Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimdecfgtioo Structured version   Visualization version   GIF version

Theorem pimdecfgtioo 43793
Description: Given a nondecreasing function, the preimage of an unbounded below, open interval, when the supremum of the preimage does not belong to the preimage. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimdecfgtioo.x 𝑥𝜑
pimdecfgtioo.h 𝑦𝜑
pimdecfgtioo.a (𝜑𝐴 ⊆ ℝ)
pimdecfgtioo.f (𝜑𝐹:𝐴⟶ℝ*)
pimdecfgtioo.d (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
pimdecfgtioo.r (𝜑𝑅 ∈ ℝ*)
pimdecfgtioo.y 𝑌 = {𝑥𝐴𝑅 < (𝐹𝑥)}
pimdecfgtioo.c 𝑆 = sup(𝑌, ℝ*, < )
pimdecfgtioo.e (𝜑 → ¬ 𝑆𝑌)
pimdecfgtioo.i 𝐼 = (-∞(,)𝑆)
Assertion
Ref Expression
pimdecfgtioo (𝜑𝑌 = (𝐼𝐴))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦   𝑥,𝐼,𝑦   𝑥,𝑅,𝑦   𝑦,𝑌
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem pimdecfgtioo
StepHypRef Expression
1 pimdecfgtioo.y . . . . . . 7 𝑌 = {𝑥𝐴𝑅 < (𝐹𝑥)}
2 ssrab2 3969 . . . . . . 7 {𝑥𝐴𝑅 < (𝐹𝑥)} ⊆ 𝐴
31, 2eqsstri 3911 . . . . . 6 𝑌𝐴
43a1i 11 . . . . 5 (𝜑𝑌𝐴)
5 pimdecfgtioo.a . . . . 5 (𝜑𝐴 ⊆ ℝ)
64, 5sstrd 3887 . . . 4 (𝜑𝑌 ⊆ ℝ)
7 pimdecfgtioo.c . . . 4 𝑆 = sup(𝑌, ℝ*, < )
8 pimdecfgtioo.e . . . 4 (𝜑 → ¬ 𝑆𝑌)
9 pimdecfgtioo.i . . . 4 𝐼 = (-∞(,)𝑆)
106, 7, 8, 9ressioosup 42633 . . 3 (𝜑𝑌𝐼)
1110, 4ssind 4123 . 2 (𝜑𝑌 ⊆ (𝐼𝐴))
12 pimdecfgtioo.x . . . 4 𝑥𝜑
13 elinel2 4086 . . . . . . . 8 (𝑥 ∈ (𝐼𝐴) → 𝑥𝐴)
1413adantl 485 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥𝐴)
15 mnfxr 10776 . . . . . . . . . . 11 -∞ ∈ ℝ*
1615a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐼𝐴)) → -∞ ∈ ℝ*)
17 ressxr 10763 . . . . . . . . . . . . . 14 ℝ ⊆ ℝ*
186, 17sstrdi 3889 . . . . . . . . . . . . 13 (𝜑𝑌 ⊆ ℝ*)
1918supxrcld 42195 . . . . . . . . . . . 12 (𝜑 → sup(𝑌, ℝ*, < ) ∈ ℝ*)
207, 19eqeltrid 2837 . . . . . . . . . . 11 (𝜑𝑆 ∈ ℝ*)
2120adantr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑆 ∈ ℝ*)
22 elinel1 4085 . . . . . . . . . . . 12 (𝑥 ∈ (𝐼𝐴) → 𝑥𝐼)
2322, 9eleqtrdi 2843 . . . . . . . . . . 11 (𝑥 ∈ (𝐼𝐴) → 𝑥 ∈ (-∞(,)𝑆))
2423adantl 485 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥 ∈ (-∞(,)𝑆))
25 iooltub 42588 . . . . . . . . . 10 ((-∞ ∈ ℝ*𝑆 ∈ ℝ*𝑥 ∈ (-∞(,)𝑆)) → 𝑥 < 𝑆)
2616, 21, 24, 25syl3anc 1372 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥 < 𝑆)
2726adantr 484 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → 𝑥 < 𝑆)
28 simpr 488 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → ¬ 𝑅 < (𝐹𝑥))
29 pimdecfgtioo.f . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝐴⟶ℝ*)
3029adantr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝐹:𝐴⟶ℝ*)
3130, 14ffvelrnd 6862 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑥) ∈ ℝ*)
3231adantr 484 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → (𝐹𝑥) ∈ ℝ*)
33 pimdecfgtioo.r . . . . . . . . . . . . . . . 16 (𝜑𝑅 ∈ ℝ*)
3433adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑅 ∈ ℝ*)
3534adantr 484 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → 𝑅 ∈ ℝ*)
3632, 35xrlenltd 10785 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → ((𝐹𝑥) ≤ 𝑅 ↔ ¬ 𝑅 < (𝐹𝑥)))
3728, 36mpbird 260 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → (𝐹𝑥) ≤ 𝑅)
38 pimdecfgtioo.h . . . . . . . . . . . . . . 15 𝑦𝜑
39 nfv 1921 . . . . . . . . . . . . . . 15 𝑦 𝑥 ∈ (𝐼𝐴)
4038, 39nfan 1906 . . . . . . . . . . . . . 14 𝑦(𝜑𝑥 ∈ (𝐼𝐴))
41 nfv 1921 . . . . . . . . . . . . . 14 𝑦(𝐹𝑥) ≤ 𝑅
4240, 41nfan 1906 . . . . . . . . . . . . 13 𝑦((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅)
43 fveq2 6674 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
4443breq2d 5042 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (𝑅 < (𝐹𝑥) ↔ 𝑅 < (𝐹𝑦)))
4544, 1elrab2 3591 . . . . . . . . . . . . . . . . . 18 (𝑦𝑌 ↔ (𝑦𝐴𝑅 < (𝐹𝑦)))
4645biimpi 219 . . . . . . . . . . . . . . . . 17 (𝑦𝑌 → (𝑦𝐴𝑅 < (𝐹𝑦)))
4746simprd 499 . . . . . . . . . . . . . . . 16 (𝑦𝑌𝑅 < (𝐹𝑦))
4847ad2antlr 727 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → 𝑅 < (𝐹𝑦))
495adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝐴 ⊆ ℝ)
5049, 14sseldd 3878 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥 ∈ ℝ)
5150ad2antrr 726 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → 𝑥 ∈ ℝ)
526sselda 3877 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦𝑌) → 𝑦 ∈ ℝ)
5352ad4ant13 751 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → 𝑦 ∈ ℝ)
54 simpr 488 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → ¬ 𝑦𝑥)
5551, 53ltnled 10865 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
5654, 55mpbird 260 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → 𝑥 < 𝑦)
5751, 53, 56ltled 10866 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → 𝑥𝑦)
5857adantllr 719 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → 𝑥𝑦)
5929adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦𝑌) → 𝐹:𝐴⟶ℝ*)
604sselda 3877 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦𝑌) → 𝑦𝐴)
6159, 60ffvelrnd 6862 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦𝑌) → (𝐹𝑦) ∈ ℝ*)
6261ad5ant14 758 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → (𝐹𝑦) ∈ ℝ*)
6331ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → (𝐹𝑥) ∈ ℝ*)
6434ad3antrrr 730 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → 𝑅 ∈ ℝ*)
65 simpr 488 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → 𝑥𝑦)
66 pimdecfgtioo.d . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
67 rspa 3119 . . . . . . . . . . . . . . . . . . . . . . 23 ((∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)) ∧ 𝑥𝐴) → ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
6866, 13, 67syl2an 599 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (𝐼𝐴)) → ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
6968ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
7060ad4ant13 751 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → 𝑦𝐴)
71 rspa 3119 . . . . . . . . . . . . . . . . . . . . 21 ((∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)) ∧ 𝑦𝐴) → (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
7269, 70, 71syl2anc 587 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
7365, 72mpd 15 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → (𝐹𝑦) ≤ (𝐹𝑥))
7473adantllr 719 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → (𝐹𝑦) ≤ (𝐹𝑥))
75 simpllr 776 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → (𝐹𝑥) ≤ 𝑅)
7662, 63, 64, 74, 75xrletrd 12638 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → (𝐹𝑦) ≤ 𝑅)
7762, 64xrlenltd 10785 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → ((𝐹𝑦) ≤ 𝑅 ↔ ¬ 𝑅 < (𝐹𝑦)))
7876, 77mpbid 235 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → ¬ 𝑅 < (𝐹𝑦))
7958, 78syldan 594 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → ¬ 𝑅 < (𝐹𝑦))
8048, 79condan 818 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) ∧ 𝑦𝑌) → 𝑦𝑥)
8180ex 416 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) → (𝑦𝑌𝑦𝑥))
8242, 81ralrimi 3128 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) → ∀𝑦𝑌 𝑦𝑥)
8337, 82syldan 594 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → ∀𝑦𝑌 𝑦𝑥)
8418adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑌 ⊆ ℝ*)
8517, 50sseldi 3875 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥 ∈ ℝ*)
86 supxrleub 12802 . . . . . . . . . . . . 13 ((𝑌 ⊆ ℝ*𝑥 ∈ ℝ*) → (sup(𝑌, ℝ*, < ) ≤ 𝑥 ↔ ∀𝑦𝑌 𝑦𝑥))
8784, 85, 86syl2anc 587 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐼𝐴)) → (sup(𝑌, ℝ*, < ) ≤ 𝑥 ↔ ∀𝑦𝑌 𝑦𝑥))
8887adantr 484 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → (sup(𝑌, ℝ*, < ) ≤ 𝑥 ↔ ∀𝑦𝑌 𝑦𝑥))
8983, 88mpbird 260 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → sup(𝑌, ℝ*, < ) ≤ 𝑥)
907, 89eqbrtrid 5065 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → 𝑆𝑥)
9121adantr 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → 𝑆 ∈ ℝ*)
9285adantr 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → 𝑥 ∈ ℝ*)
9391, 92xrlenltd 10785 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → (𝑆𝑥 ↔ ¬ 𝑥 < 𝑆))
9490, 93mpbid 235 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → ¬ 𝑥 < 𝑆)
9527, 94condan 818 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑅 < (𝐹𝑥))
9614, 95jca 515 . . . . . 6 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝑥𝐴𝑅 < (𝐹𝑥)))
971rabeq2i 3389 . . . . . 6 (𝑥𝑌 ↔ (𝑥𝐴𝑅 < (𝐹𝑥)))
9896, 97sylibr 237 . . . . 5 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥𝑌)
9998ex 416 . . . 4 (𝜑 → (𝑥 ∈ (𝐼𝐴) → 𝑥𝑌))
10012, 99ralrimi 3128 . . 3 (𝜑 → ∀𝑥 ∈ (𝐼𝐴)𝑥𝑌)
101 nfcv 2899 . . . 4 𝑥(𝐼𝐴)
102 nfrab1 3287 . . . . 5 𝑥{𝑥𝐴𝑅 < (𝐹𝑥)}
1031, 102nfcxfr 2897 . . . 4 𝑥𝑌
104101, 103dfss3f 3868 . . 3 ((𝐼𝐴) ⊆ 𝑌 ↔ ∀𝑥 ∈ (𝐼𝐴)𝑥𝑌)
105100, 104sylibr 237 . 2 (𝜑 → (𝐼𝐴) ⊆ 𝑌)
10611, 105eqssd 3894 1 (𝜑𝑌 = (𝐼𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1542  wnf 1790  wcel 2114  wral 3053  {crab 3057  cin 3842  wss 3843   class class class wbr 5030  wf 6335  cfv 6339  (class class class)co 7170  supcsup 8977  cr 10614  -∞cmnf 10751  *cxr 10752   < clt 10753  cle 10754  (,)cioo 12821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692  ax-pre-sup 10693
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5429  df-po 5442  df-so 5443  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-1st 7714  df-2nd 7715  df-er 8320  df-en 8556  df-dom 8557  df-sdom 8558  df-sup 8979  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-ioo 12825
This theorem is referenced by:  decsmflem  43840
  Copyright terms: Public domain W3C validator