Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnunb Structured version   Visualization version   GIF version

Theorem nnunb 11881
 Description: The set of positive integers is unbounded above. Theorem I.28 of [Apostol] p. 26. (Contributed by NM, 21-Jan-1997.)
Assertion
Ref Expression
nnunb ¬ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝑦 = 𝑥)
Distinct variable group:   𝑥,𝑦

Proof of Theorem nnunb
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 pm3.24 406 . . . 4 ¬ (∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ¬ ∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦)
2 peano2rem 10942 . . . . . . . . . . 11 (𝑥 ∈ ℝ → (𝑥 − 1) ∈ ℝ)
3 ltm1 11471 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (𝑥 − 1) < 𝑥)
4 ovex 7173 . . . . . . . . . . . . 13 (𝑥 − 1) ∈ V
5 eleq1 2901 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 − 1) → (𝑦 ∈ ℝ ↔ (𝑥 − 1) ∈ ℝ))
6 breq1 5045 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 − 1) → (𝑦 < 𝑥 ↔ (𝑥 − 1) < 𝑥))
7 breq1 5045 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑥 − 1) → (𝑦 < 𝑧 ↔ (𝑥 − 1) < 𝑧))
87rexbidv 3283 . . . . . . . . . . . . . . 15 (𝑦 = (𝑥 − 1) → (∃𝑧 ∈ ℕ 𝑦 < 𝑧 ↔ ∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧))
96, 8imbi12d 348 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 − 1) → ((𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧) ↔ ((𝑥 − 1) < 𝑥 → ∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧)))
105, 9imbi12d 348 . . . . . . . . . . . . 13 (𝑦 = (𝑥 − 1) → ((𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) ↔ ((𝑥 − 1) ∈ ℝ → ((𝑥 − 1) < 𝑥 → ∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧))))
114, 10spcv 3581 . . . . . . . . . . . 12 (∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → ((𝑥 − 1) ∈ ℝ → ((𝑥 − 1) < 𝑥 → ∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧)))
123, 11syl7 74 . . . . . . . . . . 11 (∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → ((𝑥 − 1) ∈ ℝ → (𝑥 ∈ ℝ → ∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧)))
132, 12syl5 34 . . . . . . . . . 10 (∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → (𝑥 ∈ ℝ → (𝑥 ∈ ℝ → ∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧)))
1413pm2.43d 53 . . . . . . . . 9 (∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → (𝑥 ∈ ℝ → ∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧))
15 df-rex 3136 . . . . . . . . 9 (∃𝑧 ∈ ℕ (𝑥 − 1) < 𝑧 ↔ ∃𝑧(𝑧 ∈ ℕ ∧ (𝑥 − 1) < 𝑧))
1614, 15syl6ib 254 . . . . . . . 8 (∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → (𝑥 ∈ ℝ → ∃𝑧(𝑧 ∈ ℕ ∧ (𝑥 − 1) < 𝑧)))
1716com12 32 . . . . . . 7 (𝑥 ∈ ℝ → (∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → ∃𝑧(𝑧 ∈ ℕ ∧ (𝑥 − 1) < 𝑧)))
18 nnre 11632 . . . . . . . . . . 11 (𝑧 ∈ ℕ → 𝑧 ∈ ℝ)
19 1re 10630 . . . . . . . . . . . 12 1 ∈ ℝ
20 ltsubadd 11099 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 − 1) < 𝑧𝑥 < (𝑧 + 1)))
2119, 20mp3an2 1446 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑥 − 1) < 𝑧𝑥 < (𝑧 + 1)))
2218, 21sylan2 595 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑧 ∈ ℕ) → ((𝑥 − 1) < 𝑧𝑥 < (𝑧 + 1)))
2322pm5.32da 582 . . . . . . . . 9 (𝑥 ∈ ℝ → ((𝑧 ∈ ℕ ∧ (𝑥 − 1) < 𝑧) ↔ (𝑧 ∈ ℕ ∧ 𝑥 < (𝑧 + 1))))
2423exbidv 1922 . . . . . . . 8 (𝑥 ∈ ℝ → (∃𝑧(𝑧 ∈ ℕ ∧ (𝑥 − 1) < 𝑧) ↔ ∃𝑧(𝑧 ∈ ℕ ∧ 𝑥 < (𝑧 + 1))))
25 peano2nn 11637 . . . . . . . . . 10 (𝑧 ∈ ℕ → (𝑧 + 1) ∈ ℕ)
26 ovex 7173 . . . . . . . . . . 11 (𝑧 + 1) ∈ V
27 eleq1 2901 . . . . . . . . . . . 12 (𝑦 = (𝑧 + 1) → (𝑦 ∈ ℕ ↔ (𝑧 + 1) ∈ ℕ))
28 breq2 5046 . . . . . . . . . . . 12 (𝑦 = (𝑧 + 1) → (𝑥 < 𝑦𝑥 < (𝑧 + 1)))
2927, 28anbi12d 633 . . . . . . . . . . 11 (𝑦 = (𝑧 + 1) → ((𝑦 ∈ ℕ ∧ 𝑥 < 𝑦) ↔ ((𝑧 + 1) ∈ ℕ ∧ 𝑥 < (𝑧 + 1))))
3026, 29spcev 3582 . . . . . . . . . 10 (((𝑧 + 1) ∈ ℕ ∧ 𝑥 < (𝑧 + 1)) → ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦))
3125, 30sylan 583 . . . . . . . . 9 ((𝑧 ∈ ℕ ∧ 𝑥 < (𝑧 + 1)) → ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦))
3231exlimiv 1931 . . . . . . . 8 (∃𝑧(𝑧 ∈ ℕ ∧ 𝑥 < (𝑧 + 1)) → ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦))
3324, 32syl6bi 256 . . . . . . 7 (𝑥 ∈ ℝ → (∃𝑧(𝑧 ∈ ℕ ∧ (𝑥 − 1) < 𝑧) → ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦)))
3417, 33syld 47 . . . . . 6 (𝑥 ∈ ℝ → (∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦)))
35 df-ral 3135 . . . . . 6 (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧) ↔ ∀𝑦(𝑦 ∈ ℝ → (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)))
36 df-ral 3135 . . . . . . . 8 (∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ↔ ∀𝑦(𝑦 ∈ ℕ → ¬ 𝑥 < 𝑦))
37 alinexa 1844 . . . . . . . 8 (∀𝑦(𝑦 ∈ ℕ → ¬ 𝑥 < 𝑦) ↔ ¬ ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦))
3836, 37bitr2i 279 . . . . . . 7 (¬ ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦) ↔ ∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦)
3938con1bii 360 . . . . . 6 (¬ ∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ↔ ∃𝑦(𝑦 ∈ ℕ ∧ 𝑥 < 𝑦))
4034, 35, 393imtr4g 299 . . . . 5 (𝑥 ∈ ℝ → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧) → ¬ ∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦))
4140anim2d 614 . . . 4 (𝑥 ∈ ℝ → ((∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)) → (∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ¬ ∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦)))
421, 41mtoi 202 . . 3 (𝑥 ∈ ℝ → ¬ (∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)))
4342nrex 3255 . 2 ¬ ∃𝑥 ∈ ℝ (∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧))
44 nnssre 11629 . . 3 ℕ ⊆ ℝ
45 1nn 11636 . . . 4 1 ∈ ℕ
4645ne0ii 4275 . . 3 ℕ ≠ ∅
47 sup2 11584 . . 3 ((ℕ ⊆ ℝ ∧ ℕ ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝑦 = 𝑥)) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)))
4844, 46, 47mp3an12 1448 . 2 (∃𝑥 ∈ ℝ ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝑦 = 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ ℕ ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ ℕ 𝑦 < 𝑧)))
4943, 48mto 200 1 ¬ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℕ (𝑦 < 𝑥𝑦 = 𝑥)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844  ∀wal 1536   = wceq 1538  ∃wex 1781   ∈ wcel 2114   ≠ wne 3011  ∀wral 3130  ∃wrex 3131   ⊆ wss 3908  ∅c0 4265   class class class wbr 5042  (class class class)co 7140  ℝcr 10525  1c1 10527   + caddc 10529   < clt 10664   − cmin 10859  ℕcn 11625 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626 This theorem is referenced by:  arch  11882
 Copyright terms: Public domain W3C validator