MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnunb Structured version   Visualization version   GIF version

Theorem nnunb 12159
Description: The set of positive integers is unbounded above. Theorem I.28 of [Apostol] p. 26. (Contributed by NM, 21-Jan-1997.)
Assertion
Ref Expression
nnunb ¬ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝑦 = 𝑥)
Distinct variable group:   𝑥,𝑦

Proof of Theorem nnunb
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pm3.24 402 . . . 4 ¬ (∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ¬ ∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦)
2 peano2rem 11218 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝑥 − 1) ∈ ℝ)
3 ltm1 11747 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 − 1) < 𝑥)
4 ovex 7288 . . . . . . . . . . . . 13 (𝑥 − 1) ∈ V
5 eleq1 2826 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 − 1) → (𝑦 ∈ ℝ ↔ (𝑥 − 1) ∈ ℝ))
6 breq1 5073 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 − 1) → (𝑦 < 𝑥 ↔ (𝑥 − 1) < 𝑥))
7 breq1 5073 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑥 − 1) → (𝑦 < 𝑧 ↔ (𝑥 − 1) < 𝑧))
87rexbidv 3225 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 − 1) → (∃𝑧 ∈ ℕ 𝑦 < 𝑧 ↔ ∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧))
96, 8imbi12d 344 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 − 1) → ((𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧) ↔ ((𝑥 − 1) < 𝑥 → ∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧)))
105, 9imbi12d 344 . . . . . . . . . . . . 13 (𝑦 = (𝑥 − 1) → ((𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) ↔ ((𝑥 − 1) ∈ ℝ → ((𝑥 − 1) < 𝑥 → ∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧))))
114, 10spcv 3534 . . . . . . . . . . . 12 (∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → ((𝑥 − 1) ∈ ℝ → ((𝑥 − 1) < 𝑥 → ∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧)))
123, 11syl7 74 . . . . . . . . . . 11 (∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → ((𝑥 − 1) ∈ ℝ → (𝑥 ∈ ℝ → ∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧)))
132, 12syl5 34 . . . . . . . . . 10 (∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → (𝑥 ∈ ℝ → (𝑥 ∈ ℝ → ∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧)))
1413pm2.43d 53 . . . . . . . . 9 (∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → (𝑥 ∈ ℝ → ∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧))
15 df-rex 3069 . . . . . . . . 9 (∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧 ↔ ∃𝑧(𝑧 ∈ ℕ ∧ (𝑥 − 1) < 𝑧))
1614, 15syl6ib 250 . . . . . . . 8 (∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → (𝑥 ∈ ℝ → ∃𝑧(𝑧 ∈ ℕ ∧ (𝑥 − 1) < 𝑧)))
1716com12 32 . . . . . . 7 (𝑥 ∈ ℝ → (∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → ∃𝑧(𝑧 ∈ ℕ ∧ (𝑥 − 1) < 𝑧)))
18 nnre 11910 . . . . . . . . . . 11 (𝑧 ∈ ℕ → 𝑧 ∈ ℝ)
19 1re 10906 . . . . . . . . . . . 12 1 ∈ ℝ
20 ltsubadd 11375 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 − 1) < 𝑧𝑥 < (𝑧 + 1)))
2119, 20mp3an2 1447 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 − 1) < 𝑧𝑥 < (𝑧 + 1)))
2218, 21sylan2 592 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℕ) → ((𝑥 − 1) < 𝑧𝑥 < (𝑧 + 1)))
2322pm5.32da 578 . . . . . . . . 9 (𝑥 ∈ ℝ → ((𝑧 ∈ ℕ ∧ (𝑥 − 1) < 𝑧) ↔ (𝑧 ∈ ℕ ∧ 𝑥 < (𝑧 + 1))))
2423exbidv 1925 . . . . . . . 8 (𝑥 ∈ ℝ → (∃𝑧(𝑧 ∈ ℕ ∧ (𝑥 − 1) < 𝑧) ↔ ∃𝑧(𝑧 ∈ ℕ ∧ 𝑥 < (𝑧 + 1))))
25 peano2nn 11915 . . . . . . . . . 10 (𝑧 ∈ ℕ → (𝑧 + 1) ∈ ℕ)
26 ovex 7288 . . . . . . . . . . 11 (𝑧 + 1) ∈ V
27 eleq1 2826 . . . . . . . . . . . 12 (𝑦 = (𝑧 + 1) → (𝑦 ∈ ℕ ↔ (𝑧 + 1) ∈ ℕ))
28 breq2 5074 . . . . . . . . . . . 12 (𝑦 = (𝑧 + 1) → (𝑥 < 𝑦𝑥 < (𝑧 + 1)))
2927, 28anbi12d 630 . . . . . . . . . . 11 (𝑦 = (𝑧 + 1) → ((𝑦 ∈ ℕ ∧ 𝑥 < 𝑦) ↔ ((𝑧 + 1) ∈ ℕ ∧ 𝑥 < (𝑧 + 1))))
3026, 29spcev 3535 . . . . . . . . . 10 (((𝑧 + 1) ∈ ℕ ∧ 𝑥 < (𝑧 + 1)) → ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦))
3125, 30sylan 579 . . . . . . . . 9 ((𝑧 ∈ ℕ ∧ 𝑥 < (𝑧 + 1)) → ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦))
3231exlimiv 1934 . . . . . . . 8 (∃𝑧(𝑧 ∈ ℕ ∧ 𝑥 < (𝑧 + 1)) → ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦))
3324, 32syl6bi 252 . . . . . . 7 (𝑥 ∈ ℝ → (∃𝑧(𝑧 ∈ ℕ ∧ (𝑥 − 1) < 𝑧) → ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦)))
3417, 33syld 47 . . . . . 6 (𝑥 ∈ ℝ → (∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦)))
35 df-ral 3068 . . . . . 6 (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧) ↔ ∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)))
36 df-ral 3068 . . . . . . . 8 (∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ↔ ∀𝑦(𝑦 ∈ ℕ → ¬ 𝑥 < 𝑦))
37 alinexa 1846 . . . . . . . 8 (∀𝑦(𝑦 ∈ ℕ → ¬ 𝑥 < 𝑦) ↔ ¬ ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦))
3836, 37bitr2i 275 . . . . . . 7 (¬ ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦) ↔ ∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦)
3938con1bii 356 . . . . . 6 (¬ ∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ↔ ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦))
4034, 35, 393imtr4g 295 . . . . 5 (𝑥 ∈ ℝ → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧) → ¬ ∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦))
4140anim2d 611 . . . 4 (𝑥 ∈ ℝ → ((∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → (∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ¬ ∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦)))
421, 41mtoi 198 . . 3 (𝑥 ∈ ℝ → ¬ (∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)))
4342nrex 3196 . 2 ¬ ∃𝑥 ∈ ℝ (∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧))
44 nnssre 11907 . . 3 ℕ ⊆ ℝ
45 1nn 11914 . . . 4 1 ∈ ℕ
4645ne0ii 4268 . . 3 ℕ ≠ ∅
47 sup2 11861 . . 3 ((ℕ ⊆ ℝ ∧ ℕ ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝑦 = 𝑥)) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)))
4844, 46, 47mp3an12 1449 . 2 (∃𝑥 ∈ ℝ ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝑦 = 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)))
4943, 48mto 196 1 ¬ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝑦 = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  wal 1537   = wceq 1539  wex 1783  wcel 2108  wne 2942  wral 3063  wrex 3064  wss 3883  c0 4253   class class class wbr 5070  (class class class)co 7255  cr 10801  1c1 10803   + caddc 10805   < clt 10940  cmin 11135  cn 11903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904
This theorem is referenced by:  arch  12160
  Copyright terms: Public domain W3C validator