MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmatinvcl Structured version   Visualization version   GIF version

Theorem cpmatinvcl 22744
Description: The set of all constant polynomial matrices over a ring 𝑅 is closed under inversion. (Contributed by AV, 17-Nov-2019.) (Proof shortened by AV, 28-Nov-2019.)
Hypotheses
Ref Expression
cpmatsrngpmat.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
cpmatsrngpmat.p 𝑃 = (Poly1𝑅)
cpmatsrngpmat.c 𝐶 = (𝑁 Mat 𝑃)
Assertion
Ref Expression
cpmatinvcl ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝑆 ((invg𝐶)‘𝑥) ∈ 𝑆)
Distinct variable groups:   𝑥,𝑁   𝑥,𝑅
Allowed substitution hints:   𝐶(𝑥)   𝑃(𝑥)   𝑆(𝑥)

Proof of Theorem cpmatinvcl
Dummy variables 𝑖 𝑗 𝑎 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cpmatsrngpmat.s . . . . . 6 𝑆 = (𝑁 ConstPolyMat 𝑅)
2 cpmatsrngpmat.p . . . . . 6 𝑃 = (Poly1𝑅)
3 cpmatsrngpmat.c . . . . . 6 𝐶 = (𝑁 Mat 𝑃)
4 eqid 2740 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
5 eqid 2740 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
6 eqid 2740 . . . . . 6 (algSc‘𝑃) = (algSc‘𝑃)
71, 2, 3, 4, 5, 6cpmatelimp2 22741 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥𝑆 → (𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎))))
82ply1sca 22275 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
98adantl 481 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝑃))
109adantr 480 . . . . . . . . . . . . . 14 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎 ∈ (Base‘𝑅)) → 𝑅 = (Scalar‘𝑃))
1110eqcomd 2746 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎 ∈ (Base‘𝑅)) → (Scalar‘𝑃) = 𝑅)
1211fveq2d 6924 . . . . . . . . . . . 12 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎 ∈ (Base‘𝑅)) → (invg‘(Scalar‘𝑃)) = (invg𝑅))
1312fveq1d 6922 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎 ∈ (Base‘𝑅)) → ((invg‘(Scalar‘𝑃))‘𝑎) = ((invg𝑅)‘𝑎))
14 ringgrp 20265 . . . . . . . . . . . . 13 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
1514adantl 481 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Grp)
16 eqid 2740 . . . . . . . . . . . . 13 (invg𝑅) = (invg𝑅)
175, 16grpinvcl 19027 . . . . . . . . . . . 12 ((𝑅 ∈ Grp ∧ 𝑎 ∈ (Base‘𝑅)) → ((invg𝑅)‘𝑎) ∈ (Base‘𝑅))
1815, 17sylan 579 . . . . . . . . . . 11 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎 ∈ (Base‘𝑅)) → ((invg𝑅)‘𝑎) ∈ (Base‘𝑅))
1913, 18eqeltrd 2844 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑎 ∈ (Base‘𝑅)) → ((invg‘(Scalar‘𝑃))‘𝑎) ∈ (Base‘𝑅))
2019ad5ant14 757 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → ((invg‘(Scalar‘𝑃))‘𝑎) ∈ (Base‘𝑅))
21 fveq2 6920 . . . . . . . . . . 11 (𝑐 = ((invg‘(Scalar‘𝑃))‘𝑎) → ((algSc‘𝑃)‘𝑐) = ((algSc‘𝑃)‘((invg‘(Scalar‘𝑃))‘𝑎)))
2221eqeq2d 2751 . . . . . . . . . 10 (𝑐 = ((invg‘(Scalar‘𝑃))‘𝑎) → ((𝑖((invg𝐶)‘𝑥)𝑗) = ((algSc‘𝑃)‘𝑐) ↔ (𝑖((invg𝐶)‘𝑥)𝑗) = ((algSc‘𝑃)‘((invg‘(Scalar‘𝑃))‘𝑎))))
2322adantl 481 . . . . . . . . 9 (((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) ∧ 𝑐 = ((invg‘(Scalar‘𝑃))‘𝑎)) → ((𝑖((invg𝐶)‘𝑥)𝑗) = ((algSc‘𝑃)‘𝑐) ↔ (𝑖((invg𝐶)‘𝑥)𝑗) = ((algSc‘𝑃)‘((invg‘(Scalar‘𝑃))‘𝑎))))
242ply1ring 22270 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
2524ad3antlr 730 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑃 ∈ Ring)
26 simplr 768 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑥 ∈ (Base‘𝐶))
27 simpr 484 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑁𝑗𝑁))
2825, 26, 273jca 1128 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑃 ∈ Ring ∧ 𝑥 ∈ (Base‘𝐶) ∧ (𝑖𝑁𝑗𝑁)))
2928ad2antrr 725 . . . . . . . . . . 11 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → (𝑃 ∈ Ring ∧ 𝑥 ∈ (Base‘𝐶) ∧ (𝑖𝑁𝑗𝑁)))
30 eqid 2740 . . . . . . . . . . . 12 (invg𝑃) = (invg𝑃)
31 eqid 2740 . . . . . . . . . . . 12 (invg𝐶) = (invg𝐶)
323, 4, 30, 31matinvgcell 22462 . . . . . . . . . . 11 ((𝑃 ∈ Ring ∧ 𝑥 ∈ (Base‘𝐶) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖((invg𝐶)‘𝑥)𝑗) = ((invg𝑃)‘(𝑖𝑥𝑗)))
3329, 32syl 17 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → (𝑖((invg𝐶)‘𝑥)𝑗) = ((invg𝑃)‘(𝑖𝑥𝑗)))
34 fveq2 6920 . . . . . . . . . . 11 ((𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → ((invg𝑃)‘(𝑖𝑥𝑗)) = ((invg𝑃)‘((algSc‘𝑃)‘𝑎)))
35 eqid 2740 . . . . . . . . . . . . . 14 (Scalar‘𝑃) = (Scalar‘𝑃)
3625adantr 480 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑎 ∈ (Base‘𝑅)) → 𝑃 ∈ Ring)
372ply1lmod 22274 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
3837ad3antlr 730 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)) → 𝑃 ∈ LMod)
3938adantr 480 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑎 ∈ (Base‘𝑅)) → 𝑃 ∈ LMod)
406, 35, 36, 39asclghm 21926 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑎 ∈ (Base‘𝑅)) → (algSc‘𝑃) ∈ ((Scalar‘𝑃) GrpHom 𝑃))
419fveq2d 6924 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
4241eleq2d 2830 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑎 ∈ (Base‘𝑅) ↔ 𝑎 ∈ (Base‘(Scalar‘𝑃))))
4342biimpd 229 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑎 ∈ (Base‘𝑅) → 𝑎 ∈ (Base‘(Scalar‘𝑃))))
4443ad2antrr 725 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)) → (𝑎 ∈ (Base‘𝑅) → 𝑎 ∈ (Base‘(Scalar‘𝑃))))
4544imp 406 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑎 ∈ (Base‘𝑅)) → 𝑎 ∈ (Base‘(Scalar‘𝑃)))
46 eqid 2740 . . . . . . . . . . . . . 14 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
47 eqid 2740 . . . . . . . . . . . . . 14 (invg‘(Scalar‘𝑃)) = (invg‘(Scalar‘𝑃))
4846, 47, 30ghminv 19263 . . . . . . . . . . . . 13 (((algSc‘𝑃) ∈ ((Scalar‘𝑃) GrpHom 𝑃) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑃))) → ((algSc‘𝑃)‘((invg‘(Scalar‘𝑃))‘𝑎)) = ((invg𝑃)‘((algSc‘𝑃)‘𝑎)))
4940, 45, 48syl2anc 583 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑎 ∈ (Base‘𝑅)) → ((algSc‘𝑃)‘((invg‘(Scalar‘𝑃))‘𝑎)) = ((invg𝑃)‘((algSc‘𝑃)‘𝑎)))
5049eqcomd 2746 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑎 ∈ (Base‘𝑅)) → ((invg𝑃)‘((algSc‘𝑃)‘𝑎)) = ((algSc‘𝑃)‘((invg‘(Scalar‘𝑃))‘𝑎)))
5134, 50sylan9eqr 2802 . . . . . . . . . 10 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → ((invg𝑃)‘(𝑖𝑥𝑗)) = ((algSc‘𝑃)‘((invg‘(Scalar‘𝑃))‘𝑎)))
5233, 51eqtrd 2780 . . . . . . . . 9 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → (𝑖((invg𝐶)‘𝑥)𝑗) = ((algSc‘𝑃)‘((invg‘(Scalar‘𝑃))‘𝑎)))
5320, 23, 52rspcedvd 3637 . . . . . . . 8 ((((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ (𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → ∃𝑐 ∈ (Base‘𝑅)(𝑖((invg𝐶)‘𝑥)𝑗) = ((algSc‘𝑃)‘𝑐))
5453rexlimdva2 3163 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) ∧ (𝑖𝑁𝑗𝑁)) → (∃𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → ∃𝑐 ∈ (Base‘𝑅)(𝑖((invg𝐶)‘𝑥)𝑗) = ((algSc‘𝑃)‘𝑐)))
5554ralimdvva 3212 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥 ∈ (Base‘𝐶)) → (∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖((invg𝐶)‘𝑥)𝑗) = ((algSc‘𝑃)‘𝑐)))
5655expimpd 453 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑥 ∈ (Base‘𝐶) ∧ ∀𝑖𝑁𝑗𝑁𝑎 ∈ (Base‘𝑅)(𝑖𝑥𝑗) = ((algSc‘𝑃)‘𝑎)) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖((invg𝐶)‘𝑥)𝑗) = ((algSc‘𝑃)‘𝑐)))
577, 56syld 47 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑥𝑆 → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖((invg𝐶)‘𝑥)𝑗) = ((algSc‘𝑃)‘𝑐)))
5857imp 406 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) → ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖((invg𝐶)‘𝑥)𝑗) = ((algSc‘𝑃)‘𝑐))
59 simpll 766 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) → 𝑁 ∈ Fin)
60 simplr 768 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) → 𝑅 ∈ Ring)
612, 3pmatring 22719 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Ring)
62 ringgrp 20265 . . . . . . 7 (𝐶 ∈ Ring → 𝐶 ∈ Grp)
6361, 62syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ Grp)
6463adantr 480 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) → 𝐶 ∈ Grp)
651, 2, 3, 4cpmatpmat 22737 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑥𝑆) → 𝑥 ∈ (Base‘𝐶))
66653expa 1118 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) → 𝑥 ∈ (Base‘𝐶))
674, 31grpinvcl 19027 . . . . 5 ((𝐶 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐶)) → ((invg𝐶)‘𝑥) ∈ (Base‘𝐶))
6864, 66, 67syl2anc 583 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) → ((invg𝐶)‘𝑥) ∈ (Base‘𝐶))
691, 2, 3, 4, 5, 6cpmatel2 22740 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ((invg𝐶)‘𝑥) ∈ (Base‘𝐶)) → (((invg𝐶)‘𝑥) ∈ 𝑆 ↔ ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖((invg𝐶)‘𝑥)𝑗) = ((algSc‘𝑃)‘𝑐)))
7059, 60, 68, 69syl3anc 1371 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) → (((invg𝐶)‘𝑥) ∈ 𝑆 ↔ ∀𝑖𝑁𝑗𝑁𝑐 ∈ (Base‘𝑅)(𝑖((invg𝐶)‘𝑥)𝑗) = ((algSc‘𝑃)‘𝑐)))
7158, 70mpbird 257 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑥𝑆) → ((invg𝐶)‘𝑥) ∈ 𝑆)
7271ralrimiva 3152 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑥𝑆 ((invg𝐶)‘𝑥) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  cfv 6573  (class class class)co 7448  Fincfn 9003  Basecbs 17258  Scalarcsca 17314  Grpcgrp 18973  invgcminusg 18974   GrpHom cghm 19252  Ringcrg 20260  LModclmod 20880  algSccascl 21895  Poly1cpl1 22199   Mat cmat 22432   ConstPolyMat ccpmat 22730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-srg 20214  df-ring 20262  df-subrng 20572  df-subrg 20597  df-lmod 20882  df-lss 20953  df-sra 21195  df-rgmod 21196  df-dsmm 21775  df-frlm 21790  df-ascl 21898  df-psr 21952  df-mvr 21953  df-mpl 21954  df-opsr 21956  df-psr1 22202  df-vr1 22203  df-ply1 22204  df-coe1 22205  df-mamu 22416  df-mat 22433  df-cpmat 22733
This theorem is referenced by:  cpmatsubgpmat  22747
  Copyright terms: Public domain W3C validator