MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnunb Structured version   Visualization version   GIF version

Theorem nnunb 12111
Description: The set of positive integers is unbounded above. Theorem I.28 of [Apostol] p. 26. (Contributed by NM, 21-Jan-1997.)
Assertion
Ref Expression
nnunb ¬ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝑦 = 𝑥)
Distinct variable group:   𝑥,𝑦

Proof of Theorem nnunb
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pm3.24 406 . . . 4 ¬ (∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ¬ ∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦)
2 peano2rem 11170 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝑥 − 1) ∈ ℝ)
3 ltm1 11699 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 − 1) < 𝑥)
4 ovex 7265 . . . . . . . . . . . . 13 (𝑥 − 1) ∈ V
5 eleq1 2826 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 − 1) → (𝑦 ∈ ℝ ↔ (𝑥 − 1) ∈ ℝ))
6 breq1 5071 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 − 1) → (𝑦 < 𝑥 ↔ (𝑥 − 1) < 𝑥))
7 breq1 5071 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑥 − 1) → (𝑦 < 𝑧 ↔ (𝑥 − 1) < 𝑧))
87rexbidv 3224 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 − 1) → (∃𝑧 ∈ ℕ 𝑦 < 𝑧 ↔ ∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧))
96, 8imbi12d 348 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 − 1) → ((𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧) ↔ ((𝑥 − 1) < 𝑥 → ∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧)))
105, 9imbi12d 348 . . . . . . . . . . . . 13 (𝑦 = (𝑥 − 1) → ((𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) ↔ ((𝑥 − 1) ∈ ℝ → ((𝑥 − 1) < 𝑥 → ∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧))))
114, 10spcv 3533 . . . . . . . . . . . 12 (∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → ((𝑥 − 1) ∈ ℝ → ((𝑥 − 1) < 𝑥 → ∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧)))
123, 11syl7 74 . . . . . . . . . . 11 (∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → ((𝑥 − 1) ∈ ℝ → (𝑥 ∈ ℝ → ∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧)))
132, 12syl5 34 . . . . . . . . . 10 (∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → (𝑥 ∈ ℝ → (𝑥 ∈ ℝ → ∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧)))
1413pm2.43d 53 . . . . . . . . 9 (∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → (𝑥 ∈ ℝ → ∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧))
15 df-rex 3068 . . . . . . . . 9 (∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧 ↔ ∃𝑧(𝑧 ∈ ℕ ∧ (𝑥 − 1) < 𝑧))
1614, 15syl6ib 254 . . . . . . . 8 (∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → (𝑥 ∈ ℝ → ∃𝑧(𝑧 ∈ ℕ ∧ (𝑥 − 1) < 𝑧)))
1716com12 32 . . . . . . 7 (𝑥 ∈ ℝ → (∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → ∃𝑧(𝑧 ∈ ℕ ∧ (𝑥 − 1) < 𝑧)))
18 nnre 11862 . . . . . . . . . . 11 (𝑧 ∈ ℕ → 𝑧 ∈ ℝ)
19 1re 10858 . . . . . . . . . . . 12 1 ∈ ℝ
20 ltsubadd 11327 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 − 1) < 𝑧𝑥 < (𝑧 + 1)))
2119, 20mp3an2 1451 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 − 1) < 𝑧𝑥 < (𝑧 + 1)))
2218, 21sylan2 596 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℕ) → ((𝑥 − 1) < 𝑧𝑥 < (𝑧 + 1)))
2322pm5.32da 582 . . . . . . . . 9 (𝑥 ∈ ℝ → ((𝑧 ∈ ℕ ∧ (𝑥 − 1) < 𝑧) ↔ (𝑧 ∈ ℕ ∧ 𝑥 < (𝑧 + 1))))
2423exbidv 1929 . . . . . . . 8 (𝑥 ∈ ℝ → (∃𝑧(𝑧 ∈ ℕ ∧ (𝑥 − 1) < 𝑧) ↔ ∃𝑧(𝑧 ∈ ℕ ∧ 𝑥 < (𝑧 + 1))))
25 peano2nn 11867 . . . . . . . . . 10 (𝑧 ∈ ℕ → (𝑧 + 1) ∈ ℕ)
26 ovex 7265 . . . . . . . . . . 11 (𝑧 + 1) ∈ V
27 eleq1 2826 . . . . . . . . . . . 12 (𝑦 = (𝑧 + 1) → (𝑦 ∈ ℕ ↔ (𝑧 + 1) ∈ ℕ))
28 breq2 5072 . . . . . . . . . . . 12 (𝑦 = (𝑧 + 1) → (𝑥 < 𝑦𝑥 < (𝑧 + 1)))
2927, 28anbi12d 634 . . . . . . . . . . 11 (𝑦 = (𝑧 + 1) → ((𝑦 ∈ ℕ ∧ 𝑥 < 𝑦) ↔ ((𝑧 + 1) ∈ ℕ ∧ 𝑥 < (𝑧 + 1))))
3026, 29spcev 3534 . . . . . . . . . 10 (((𝑧 + 1) ∈ ℕ ∧ 𝑥 < (𝑧 + 1)) → ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦))
3125, 30sylan 583 . . . . . . . . 9 ((𝑧 ∈ ℕ ∧ 𝑥 < (𝑧 + 1)) → ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦))
3231exlimiv 1938 . . . . . . . 8 (∃𝑧(𝑧 ∈ ℕ ∧ 𝑥 < (𝑧 + 1)) → ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦))
3324, 32syl6bi 256 . . . . . . 7 (𝑥 ∈ ℝ → (∃𝑧(𝑧 ∈ ℕ ∧ (𝑥 − 1) < 𝑧) → ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦)))
3417, 33syld 47 . . . . . 6 (𝑥 ∈ ℝ → (∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦)))
35 df-ral 3067 . . . . . 6 (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧) ↔ ∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)))
36 df-ral 3067 . . . . . . . 8 (∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ↔ ∀𝑦(𝑦 ∈ ℕ → ¬ 𝑥 < 𝑦))
37 alinexa 1850 . . . . . . . 8 (∀𝑦(𝑦 ∈ ℕ → ¬ 𝑥 < 𝑦) ↔ ¬ ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦))
3836, 37bitr2i 279 . . . . . . 7 (¬ ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦) ↔ ∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦)
3938con1bii 360 . . . . . 6 (¬ ∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ↔ ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦))
4034, 35, 393imtr4g 299 . . . . 5 (𝑥 ∈ ℝ → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧) → ¬ ∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦))
4140anim2d 615 . . . 4 (𝑥 ∈ ℝ → ((∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → (∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ¬ ∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦)))
421, 41mtoi 202 . . 3 (𝑥 ∈ ℝ → ¬ (∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)))
4342nrex 3195 . 2 ¬ ∃𝑥 ∈ ℝ (∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧))
44 nnssre 11859 . . 3 ℕ ⊆ ℝ
45 1nn 11866 . . . 4 1 ∈ ℕ
4645ne0ii 4267 . . 3 ℕ ≠ ∅
47 sup2 11813 . . 3 ((ℕ ⊆ ℝ ∧ ℕ ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝑦 = 𝑥)) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)))
4844, 46, 47mp3an12 1453 . 2 (∃𝑥 ∈ ℝ ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝑦 = 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)))
4943, 48mto 200 1 ¬ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝑦 = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847  wal 1541   = wceq 1543  wex 1787  wcel 2111  wne 2941  wral 3062  wrex 3063  wss 3881  c0 4252   class class class wbr 5068  (class class class)co 7232  cr 10753  1c1 10755   + caddc 10757   < clt 10892  cmin 11087  cn 11855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542  ax-resscn 10811  ax-1cn 10812  ax-icn 10813  ax-addcl 10814  ax-addrcl 10815  ax-mulcl 10816  ax-mulrcl 10817  ax-mulcom 10818  ax-addass 10819  ax-mulass 10820  ax-distr 10821  ax-i2m1 10822  ax-1ne0 10823  ax-1rid 10824  ax-rnegex 10825  ax-rrecex 10826  ax-cnre 10827  ax-pre-lttri 10828  ax-pre-lttrn 10829  ax-pre-ltadd 10830  ax-pre-mulgt0 10831  ax-pre-sup 10832
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-tp 4561  df-op 4563  df-uni 4835  df-iun 4921  df-br 5069  df-opab 5131  df-mpt 5151  df-tr 5177  df-id 5470  df-eprel 5475  df-po 5483  df-so 5484  df-fr 5524  df-we 5526  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-pred 6176  df-ord 6234  df-on 6235  df-lim 6236  df-suc 6237  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-riota 7189  df-ov 7235  df-oprab 7236  df-mpo 7237  df-om 7664  df-wrecs 8068  df-recs 8129  df-rdg 8167  df-er 8412  df-en 8648  df-dom 8649  df-sdom 8650  df-pnf 10894  df-mnf 10895  df-xr 10896  df-ltxr 10897  df-le 10898  df-sub 11089  df-neg 11090  df-nn 11856
This theorem is referenced by:  arch  12112
  Copyright terms: Public domain W3C validator