Step | Hyp | Ref
| Expression |
1 | | cpmatsrngpmat.s |
. . . . . 6
β’ π = (π ConstPolyMat π
) |
2 | | cpmatsrngpmat.p |
. . . . . 6
β’ π = (Poly1βπ
) |
3 | | cpmatsrngpmat.c |
. . . . . 6
β’ πΆ = (π Mat π) |
4 | | eqid 2732 |
. . . . . 6
β’
(BaseβπΆ) =
(BaseβπΆ) |
5 | | eqid 2732 |
. . . . . 6
β’
(Baseβπ
) =
(Baseβπ
) |
6 | | eqid 2732 |
. . . . . 6
β’
(algScβπ) =
(algScβπ) |
7 | 1, 2, 3, 4, 5, 6 | cpmatelimp2 22207 |
. . . . 5
β’ ((π β Fin β§ π
β Ring) β (π₯ β π β (π₯ β (BaseβπΆ) β§ βπ β π βπ β π βπ β (Baseβπ
)(ππ₯π) = ((algScβπ)βπ)))) |
8 | 2 | ply1sca 21766 |
. . . . . . . . . . . . . . . 16
β’ (π
β Ring β π
= (Scalarβπ)) |
9 | 8 | adantl 482 |
. . . . . . . . . . . . . . 15
β’ ((π β Fin β§ π
β Ring) β π
= (Scalarβπ)) |
10 | 9 | adantr 481 |
. . . . . . . . . . . . . 14
β’ (((π β Fin β§ π
β Ring) β§ π β (Baseβπ
)) β π
= (Scalarβπ)) |
11 | 10 | eqcomd 2738 |
. . . . . . . . . . . . 13
β’ (((π β Fin β§ π
β Ring) β§ π β (Baseβπ
)) β (Scalarβπ) = π
) |
12 | 11 | fveq2d 6892 |
. . . . . . . . . . . 12
β’ (((π β Fin β§ π
β Ring) β§ π β (Baseβπ
)) β
(invgβ(Scalarβπ)) = (invgβπ
)) |
13 | 12 | fveq1d 6890 |
. . . . . . . . . . 11
β’ (((π β Fin β§ π
β Ring) β§ π β (Baseβπ
)) β
((invgβ(Scalarβπ))βπ) = ((invgβπ
)βπ)) |
14 | | ringgrp 20054 |
. . . . . . . . . . . . 13
β’ (π
β Ring β π
β Grp) |
15 | 14 | adantl 482 |
. . . . . . . . . . . 12
β’ ((π β Fin β§ π
β Ring) β π
β Grp) |
16 | | eqid 2732 |
. . . . . . . . . . . . 13
β’
(invgβπ
) = (invgβπ
) |
17 | 5, 16 | grpinvcl 18868 |
. . . . . . . . . . . 12
β’ ((π
β Grp β§ π β (Baseβπ
)) β
((invgβπ
)βπ) β (Baseβπ
)) |
18 | 15, 17 | sylan 580 |
. . . . . . . . . . 11
β’ (((π β Fin β§ π
β Ring) β§ π β (Baseβπ
)) β
((invgβπ
)βπ) β (Baseβπ
)) |
19 | 13, 18 | eqeltrd 2833 |
. . . . . . . . . 10
β’ (((π β Fin β§ π
β Ring) β§ π β (Baseβπ
)) β
((invgβ(Scalarβπ))βπ) β (Baseβπ
)) |
20 | 19 | ad5ant14 756 |
. . . . . . . . 9
β’
((((((π β Fin
β§ π
β Ring) β§
π₯ β (BaseβπΆ)) β§ (π β π β§ π β π)) β§ π β (Baseβπ
)) β§ (ππ₯π) = ((algScβπ)βπ)) β
((invgβ(Scalarβπ))βπ) β (Baseβπ
)) |
21 | | fveq2 6888 |
. . . . . . . . . . 11
β’ (π =
((invgβ(Scalarβπ))βπ) β ((algScβπ)βπ) = ((algScβπ)β((invgβ(Scalarβπ))βπ))) |
22 | 21 | eqeq2d 2743 |
. . . . . . . . . 10
β’ (π =
((invgβ(Scalarβπ))βπ) β ((π((invgβπΆ)βπ₯)π) = ((algScβπ)βπ) β (π((invgβπΆ)βπ₯)π) = ((algScβπ)β((invgβ(Scalarβπ))βπ)))) |
23 | 22 | adantl 482 |
. . . . . . . . 9
β’
(((((((π β Fin
β§ π
β Ring) β§
π₯ β (BaseβπΆ)) β§ (π β π β§ π β π)) β§ π β (Baseβπ
)) β§ (ππ₯π) = ((algScβπ)βπ)) β§ π =
((invgβ(Scalarβπ))βπ)) β ((π((invgβπΆ)βπ₯)π) = ((algScβπ)βπ) β (π((invgβπΆ)βπ₯)π) = ((algScβπ)β((invgβ(Scalarβπ))βπ)))) |
24 | 2 | ply1ring 21761 |
. . . . . . . . . . . . . 14
β’ (π
β Ring β π β Ring) |
25 | 24 | ad3antlr 729 |
. . . . . . . . . . . . 13
β’ ((((π β Fin β§ π
β Ring) β§ π₯ β (BaseβπΆ)) β§ (π β π β§ π β π)) β π β Ring) |
26 | | simplr 767 |
. . . . . . . . . . . . 13
β’ ((((π β Fin β§ π
β Ring) β§ π₯ β (BaseβπΆ)) β§ (π β π β§ π β π)) β π₯ β (BaseβπΆ)) |
27 | | simpr 485 |
. . . . . . . . . . . . 13
β’ ((((π β Fin β§ π
β Ring) β§ π₯ β (BaseβπΆ)) β§ (π β π β§ π β π)) β (π β π β§ π β π)) |
28 | 25, 26, 27 | 3jca 1128 |
. . . . . . . . . . . 12
β’ ((((π β Fin β§ π
β Ring) β§ π₯ β (BaseβπΆ)) β§ (π β π β§ π β π)) β (π β Ring β§ π₯ β (BaseβπΆ) β§ (π β π β§ π β π))) |
29 | 28 | ad2antrr 724 |
. . . . . . . . . . 11
β’
((((((π β Fin
β§ π
β Ring) β§
π₯ β (BaseβπΆ)) β§ (π β π β§ π β π)) β§ π β (Baseβπ
)) β§ (ππ₯π) = ((algScβπ)βπ)) β (π β Ring β§ π₯ β (BaseβπΆ) β§ (π β π β§ π β π))) |
30 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(invgβπ) = (invgβπ) |
31 | | eqid 2732 |
. . . . . . . . . . . 12
β’
(invgβπΆ) = (invgβπΆ) |
32 | 3, 4, 30, 31 | matinvgcell 21928 |
. . . . . . . . . . 11
β’ ((π β Ring β§ π₯ β (BaseβπΆ) β§ (π β π β§ π β π)) β (π((invgβπΆ)βπ₯)π) = ((invgβπ)β(ππ₯π))) |
33 | 29, 32 | syl 17 |
. . . . . . . . . 10
β’
((((((π β Fin
β§ π
β Ring) β§
π₯ β (BaseβπΆ)) β§ (π β π β§ π β π)) β§ π β (Baseβπ
)) β§ (ππ₯π) = ((algScβπ)βπ)) β (π((invgβπΆ)βπ₯)π) = ((invgβπ)β(ππ₯π))) |
34 | | fveq2 6888 |
. . . . . . . . . . 11
β’ ((ππ₯π) = ((algScβπ)βπ) β ((invgβπ)β(ππ₯π)) = ((invgβπ)β((algScβπ)βπ))) |
35 | | eqid 2732 |
. . . . . . . . . . . . . 14
β’
(Scalarβπ) =
(Scalarβπ) |
36 | 25 | adantr 481 |
. . . . . . . . . . . . . 14
β’
(((((π β Fin
β§ π
β Ring) β§
π₯ β (BaseβπΆ)) β§ (π β π β§ π β π)) β§ π β (Baseβπ
)) β π β Ring) |
37 | 2 | ply1lmod 21765 |
. . . . . . . . . . . . . . . 16
β’ (π
β Ring β π β LMod) |
38 | 37 | ad3antlr 729 |
. . . . . . . . . . . . . . 15
β’ ((((π β Fin β§ π
β Ring) β§ π₯ β (BaseβπΆ)) β§ (π β π β§ π β π)) β π β LMod) |
39 | 38 | adantr 481 |
. . . . . . . . . . . . . 14
β’
(((((π β Fin
β§ π
β Ring) β§
π₯ β (BaseβπΆ)) β§ (π β π β§ π β π)) β§ π β (Baseβπ
)) β π β LMod) |
40 | 6, 35, 36, 39 | asclghm 21428 |
. . . . . . . . . . . . 13
β’
(((((π β Fin
β§ π
β Ring) β§
π₯ β (BaseβπΆ)) β§ (π β π β§ π β π)) β§ π β (Baseβπ
)) β (algScβπ) β ((Scalarβπ) GrpHom π)) |
41 | 9 | fveq2d 6892 |
. . . . . . . . . . . . . . . . 17
β’ ((π β Fin β§ π
β Ring) β
(Baseβπ
) =
(Baseβ(Scalarβπ))) |
42 | 41 | eleq2d 2819 |
. . . . . . . . . . . . . . . 16
β’ ((π β Fin β§ π
β Ring) β (π β (Baseβπ
) β π β (Baseβ(Scalarβπ)))) |
43 | 42 | biimpd 228 |
. . . . . . . . . . . . . . 15
β’ ((π β Fin β§ π
β Ring) β (π β (Baseβπ
) β π β (Baseβ(Scalarβπ)))) |
44 | 43 | ad2antrr 724 |
. . . . . . . . . . . . . 14
β’ ((((π β Fin β§ π
β Ring) β§ π₯ β (BaseβπΆ)) β§ (π β π β§ π β π)) β (π β (Baseβπ
) β π β (Baseβ(Scalarβπ)))) |
45 | 44 | imp 407 |
. . . . . . . . . . . . 13
β’
(((((π β Fin
β§ π
β Ring) β§
π₯ β (BaseβπΆ)) β§ (π β π β§ π β π)) β§ π β (Baseβπ
)) β π β (Baseβ(Scalarβπ))) |
46 | | eqid 2732 |
. . . . . . . . . . . . . 14
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
47 | | eqid 2732 |
. . . . . . . . . . . . . 14
β’
(invgβ(Scalarβπ)) =
(invgβ(Scalarβπ)) |
48 | 46, 47, 30 | ghminv 19093 |
. . . . . . . . . . . . 13
β’
(((algScβπ)
β ((Scalarβπ)
GrpHom π) β§ π β
(Baseβ(Scalarβπ))) β ((algScβπ)β((invgβ(Scalarβπ))βπ)) = ((invgβπ)β((algScβπ)βπ))) |
49 | 40, 45, 48 | syl2anc 584 |
. . . . . . . . . . . 12
β’
(((((π β Fin
β§ π
β Ring) β§
π₯ β (BaseβπΆ)) β§ (π β π β§ π β π)) β§ π β (Baseβπ
)) β ((algScβπ)β((invgβ(Scalarβπ))βπ)) = ((invgβπ)β((algScβπ)βπ))) |
50 | 49 | eqcomd 2738 |
. . . . . . . . . . 11
β’
(((((π β Fin
β§ π
β Ring) β§
π₯ β (BaseβπΆ)) β§ (π β π β§ π β π)) β§ π β (Baseβπ
)) β ((invgβπ)β((algScβπ)βπ)) = ((algScβπ)β((invgβ(Scalarβπ))βπ))) |
51 | 34, 50 | sylan9eqr 2794 |
. . . . . . . . . 10
β’
((((((π β Fin
β§ π
β Ring) β§
π₯ β (BaseβπΆ)) β§ (π β π β§ π β π)) β§ π β (Baseβπ
)) β§ (ππ₯π) = ((algScβπ)βπ)) β ((invgβπ)β(ππ₯π)) = ((algScβπ)β((invgβ(Scalarβπ))βπ))) |
52 | 33, 51 | eqtrd 2772 |
. . . . . . . . 9
β’
((((((π β Fin
β§ π
β Ring) β§
π₯ β (BaseβπΆ)) β§ (π β π β§ π β π)) β§ π β (Baseβπ
)) β§ (ππ₯π) = ((algScβπ)βπ)) β (π((invgβπΆ)βπ₯)π) = ((algScβπ)β((invgβ(Scalarβπ))βπ))) |
53 | 20, 23, 52 | rspcedvd 3614 |
. . . . . . . 8
β’
((((((π β Fin
β§ π
β Ring) β§
π₯ β (BaseβπΆ)) β§ (π β π β§ π β π)) β§ π β (Baseβπ
)) β§ (ππ₯π) = ((algScβπ)βπ)) β βπ β (Baseβπ
)(π((invgβπΆ)βπ₯)π) = ((algScβπ)βπ)) |
54 | 53 | rexlimdva2 3157 |
. . . . . . 7
β’ ((((π β Fin β§ π
β Ring) β§ π₯ β (BaseβπΆ)) β§ (π β π β§ π β π)) β (βπ β (Baseβπ
)(ππ₯π) = ((algScβπ)βπ) β βπ β (Baseβπ
)(π((invgβπΆ)βπ₯)π) = ((algScβπ)βπ))) |
55 | 54 | ralimdvva 3204 |
. . . . . 6
β’ (((π β Fin β§ π
β Ring) β§ π₯ β (BaseβπΆ)) β (βπ β π βπ β π βπ β (Baseβπ
)(ππ₯π) = ((algScβπ)βπ) β βπ β π βπ β π βπ β (Baseβπ
)(π((invgβπΆ)βπ₯)π) = ((algScβπ)βπ))) |
56 | 55 | expimpd 454 |
. . . . 5
β’ ((π β Fin β§ π
β Ring) β ((π₯ β (BaseβπΆ) β§ βπ β π βπ β π βπ β (Baseβπ
)(ππ₯π) = ((algScβπ)βπ)) β βπ β π βπ β π βπ β (Baseβπ
)(π((invgβπΆ)βπ₯)π) = ((algScβπ)βπ))) |
57 | 7, 56 | syld 47 |
. . . 4
β’ ((π β Fin β§ π
β Ring) β (π₯ β π β βπ β π βπ β π βπ β (Baseβπ
)(π((invgβπΆ)βπ₯)π) = ((algScβπ)βπ))) |
58 | 57 | imp 407 |
. . 3
β’ (((π β Fin β§ π
β Ring) β§ π₯ β π) β βπ β π βπ β π βπ β (Baseβπ
)(π((invgβπΆ)βπ₯)π) = ((algScβπ)βπ)) |
59 | | simpll 765 |
. . . 4
β’ (((π β Fin β§ π
β Ring) β§ π₯ β π) β π β Fin) |
60 | | simplr 767 |
. . . 4
β’ (((π β Fin β§ π
β Ring) β§ π₯ β π) β π
β Ring) |
61 | 2, 3 | pmatring 22185 |
. . . . . . 7
β’ ((π β Fin β§ π
β Ring) β πΆ β Ring) |
62 | | ringgrp 20054 |
. . . . . . 7
β’ (πΆ β Ring β πΆ β Grp) |
63 | 61, 62 | syl 17 |
. . . . . 6
β’ ((π β Fin β§ π
β Ring) β πΆ β Grp) |
64 | 63 | adantr 481 |
. . . . 5
β’ (((π β Fin β§ π
β Ring) β§ π₯ β π) β πΆ β Grp) |
65 | 1, 2, 3, 4 | cpmatpmat 22203 |
. . . . . 6
β’ ((π β Fin β§ π
β Ring β§ π₯ β π) β π₯ β (BaseβπΆ)) |
66 | 65 | 3expa 1118 |
. . . . 5
β’ (((π β Fin β§ π
β Ring) β§ π₯ β π) β π₯ β (BaseβπΆ)) |
67 | 4, 31 | grpinvcl 18868 |
. . . . 5
β’ ((πΆ β Grp β§ π₯ β (BaseβπΆ)) β
((invgβπΆ)βπ₯) β (BaseβπΆ)) |
68 | 64, 66, 67 | syl2anc 584 |
. . . 4
β’ (((π β Fin β§ π
β Ring) β§ π₯ β π) β ((invgβπΆ)βπ₯) β (BaseβπΆ)) |
69 | 1, 2, 3, 4, 5, 6 | cpmatel2 22206 |
. . . 4
β’ ((π β Fin β§ π
β Ring β§
((invgβπΆ)βπ₯) β (BaseβπΆ)) β (((invgβπΆ)βπ₯) β π β βπ β π βπ β π βπ β (Baseβπ
)(π((invgβπΆ)βπ₯)π) = ((algScβπ)βπ))) |
70 | 59, 60, 68, 69 | syl3anc 1371 |
. . 3
β’ (((π β Fin β§ π
β Ring) β§ π₯ β π) β (((invgβπΆ)βπ₯) β π β βπ β π βπ β π βπ β (Baseβπ
)(π((invgβπΆ)βπ₯)π) = ((algScβπ)βπ))) |
71 | 58, 70 | mpbird 256 |
. 2
β’ (((π β Fin β§ π
β Ring) β§ π₯ β π) β ((invgβπΆ)βπ₯) β π) |
72 | 71 | ralrimiva 3146 |
1
β’ ((π β Fin β§ π
β Ring) β
βπ₯ β π ((invgβπΆ)βπ₯) β π) |