem is referenced by:  limsupubuz2  44366
  Copyright terms: Public domain W3C validator