MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnunb Structured version   Visualization version   GIF version

Theorem nnunb 12464
Description: The set of positive integers is unbounded above. Theorem I.28 of [Apostol] p. 26. (Contributed by NM, 21-Jan-1997.)
Assertion
Ref Expression
nnunb ¬ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝑦 = 𝑥)
Distinct variable group:   𝑥,𝑦

Proof of Theorem nnunb
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pm3.24 403 . . . 4 ¬ (∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ¬ ∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦)
2 peano2rem 11523 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝑥 − 1) ∈ ℝ)
3 ltm1 12052 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 − 1) < 𝑥)
4 ovex 7438 . . . . . . . . . . . . 13 (𝑥 − 1) ∈ V
5 eleq1 2821 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 − 1) → (𝑦 ∈ ℝ ↔ (𝑥 − 1) ∈ ℝ))
6 breq1 5150 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 − 1) → (𝑦 < 𝑥 ↔ (𝑥 − 1) < 𝑥))
7 breq1 5150 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑥 − 1) → (𝑦 < 𝑧 ↔ (𝑥 − 1) < 𝑧))
87rexbidv 3178 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 − 1) → (∃𝑧 ∈ ℕ 𝑦 < 𝑧 ↔ ∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧))
96, 8imbi12d 344 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 − 1) → ((𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧) ↔ ((𝑥 − 1) < 𝑥 → ∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧)))
105, 9imbi12d 344 . . . . . . . . . . . . 13 (𝑦 = (𝑥 − 1) → ((𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) ↔ ((𝑥 − 1) ∈ ℝ → ((𝑥 − 1) < 𝑥 → ∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧))))
114, 10spcv 3595 . . . . . . . . . . . 12 (∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → ((𝑥 − 1) ∈ ℝ → ((𝑥 − 1) < 𝑥 → ∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧)))
123, 11syl7 74 . . . . . . . . . . 11 (∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → ((𝑥 − 1) ∈ ℝ → (𝑥 ∈ ℝ → ∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧)))
132, 12syl5 34 . . . . . . . . . 10 (∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → (𝑥 ∈ ℝ → (𝑥 ∈ ℝ → ∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧)))
1413pm2.43d 53 . . . . . . . . 9 (∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → (𝑥 ∈ ℝ → ∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧))
15 df-rex 3071 . . . . . . . . 9 (∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧 ↔ ∃𝑧(𝑧 ∈ ℕ ∧ (𝑥 − 1) < 𝑧))
1614, 15imbitrdi 250 . . . . . . . 8 (∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → (𝑥 ∈ ℝ → ∃𝑧(𝑧 ∈ ℕ ∧ (𝑥 − 1) < 𝑧)))
1716com12 32 . . . . . . 7 (𝑥 ∈ ℝ → (∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → ∃𝑧(𝑧 ∈ ℕ ∧ (𝑥 − 1) < 𝑧)))
18 nnre 12215 . . . . . . . . . . 11 (𝑧 ∈ ℕ → 𝑧 ∈ ℝ)
19 1re 11210 . . . . . . . . . . . 12 1 ∈ ℝ
20 ltsubadd 11680 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 − 1) < 𝑧𝑥 < (𝑧 + 1)))
2119, 20mp3an2 1449 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 − 1) < 𝑧𝑥 < (𝑧 + 1)))
2218, 21sylan2 593 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℕ) → ((𝑥 − 1) < 𝑧𝑥 < (𝑧 + 1)))
2322pm5.32da 579 . . . . . . . . 9 (𝑥 ∈ ℝ → ((𝑧 ∈ ℕ ∧ (𝑥 − 1) < 𝑧) ↔ (𝑧 ∈ ℕ ∧ 𝑥 < (𝑧 + 1))))
2423exbidv 1924 . . . . . . . 8 (𝑥 ∈ ℝ → (∃𝑧(𝑧 ∈ ℕ ∧ (𝑥 − 1) < 𝑧) ↔ ∃𝑧(𝑧 ∈ ℕ ∧ 𝑥 < (𝑧 + 1))))
25 peano2nn 12220 . . . . . . . . . 10 (𝑧 ∈ ℕ → (𝑧 + 1) ∈ ℕ)
26 ovex 7438 . . . . . . . . . . 11 (𝑧 + 1) ∈ V
27 eleq1 2821 . . . . . . . . . . . 12 (𝑦 = (𝑧 + 1) → (𝑦 ∈ ℕ ↔ (𝑧 + 1) ∈ ℕ))
28 breq2 5151 . . . . . . . . . . . 12 (𝑦 = (𝑧 + 1) → (𝑥 < 𝑦𝑥 < (𝑧 + 1)))
2927, 28anbi12d 631 . . . . . . . . . . 11 (𝑦 = (𝑧 + 1) → ((𝑦 ∈ ℕ ∧ 𝑥 < 𝑦) ↔ ((𝑧 + 1) ∈ ℕ ∧ 𝑥 < (𝑧 + 1))))
3026, 29spcev 3596 . . . . . . . . . 10 (((𝑧 + 1) ∈ ℕ ∧ 𝑥 < (𝑧 + 1)) → ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦))
3125, 30sylan 580 . . . . . . . . 9 ((𝑧 ∈ ℕ ∧ 𝑥 < (𝑧 + 1)) → ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦))
3231exlimiv 1933 . . . . . . . 8 (∃𝑧(𝑧 ∈ ℕ ∧ 𝑥 < (𝑧 + 1)) → ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦))
3324, 32syl6bi 252 . . . . . . 7 (𝑥 ∈ ℝ → (∃𝑧(𝑧 ∈ ℕ ∧ (𝑥 − 1) < 𝑧) → ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦)))
3417, 33syld 47 . . . . . 6 (𝑥 ∈ ℝ → (∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦)))
35 df-ral 3062 . . . . . 6 (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧) ↔ ∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)))
36 df-ral 3062 . . . . . . . 8 (∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ↔ ∀𝑦(𝑦 ∈ ℕ → ¬ 𝑥 < 𝑦))
37 alinexa 1845 . . . . . . . 8 (∀𝑦(𝑦 ∈ ℕ → ¬ 𝑥 < 𝑦) ↔ ¬ ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦))
3836, 37bitr2i 275 . . . . . . 7 (¬ ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦) ↔ ∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦)
3938con1bii 356 . . . . . 6 (¬ ∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ↔ ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦))
4034, 35, 393imtr4g 295 . . . . 5 (𝑥 ∈ ℝ → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧) → ¬ ∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦))
4140anim2d 612 . . . 4 (𝑥 ∈ ℝ → ((∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → (∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ¬ ∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦)))
421, 41mtoi 198 . . 3 (𝑥 ∈ ℝ → ¬ (∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)))
4342nrex 3074 . 2 ¬ ∃𝑥 ∈ ℝ (∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧))
44 nnssre 12212 . . 3 ℕ ⊆ ℝ
45 1nn 12219 . . . 4 1 ∈ ℕ
4645ne0ii 4336 . . 3 ℕ ≠ ∅
47 sup2 12166 . . 3 ((ℕ ⊆ ℝ ∧ ℕ ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝑦 = 𝑥)) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)))
4844, 46, 47mp3an12 1451 . 2 (∃𝑥 ∈ ℝ ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝑦 = 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)))
4943, 48mto 196 1 ¬ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝑦 = 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845  wal 1539   = wceq 1541  wex 1781  wcel 2106  wne 2940  wral 3061  wrex 3070  wss 3947  c0 4321   class class class wbr 5147  (class class class)co 7405  cr 11105  1c1 11107   + caddc 11109   < clt 11244  cmin 11440  cn 12208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209
This theorem is referenced by:  arch  12465
  Copyright terms: Public domain W3C validator