MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnunb Structured version   Visualization version   GIF version

Theorem nnunb 11892
Description: The set of positive integers is unbounded above. Theorem I.28 of [Apostol] p. 26. (Contributed by NM, 21-Jan-1997.)
Assertion
Ref Expression
nnunb ¬ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝑦 = 𝑥)
Distinct variable group:   𝑥,𝑦

Proof of Theorem nnunb
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pm3.24 405 . . . 4 ¬ (∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ¬ ∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦)
2 peano2rem 10952 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝑥 − 1) ∈ ℝ)
3 ltm1 11481 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 − 1) < 𝑥)
4 ovex 7188 . . . . . . . . . . . . 13 (𝑥 − 1) ∈ V
5 eleq1 2900 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 − 1) → (𝑦 ∈ ℝ ↔ (𝑥 − 1) ∈ ℝ))
6 breq1 5068 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 − 1) → (𝑦 < 𝑥 ↔ (𝑥 − 1) < 𝑥))
7 breq1 5068 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑥 − 1) → (𝑦 < 𝑧 ↔ (𝑥 − 1) < 𝑧))
87rexbidv 3297 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 − 1) → (∃𝑧 ∈ ℕ 𝑦 < 𝑧 ↔ ∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧))
96, 8imbi12d 347 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 − 1) → ((𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧) ↔ ((𝑥 − 1) < 𝑥 → ∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧)))
105, 9imbi12d 347 . . . . . . . . . . . . 13 (𝑦 = (𝑥 − 1) → ((𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) ↔ ((𝑥 − 1) ∈ ℝ → ((𝑥 − 1) < 𝑥 → ∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧))))
114, 10spcv 3605 . . . . . . . . . . . 12 (∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → ((𝑥 − 1) ∈ ℝ → ((𝑥 − 1) < 𝑥 → ∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧)))
123, 11syl7 74 . . . . . . . . . . 11 (∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → ((𝑥 − 1) ∈ ℝ → (𝑥 ∈ ℝ → ∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧)))
132, 12syl5 34 . . . . . . . . . 10 (∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → (𝑥 ∈ ℝ → (𝑥 ∈ ℝ → ∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧)))
1413pm2.43d 53 . . . . . . . . 9 (∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → (𝑥 ∈ ℝ → ∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧))
15 df-rex 3144 . . . . . . . . 9 (∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧 ↔ ∃𝑧(𝑧 ∈ ℕ ∧ (𝑥 − 1) < 𝑧))
1614, 15syl6ib 253 . . . . . . . 8 (∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → (𝑥 ∈ ℝ → ∃𝑧(𝑧 ∈ ℕ ∧ (𝑥 − 1) < 𝑧)))
1716com12 32 . . . . . . 7 (𝑥 ∈ ℝ → (∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → ∃𝑧(𝑧 ∈ ℕ ∧ (𝑥 − 1) < 𝑧)))
18 nnre 11644 . . . . . . . . . . 11 (𝑧 ∈ ℕ → 𝑧 ∈ ℝ)
19 1re 10640 . . . . . . . . . . . 12 1 ∈ ℝ
20 ltsubadd 11109 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 − 1) < 𝑧𝑥 < (𝑧 + 1)))
2119, 20mp3an2 1445 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 − 1) < 𝑧𝑥 < (𝑧 + 1)))
2218, 21sylan2 594 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℕ) → ((𝑥 − 1) < 𝑧𝑥 < (𝑧 + 1)))
2322pm5.32da 581 . . . . . . . . 9 (𝑥 ∈ ℝ → ((𝑧 ∈ ℕ ∧ (𝑥 − 1) < 𝑧) ↔ (𝑧 ∈ ℕ ∧ 𝑥 < (𝑧 + 1))))
2423exbidv 1918 . . . . . . . 8 (𝑥 ∈ ℝ → (∃𝑧(𝑧 ∈ ℕ ∧ (𝑥 − 1) < 𝑧) ↔ ∃𝑧(𝑧 ∈ ℕ ∧ 𝑥 < (𝑧 + 1))))
25 peano2nn 11649 . . . . . . . . . 10 (𝑧 ∈ ℕ → (𝑧 + 1) ∈ ℕ)
26 ovex 7188 . . . . . . . . . . 11 (𝑧 + 1) ∈ V
27 eleq1 2900 . . . . . . . . . . . 12 (𝑦 = (𝑧 + 1) → (𝑦 ∈ ℕ ↔ (𝑧 + 1) ∈ ℕ))
28 breq2 5069 . . . . . . . . . . . 12 (𝑦 = (𝑧 + 1) → (𝑥 < 𝑦𝑥 < (𝑧 + 1)))
2927, 28anbi12d 632 . . . . . . . . . . 11 (𝑦 = (𝑧 + 1) → ((𝑦 ∈ ℕ ∧ 𝑥 < 𝑦) ↔ ((𝑧 + 1) ∈ ℕ ∧ 𝑥 < (𝑧 + 1))))
3026, 29spcev 3606 . . . . . . . . . 10 (((𝑧 + 1) ∈ ℕ ∧ 𝑥 < (𝑧 + 1)) → ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦))
3125, 30sylan 582 . . . . . . . . 9 ((𝑧 ∈ ℕ ∧ 𝑥 < (𝑧 + 1)) → ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦))
3231exlimiv 1927 . . . . . . . 8 (∃𝑧(𝑧 ∈ ℕ ∧ 𝑥 < (𝑧 + 1)) → ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦))
3324, 32syl6bi 255 . . . . . . 7 (𝑥 ∈ ℝ → (∃𝑧(𝑧 ∈ ℕ ∧ (𝑥 − 1) < 𝑧) → ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦)))
3417, 33syld 47 . . . . . 6 (𝑥 ∈ ℝ → (∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦)))
35 df-ral 3143 . . . . . 6 (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧) ↔ ∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)))
36 df-ral 3143 . . . . . . . 8 (∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ↔ ∀𝑦(𝑦 ∈ ℕ → ¬ 𝑥 < 𝑦))
37 alinexa 1839 . . . . . . . 8 (∀𝑦(𝑦 ∈ ℕ → ¬ 𝑥 < 𝑦) ↔ ¬ ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦))
3836, 37bitr2i 278 . . . . . . 7 (¬ ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦) ↔ ∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦)
3938con1bii 359 . . . . . 6 (¬ ∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ↔ ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦))
4034, 35, 393imtr4g 298 . . . . 5 (𝑥 ∈ ℝ → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧) → ¬ ∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦))
4140anim2d 613 . . . 4 (𝑥 ∈ ℝ → ((∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → (∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ¬ ∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦)))
421, 41mtoi 201 . . 3 (𝑥 ∈ ℝ → ¬ (∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)))
4342nrex 3269 . 2 ¬ ∃𝑥 ∈ ℝ (∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧))
44 nnssre 11641 . . 3 ℕ ⊆ ℝ
45 1nn 11648 . . . 4 1 ∈ ℕ
4645ne0ii 4302 . . 3 ℕ ≠ ∅
47 sup2 11596 . . 3 ((ℕ ⊆ ℝ ∧ ℕ ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝑦 = 𝑥)) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)))
4844, 46, 47mp3an12 1447 . 2 (∃𝑥 ∈ ℝ ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝑦 = 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)))
4943, 48mto 199 1 ¬ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝑦 = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  wal 1531   = wceq 1533  wex 1776  wcel 2110  wne 3016  wral 3138  wrex 3139  wss 3935  c0 4290   class class class wbr 5065  (class class class)co 7155  cr 10535  1c1 10537   + caddc 10539   < clt 10674  cmin 10869  cn 11637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638
This theorem is referenced by:  arch  11893
  Copyright terms: Public domain W3C validator