Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupub2 Structured version   Visualization version   GIF version

Theorem limsupub2 43243
Description: A extended real valued function, with limsup that is not +∞, is eventually less than +∞. (Contributed by Glauco Siliprandi, 23-Apr-2023.)
Hypotheses
Ref Expression
limsupub2.1 𝑗𝜑
limsupub2.2 𝑗𝐹
limsupub2.3 (𝜑𝐴 ⊆ ℝ)
limsupub2.4 (𝜑𝐹:𝐴⟶ℝ*)
limsupub2.5 (𝜑 → (lim sup‘𝐹) ≠ +∞)
Assertion
Ref Expression
limsupub2 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < +∞))
Distinct variable groups:   𝐴,𝑗,𝑘   𝑘,𝐹   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑗)   𝐹(𝑗)

Proof of Theorem limsupub2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 limsupub2.1 . . . . . . 7 𝑗𝜑
2 nfv 1918 . . . . . . 7 𝑗 𝑥 ∈ ℝ
31, 2nfan 1903 . . . . . 6 𝑗(𝜑𝑥 ∈ ℝ)
4 nfv 1918 . . . . . 6 𝑗 𝑘 ∈ ℝ
53, 4nfan 1903 . . . . 5 𝑗((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ)
6 limsupub2.4 . . . . . . . . . 10 (𝜑𝐹:𝐴⟶ℝ*)
76ffvelrnda 6943 . . . . . . . . 9 ((𝜑𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
87ad5ant14 754 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → (𝐹𝑗) ∈ ℝ*)
9 rexr 10952 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
109ad4antlr 729 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → 𝑥 ∈ ℝ*)
11 pnfxr 10960 . . . . . . . . 9 +∞ ∈ ℝ*
1211a1i 11 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → +∞ ∈ ℝ*)
13 simpr 484 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → (𝐹𝑗) ≤ 𝑥)
14 ltpnf 12785 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 < +∞)
1514ad4antlr 729 . . . . . . . 8 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → 𝑥 < +∞)
168, 10, 12, 13, 15xrlelttrd 12823 . . . . . . 7 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝐹𝑗) ≤ 𝑥) → (𝐹𝑗) < +∞)
1716ex 412 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → ((𝐹𝑗) ≤ 𝑥 → (𝐹𝑗) < +∞))
1817imim2d 57 . . . . 5 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → ((𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → (𝑘𝑗 → (𝐹𝑗) < +∞)))
195, 18ralimdaa 3140 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < +∞)))
2019reximdva 3202 . . 3 ((𝜑𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < +∞)))
2120imp 406 . 2 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < +∞))
22 limsupub2.2 . . 3 𝑗𝐹
23 limsupub2.3 . . 3 (𝜑𝐴 ⊆ ℝ)
24 limsupub2.5 . . 3 (𝜑 → (lim sup‘𝐹) ≠ +∞)
251, 22, 23, 6, 24limsupub 43135 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
2621, 25r19.29a 3217 1 (𝜑 → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < +∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1787  wcel 2108  wnfc 2886  wne 2942  wral 3063  wrex 3064  wss 3883   class class class wbr 5070  wf 6414  cfv 6418  cr 10801  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  lim supclsp 15107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-ico 13014  df-limsup 15108
This theorem is referenced by:  limsupubuz2  43244
  Copyright terms: Public domain W3C validator