MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6n Structured version   Visualization version   GIF version

Theorem ac6n 10486
Description: Equivalent of Axiom of Choice. Contrapositive of ac6s 10485. (Contributed by NM, 10-Jun-2007.)
Hypotheses
Ref Expression
ac6s.1 𝐴 ∈ V
ac6s.2 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
Assertion
Ref Expression
ac6n (∀𝑓(𝑓:𝐴𝐵 → ∃𝑥𝐴 𝜓) → ∃𝑥𝐴𝑦𝐵 𝜑)
Distinct variable groups:   𝑥,𝑓,𝐴   𝑥,𝑦,𝐵,𝑓   𝜑,𝑓   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑓)   𝐴(𝑦)

Proof of Theorem ac6n
StepHypRef Expression
1 ac6s.1 . . . 4 𝐴 ∈ V
2 ac6s.2 . . . . 5 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
32notbid 318 . . . 4 (𝑦 = (𝑓𝑥) → (¬ 𝜑 ↔ ¬ 𝜓))
41, 3ac6s 10485 . . 3 (∀𝑥𝐴𝑦𝐵 ¬ 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝜓))
54con3i 154 . 2 (¬ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝜓) → ¬ ∀𝑥𝐴𝑦𝐵 ¬ 𝜑)
6 dfrex2 3072 . . . . 5 (∃𝑥𝐴 𝜓 ↔ ¬ ∀𝑥𝐴 ¬ 𝜓)
76imbi2i 336 . . . 4 ((𝑓:𝐴𝐵 → ∃𝑥𝐴 𝜓) ↔ (𝑓:𝐴𝐵 → ¬ ∀𝑥𝐴 ¬ 𝜓))
87albii 1820 . . 3 (∀𝑓(𝑓:𝐴𝐵 → ∃𝑥𝐴 𝜓) ↔ ∀𝑓(𝑓:𝐴𝐵 → ¬ ∀𝑥𝐴 ¬ 𝜓))
9 alinexa 1844 . . 3 (∀𝑓(𝑓:𝐴𝐵 → ¬ ∀𝑥𝐴 ¬ 𝜓) ↔ ¬ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝜓))
108, 9bitri 275 . 2 (∀𝑓(𝑓:𝐴𝐵 → ∃𝑥𝐴 𝜓) ↔ ¬ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝜓))
11 dfral2 3098 . . . 4 (∀𝑦𝐵 𝜑 ↔ ¬ ∃𝑦𝐵 ¬ 𝜑)
1211rexbii 3093 . . 3 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝐴 ¬ ∃𝑦𝐵 ¬ 𝜑)
13 rexnal 3099 . . 3 (∃𝑥𝐴 ¬ ∃𝑦𝐵 ¬ 𝜑 ↔ ¬ ∀𝑥𝐴𝑦𝐵 ¬ 𝜑)
1412, 13bitri 275 . 2 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ¬ ∀𝑥𝐴𝑦𝐵 ¬ 𝜑)
155, 10, 143imtr4i 292 1 (∀𝑓(𝑓:𝐴𝐵 → ∃𝑥𝐴 𝜓) → ∃𝑥𝐴𝑦𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wal 1538   = wceq 1540  wex 1780  wcel 2105  wral 3060  wrex 3069  Vcvv 3473  wf 6539  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-reg 9593  ax-inf2 9642  ax-ac2 10464
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-om 7860  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-en 8946  df-r1 9765  df-rank 9766  df-card 9940  df-ac 10117
This theorem is referenced by:  nmobndseqiALT  30315
  Copyright terms: Public domain W3C validator