Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimdecfgtioo Structured version   Visualization version   GIF version

Theorem pimdecfgtioo 44305
Description: Given a nondecreasing function, the preimage of an unbounded below, open interval, when the supremum of the preimage does not belong to the preimage. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimdecfgtioo.x 𝑥𝜑
pimdecfgtioo.h 𝑦𝜑
pimdecfgtioo.a (𝜑𝐴 ⊆ ℝ)
pimdecfgtioo.f (𝜑𝐹:𝐴⟶ℝ*)
pimdecfgtioo.d (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
pimdecfgtioo.r (𝜑𝑅 ∈ ℝ*)
pimdecfgtioo.y 𝑌 = {𝑥𝐴𝑅 < (𝐹𝑥)}
pimdecfgtioo.c 𝑆 = sup(𝑌, ℝ*, < )
pimdecfgtioo.e (𝜑 → ¬ 𝑆𝑌)
pimdecfgtioo.i 𝐼 = (-∞(,)𝑆)
Assertion
Ref Expression
pimdecfgtioo (𝜑𝑌 = (𝐼𝐴))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦   𝑥,𝐼,𝑦   𝑥,𝑅,𝑦   𝑦,𝑌
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem pimdecfgtioo
StepHypRef Expression
1 pimdecfgtioo.y . . . . . . 7 𝑌 = {𝑥𝐴𝑅 < (𝐹𝑥)}
2 ssrab2 4019 . . . . . . 7 {𝑥𝐴𝑅 < (𝐹𝑥)} ⊆ 𝐴
31, 2eqsstri 3960 . . . . . 6 𝑌𝐴
43a1i 11 . . . . 5 (𝜑𝑌𝐴)
5 pimdecfgtioo.a . . . . 5 (𝜑𝐴 ⊆ ℝ)
64, 5sstrd 3936 . . . 4 (𝜑𝑌 ⊆ ℝ)
7 pimdecfgtioo.c . . . 4 𝑆 = sup(𝑌, ℝ*, < )
8 pimdecfgtioo.e . . . 4 (𝜑 → ¬ 𝑆𝑌)
9 pimdecfgtioo.i . . . 4 𝐼 = (-∞(,)𝑆)
106, 7, 8, 9ressioosup 43142 . . 3 (𝜑𝑌𝐼)
1110, 4ssind 4172 . 2 (𝜑𝑌 ⊆ (𝐼𝐴))
12 pimdecfgtioo.x . . . 4 𝑥𝜑
13 elinel2 4136 . . . . . . . 8 (𝑥 ∈ (𝐼𝐴) → 𝑥𝐴)
1413adantl 483 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥𝐴)
15 mnfxr 11078 . . . . . . . . . . 11 -∞ ∈ ℝ*
1615a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐼𝐴)) → -∞ ∈ ℝ*)
17 ressxr 11065 . . . . . . . . . . . . . 14 ℝ ⊆ ℝ*
186, 17sstrdi 3938 . . . . . . . . . . . . 13 (𝜑𝑌 ⊆ ℝ*)
1918supxrcld 42695 . . . . . . . . . . . 12 (𝜑 → sup(𝑌, ℝ*, < ) ∈ ℝ*)
207, 19eqeltrid 2841 . . . . . . . . . . 11 (𝜑𝑆 ∈ ℝ*)
2120adantr 482 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑆 ∈ ℝ*)
22 elinel1 4135 . . . . . . . . . . . 12 (𝑥 ∈ (𝐼𝐴) → 𝑥𝐼)
2322, 9eleqtrdi 2847 . . . . . . . . . . 11 (𝑥 ∈ (𝐼𝐴) → 𝑥 ∈ (-∞(,)𝑆))
2423adantl 483 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥 ∈ (-∞(,)𝑆))
25 iooltub 43097 . . . . . . . . . 10 ((-∞ ∈ ℝ*𝑆 ∈ ℝ*𝑥 ∈ (-∞(,)𝑆)) → 𝑥 < 𝑆)
2616, 21, 24, 25syl3anc 1371 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥 < 𝑆)
2726adantr 482 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → 𝑥 < 𝑆)
28 simpr 486 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → ¬ 𝑅 < (𝐹𝑥))
29 pimdecfgtioo.f . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝐴⟶ℝ*)
3029adantr 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝐹:𝐴⟶ℝ*)
3130, 14ffvelcdmd 6994 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑥) ∈ ℝ*)
3231adantr 482 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → (𝐹𝑥) ∈ ℝ*)
33 pimdecfgtioo.r . . . . . . . . . . . . . . . 16 (𝜑𝑅 ∈ ℝ*)
3433adantr 482 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑅 ∈ ℝ*)
3534adantr 482 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → 𝑅 ∈ ℝ*)
3632, 35xrlenltd 11087 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → ((𝐹𝑥) ≤ 𝑅 ↔ ¬ 𝑅 < (𝐹𝑥)))
3728, 36mpbird 257 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → (𝐹𝑥) ≤ 𝑅)
38 pimdecfgtioo.h . . . . . . . . . . . . . . 15 𝑦𝜑
39 nfv 1915 . . . . . . . . . . . . . . 15 𝑦 𝑥 ∈ (𝐼𝐴)
4038, 39nfan 1900 . . . . . . . . . . . . . 14 𝑦(𝜑𝑥 ∈ (𝐼𝐴))
41 nfv 1915 . . . . . . . . . . . . . 14 𝑦(𝐹𝑥) ≤ 𝑅
4240, 41nfan 1900 . . . . . . . . . . . . 13 𝑦((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅)
43 fveq2 6804 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
4443breq2d 5093 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (𝑅 < (𝐹𝑥) ↔ 𝑅 < (𝐹𝑦)))
4544, 1elrab2 3632 . . . . . . . . . . . . . . . . . 18 (𝑦𝑌 ↔ (𝑦𝐴𝑅 < (𝐹𝑦)))
4645biimpi 215 . . . . . . . . . . . . . . . . 17 (𝑦𝑌 → (𝑦𝐴𝑅 < (𝐹𝑦)))
4746simprd 497 . . . . . . . . . . . . . . . 16 (𝑦𝑌𝑅 < (𝐹𝑦))
4847ad2antlr 725 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → 𝑅 < (𝐹𝑦))
495adantr 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝐴 ⊆ ℝ)
5049, 14sseldd 3927 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥 ∈ ℝ)
5150ad2antrr 724 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → 𝑥 ∈ ℝ)
526sselda 3926 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦𝑌) → 𝑦 ∈ ℝ)
5352ad4ant13 749 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → 𝑦 ∈ ℝ)
54 simpr 486 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → ¬ 𝑦𝑥)
5551, 53ltnled 11168 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
5654, 55mpbird 257 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → 𝑥 < 𝑦)
5751, 53, 56ltled 11169 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → 𝑥𝑦)
5857adantllr 717 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → 𝑥𝑦)
5929adantr 482 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦𝑌) → 𝐹:𝐴⟶ℝ*)
604sselda 3926 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦𝑌) → 𝑦𝐴)
6159, 60ffvelcdmd 6994 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦𝑌) → (𝐹𝑦) ∈ ℝ*)
6261ad5ant14 756 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → (𝐹𝑦) ∈ ℝ*)
6331ad3antrrr 728 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → (𝐹𝑥) ∈ ℝ*)
6434ad3antrrr 728 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → 𝑅 ∈ ℝ*)
65 simpr 486 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → 𝑥𝑦)
66 pimdecfgtioo.d . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
67 rspa 3228 . . . . . . . . . . . . . . . . . . . . . . 23 ((∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)) ∧ 𝑥𝐴) → ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
6866, 13, 67syl2an 597 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (𝐼𝐴)) → ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
6968ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
7060ad4ant13 749 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → 𝑦𝐴)
71 rspa 3228 . . . . . . . . . . . . . . . . . . . . 21 ((∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)) ∧ 𝑦𝐴) → (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
7269, 70, 71syl2anc 585 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
7365, 72mpd 15 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → (𝐹𝑦) ≤ (𝐹𝑥))
7473adantllr 717 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → (𝐹𝑦) ≤ (𝐹𝑥))
75 simpllr 774 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → (𝐹𝑥) ≤ 𝑅)
7662, 63, 64, 74, 75xrletrd 12942 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → (𝐹𝑦) ≤ 𝑅)
7762, 64xrlenltd 11087 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → ((𝐹𝑦) ≤ 𝑅 ↔ ¬ 𝑅 < (𝐹𝑦)))
7876, 77mpbid 231 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → ¬ 𝑅 < (𝐹𝑦))
7958, 78syldan 592 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → ¬ 𝑅 < (𝐹𝑦))
8048, 79condan 816 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) ∧ 𝑦𝑌) → 𝑦𝑥)
8180ex 414 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) → (𝑦𝑌𝑦𝑥))
8242, 81ralrimi 3237 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) → ∀𝑦𝑌 𝑦𝑥)
8337, 82syldan 592 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → ∀𝑦𝑌 𝑦𝑥)
8418adantr 482 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑌 ⊆ ℝ*)
8517, 50sselid 3924 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥 ∈ ℝ*)
86 supxrleub 13106 . . . . . . . . . . . . 13 ((𝑌 ⊆ ℝ*𝑥 ∈ ℝ*) → (sup(𝑌, ℝ*, < ) ≤ 𝑥 ↔ ∀𝑦𝑌 𝑦𝑥))
8784, 85, 86syl2anc 585 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐼𝐴)) → (sup(𝑌, ℝ*, < ) ≤ 𝑥 ↔ ∀𝑦𝑌 𝑦𝑥))
8887adantr 482 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → (sup(𝑌, ℝ*, < ) ≤ 𝑥 ↔ ∀𝑦𝑌 𝑦𝑥))
8983, 88mpbird 257 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → sup(𝑌, ℝ*, < ) ≤ 𝑥)
907, 89eqbrtrid 5116 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → 𝑆𝑥)
9121adantr 482 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → 𝑆 ∈ ℝ*)
9285adantr 482 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → 𝑥 ∈ ℝ*)
9391, 92xrlenltd 11087 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → (𝑆𝑥 ↔ ¬ 𝑥 < 𝑆))
9490, 93mpbid 231 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → ¬ 𝑥 < 𝑆)
9527, 94condan 816 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑅 < (𝐹𝑥))
9614, 95jca 513 . . . . . 6 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝑥𝐴𝑅 < (𝐹𝑥)))
971rabeq2i 3429 . . . . . 6 (𝑥𝑌 ↔ (𝑥𝐴𝑅 < (𝐹𝑥)))
9896, 97sylibr 233 . . . . 5 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥𝑌)
9998ex 414 . . . 4 (𝜑 → (𝑥 ∈ (𝐼𝐴) → 𝑥𝑌))
10012, 99ralrimi 3237 . . 3 (𝜑 → ∀𝑥 ∈ (𝐼𝐴)𝑥𝑌)
101 nfcv 2905 . . . 4 𝑥(𝐼𝐴)
102 nfrab1 3329 . . . . 5 𝑥{𝑥𝐴𝑅 < (𝐹𝑥)}
1031, 102nfcxfr 2903 . . . 4 𝑥𝑌
104101, 103dfss3f 3917 . . 3 ((𝐼𝐴) ⊆ 𝑌 ↔ ∀𝑥 ∈ (𝐼𝐴)𝑥𝑌)
105100, 104sylibr 233 . 2 (𝜑 → (𝐼𝐴) ⊆ 𝑌)
10611, 105eqssd 3943 1 (𝜑𝑌 = (𝐼𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1539  wnf 1783  wcel 2104  wral 3062  {crab 3284  cin 3891  wss 3892   class class class wbr 5081  wf 6454  cfv 6458  (class class class)co 7307  supcsup 9243  cr 10916  -∞cmnf 11053  *cxr 11054   < clt 11055  cle 11056  (,)cioo 13125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994  ax-pre-sup 10995
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-po 5514  df-so 5515  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-1st 7863  df-2nd 7864  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-sup 9245  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-ioo 13129
This theorem is referenced by:  decsmflem  44354
  Copyright terms: Public domain W3C validator