Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimdecfgtioo Structured version   Visualization version   GIF version

Theorem pimdecfgtioo 41567
Description: Given a nondecreasing function, the preimage of an unbounded below, open interval, when the supremum of the preimage does not belong to the preimage. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimdecfgtioo.x 𝑥𝜑
pimdecfgtioo.h 𝑦𝜑
pimdecfgtioo.a (𝜑𝐴 ⊆ ℝ)
pimdecfgtioo.f (𝜑𝐹:𝐴⟶ℝ*)
pimdecfgtioo.d (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
pimdecfgtioo.r (𝜑𝑅 ∈ ℝ*)
pimdecfgtioo.y 𝑌 = {𝑥𝐴𝑅 < (𝐹𝑥)}
pimdecfgtioo.c 𝑆 = sup(𝑌, ℝ*, < )
pimdecfgtioo.e (𝜑 → ¬ 𝑆𝑌)
pimdecfgtioo.i 𝐼 = (-∞(,)𝑆)
Assertion
Ref Expression
pimdecfgtioo (𝜑𝑌 = (𝐼𝐴))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦   𝑥,𝐼,𝑦   𝑥,𝑅,𝑦   𝑦,𝑌
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem pimdecfgtioo
StepHypRef Expression
1 pimdecfgtioo.y . . . . . . 7 𝑌 = {𝑥𝐴𝑅 < (𝐹𝑥)}
2 ssrab2 3847 . . . . . . 7 {𝑥𝐴𝑅 < (𝐹𝑥)} ⊆ 𝐴
31, 2eqsstri 3795 . . . . . 6 𝑌𝐴
43a1i 11 . . . . 5 (𝜑𝑌𝐴)
5 pimdecfgtioo.a . . . . 5 (𝜑𝐴 ⊆ ℝ)
64, 5sstrd 3771 . . . 4 (𝜑𝑌 ⊆ ℝ)
7 pimdecfgtioo.c . . . 4 𝑆 = sup(𝑌, ℝ*, < )
8 pimdecfgtioo.e . . . 4 (𝜑 → ¬ 𝑆𝑌)
9 pimdecfgtioo.i . . . 4 𝐼 = (-∞(,)𝑆)
106, 7, 8, 9ressioosup 40420 . . 3 (𝜑𝑌𝐼)
1110, 4ssind 3996 . 2 (𝜑𝑌 ⊆ (𝐼𝐴))
12 pimdecfgtioo.x . . . 4 𝑥𝜑
13 elinel2 3962 . . . . . . . 8 (𝑥 ∈ (𝐼𝐴) → 𝑥𝐴)
1413adantl 473 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥𝐴)
15 mnfxr 10350 . . . . . . . . . . 11 -∞ ∈ ℝ*
1615a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐼𝐴)) → -∞ ∈ ℝ*)
17 ressxr 10337 . . . . . . . . . . . . . 14 ℝ ⊆ ℝ*
186, 17syl6ss 3773 . . . . . . . . . . . . 13 (𝜑𝑌 ⊆ ℝ*)
1918supxrcld 39940 . . . . . . . . . . . 12 (𝜑 → sup(𝑌, ℝ*, < ) ∈ ℝ*)
207, 19syl5eqel 2848 . . . . . . . . . . 11 (𝜑𝑆 ∈ ℝ*)
2120adantr 472 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑆 ∈ ℝ*)
22 elinel1 3961 . . . . . . . . . . . 12 (𝑥 ∈ (𝐼𝐴) → 𝑥𝐼)
2322, 9syl6eleq 2854 . . . . . . . . . . 11 (𝑥 ∈ (𝐼𝐴) → 𝑥 ∈ (-∞(,)𝑆))
2423adantl 473 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥 ∈ (-∞(,)𝑆))
25 iooltub 40375 . . . . . . . . . 10 ((-∞ ∈ ℝ*𝑆 ∈ ℝ*𝑥 ∈ (-∞(,)𝑆)) → 𝑥 < 𝑆)
2616, 21, 24, 25syl3anc 1490 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥 < 𝑆)
2726adantr 472 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → 𝑥 < 𝑆)
28 simpr 477 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → ¬ 𝑅 < (𝐹𝑥))
29 pimdecfgtioo.f . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝐴⟶ℝ*)
3029adantr 472 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝐹:𝐴⟶ℝ*)
3130, 14ffvelrnd 6550 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑥) ∈ ℝ*)
3231adantr 472 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → (𝐹𝑥) ∈ ℝ*)
33 pimdecfgtioo.r . . . . . . . . . . . . . . . 16 (𝜑𝑅 ∈ ℝ*)
3433adantr 472 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑅 ∈ ℝ*)
3534adantr 472 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → 𝑅 ∈ ℝ*)
3632, 35xrlenltd 10358 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → ((𝐹𝑥) ≤ 𝑅 ↔ ¬ 𝑅 < (𝐹𝑥)))
3728, 36mpbird 248 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → (𝐹𝑥) ≤ 𝑅)
38 pimdecfgtioo.h . . . . . . . . . . . . . . 15 𝑦𝜑
39 nfv 2009 . . . . . . . . . . . . . . 15 𝑦 𝑥 ∈ (𝐼𝐴)
4038, 39nfan 1998 . . . . . . . . . . . . . 14 𝑦(𝜑𝑥 ∈ (𝐼𝐴))
41 nfv 2009 . . . . . . . . . . . . . 14 𝑦(𝐹𝑥) ≤ 𝑅
4240, 41nfan 1998 . . . . . . . . . . . . 13 𝑦((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅)
43 fveq2 6375 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
4443breq2d 4821 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑦 → (𝑅 < (𝐹𝑥) ↔ 𝑅 < (𝐹𝑦)))
4544, 1elrab2 3523 . . . . . . . . . . . . . . . . . 18 (𝑦𝑌 ↔ (𝑦𝐴𝑅 < (𝐹𝑦)))
4645biimpi 207 . . . . . . . . . . . . . . . . 17 (𝑦𝑌 → (𝑦𝐴𝑅 < (𝐹𝑦)))
4746simprd 489 . . . . . . . . . . . . . . . 16 (𝑦𝑌𝑅 < (𝐹𝑦))
4847ad2antlr 718 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → 𝑅 < (𝐹𝑦))
495adantr 472 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝐴 ⊆ ℝ)
5049, 14sseldd 3762 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥 ∈ ℝ)
5150ad2antrr 717 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → 𝑥 ∈ ℝ)
526sselda 3761 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦𝑌) → 𝑦 ∈ ℝ)
5352ad4ant13 757 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → 𝑦 ∈ ℝ)
54 simpr 477 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → ¬ 𝑦𝑥)
5551, 53ltnled 10438 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
5654, 55mpbird 248 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → 𝑥 < 𝑦)
5751, 53, 56ltled 10439 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → 𝑥𝑦)
5857adantllr 710 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → 𝑥𝑦)
5929adantr 472 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦𝑌) → 𝐹:𝐴⟶ℝ*)
604sselda 3761 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦𝑌) → 𝑦𝐴)
6159, 60ffvelrnd 6550 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦𝑌) → (𝐹𝑦) ∈ ℝ*)
6261ad5ant14 769 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → (𝐹𝑦) ∈ ℝ*)
6331ad3antrrr 721 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → (𝐹𝑥) ∈ ℝ*)
6434ad3antrrr 721 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → 𝑅 ∈ ℝ*)
65 simpr 477 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → 𝑥𝑦)
66 pimdecfgtioo.d . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
67 rspa 3077 . . . . . . . . . . . . . . . . . . . . . . 23 ((∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)) ∧ 𝑥𝐴) → ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
6866, 13, 67syl2an 589 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 ∈ (𝐼𝐴)) → ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
6968ad2antrr 717 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → ∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
7060ad4ant13 757 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → 𝑦𝐴)
71 rspa 3077 . . . . . . . . . . . . . . . . . . . . 21 ((∀𝑦𝐴 (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)) ∧ 𝑦𝐴) → (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
7269, 70, 71syl2anc 579 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → (𝑥𝑦 → (𝐹𝑦) ≤ (𝐹𝑥)))
7365, 72mpd 15 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → (𝐹𝑦) ≤ (𝐹𝑥))
7473adantllr 710 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → (𝐹𝑦) ≤ (𝐹𝑥))
75 simpllr 793 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → (𝐹𝑥) ≤ 𝑅)
7662, 63, 64, 74, 75xrletrd 12195 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → (𝐹𝑦) ≤ 𝑅)
7762, 64xrlenltd 10358 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → ((𝐹𝑦) ≤ 𝑅 ↔ ¬ 𝑅 < (𝐹𝑦)))
7876, 77mpbid 223 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → ¬ 𝑅 < (𝐹𝑦))
7958, 78syldan 585 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → ¬ 𝑅 < (𝐹𝑦))
8048, 79condan 852 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) ∧ 𝑦𝑌) → 𝑦𝑥)
8180ex 401 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) → (𝑦𝑌𝑦𝑥))
8242, 81ralrimi 3104 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ (𝐹𝑥) ≤ 𝑅) → ∀𝑦𝑌 𝑦𝑥)
8337, 82syldan 585 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → ∀𝑦𝑌 𝑦𝑥)
8418adantr 472 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑌 ⊆ ℝ*)
8517, 50sseldi 3759 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥 ∈ ℝ*)
86 supxrleub 12358 . . . . . . . . . . . . 13 ((𝑌 ⊆ ℝ*𝑥 ∈ ℝ*) → (sup(𝑌, ℝ*, < ) ≤ 𝑥 ↔ ∀𝑦𝑌 𝑦𝑥))
8784, 85, 86syl2anc 579 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐼𝐴)) → (sup(𝑌, ℝ*, < ) ≤ 𝑥 ↔ ∀𝑦𝑌 𝑦𝑥))
8887adantr 472 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → (sup(𝑌, ℝ*, < ) ≤ 𝑥 ↔ ∀𝑦𝑌 𝑦𝑥))
8983, 88mpbird 248 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → sup(𝑌, ℝ*, < ) ≤ 𝑥)
907, 89syl5eqbr 4844 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → 𝑆𝑥)
9121adantr 472 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → 𝑆 ∈ ℝ*)
9285adantr 472 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → 𝑥 ∈ ℝ*)
9391, 92xrlenltd 10358 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → (𝑆𝑥 ↔ ¬ 𝑥 < 𝑆))
9490, 93mpbid 223 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ 𝑅 < (𝐹𝑥)) → ¬ 𝑥 < 𝑆)
9527, 94condan 852 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑅 < (𝐹𝑥))
9614, 95jca 507 . . . . . 6 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝑥𝐴𝑅 < (𝐹𝑥)))
971rabeq2i 3346 . . . . . 6 (𝑥𝑌 ↔ (𝑥𝐴𝑅 < (𝐹𝑥)))
9896, 97sylibr 225 . . . . 5 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥𝑌)
9998ex 401 . . . 4 (𝜑 → (𝑥 ∈ (𝐼𝐴) → 𝑥𝑌))
10012, 99ralrimi 3104 . . 3 (𝜑 → ∀𝑥 ∈ (𝐼𝐴)𝑥𝑌)
101 nfcv 2907 . . . 4 𝑥(𝐼𝐴)
102 nfrab1 3270 . . . . 5 𝑥{𝑥𝐴𝑅 < (𝐹𝑥)}
1031, 102nfcxfr 2905 . . . 4 𝑥𝑌
104101, 103dfss3f 3753 . . 3 ((𝐼𝐴) ⊆ 𝑌 ↔ ∀𝑥 ∈ (𝐼𝐴)𝑥𝑌)
105100, 104sylibr 225 . 2 (𝜑 → (𝐼𝐴) ⊆ 𝑌)
10611, 105eqssd 3778 1 (𝜑𝑌 = (𝐼𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1652  wnf 1878  wcel 2155  wral 3055  {crab 3059  cin 3731  wss 3732   class class class wbr 4809  wf 6064  cfv 6068  (class class class)co 6842  supcsup 8553  cr 10188  -∞cmnf 10326  *cxr 10327   < clt 10328  cle 10329  (,)cioo 12377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-po 5198  df-so 5199  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-1st 7366  df-2nd 7367  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-sup 8555  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-ioo 12381
This theorem is referenced by:  decsmflem  41614
  Copyright terms: Public domain W3C validator