MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6n Structured version   Visualization version   GIF version

Theorem ac6n 10376
Description: Equivalent of Axiom of Choice. Contrapositive of ac6s 10375. (Contributed by NM, 10-Jun-2007.)
Hypotheses
Ref Expression
ac6s.1 𝐴 ∈ V
ac6s.2 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
Assertion
Ref Expression
ac6n (∀𝑓(𝑓:𝐴𝐵 → ∃𝑥𝐴 𝜓) → ∃𝑥𝐴𝑦𝐵 𝜑)
Distinct variable groups:   𝑥,𝑓,𝐴   𝑥,𝑦,𝐵,𝑓   𝜑,𝑓   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑓)   𝐴(𝑦)

Proof of Theorem ac6n
StepHypRef Expression
1 ac6s.1 . . . 4 𝐴 ∈ V
2 ac6s.2 . . . . 5 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
32notbid 318 . . . 4 (𝑦 = (𝑓𝑥) → (¬ 𝜑 ↔ ¬ 𝜓))
41, 3ac6s 10375 . . 3 (∀𝑥𝐴𝑦𝐵 ¬ 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝜓))
54con3i 154 . 2 (¬ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝜓) → ¬ ∀𝑥𝐴𝑦𝐵 ¬ 𝜑)
6 dfrex2 3059 . . . . 5 (∃𝑥𝐴 𝜓 ↔ ¬ ∀𝑥𝐴 ¬ 𝜓)
76imbi2i 336 . . . 4 ((𝑓:𝐴𝐵 → ∃𝑥𝐴 𝜓) ↔ (𝑓:𝐴𝐵 → ¬ ∀𝑥𝐴 ¬ 𝜓))
87albii 1820 . . 3 (∀𝑓(𝑓:𝐴𝐵 → ∃𝑥𝐴 𝜓) ↔ ∀𝑓(𝑓:𝐴𝐵 → ¬ ∀𝑥𝐴 ¬ 𝜓))
9 alinexa 1844 . . 3 (∀𝑓(𝑓:𝐴𝐵 → ¬ ∀𝑥𝐴 ¬ 𝜓) ↔ ¬ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝜓))
108, 9bitri 275 . 2 (∀𝑓(𝑓:𝐴𝐵 → ∃𝑥𝐴 𝜓) ↔ ¬ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝜓))
11 dfral2 3083 . . . 4 (∀𝑦𝐵 𝜑 ↔ ¬ ∃𝑦𝐵 ¬ 𝜑)
1211rexbii 3079 . . 3 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑥𝐴 ¬ ∃𝑦𝐵 ¬ 𝜑)
13 rexnal 3084 . . 3 (∃𝑥𝐴 ¬ ∃𝑦𝐵 ¬ 𝜑 ↔ ¬ ∀𝑥𝐴𝑦𝐵 ¬ 𝜑)
1412, 13bitri 275 . 2 (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ¬ ∀𝑥𝐴𝑦𝐵 ¬ 𝜑)
155, 10, 143imtr4i 292 1 (∀𝑓(𝑓:𝐴𝐵 → ∃𝑥𝐴 𝜓) → ∃𝑥𝐴𝑦𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wex 1780  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  wf 6477  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-reg 9478  ax-inf2 9531  ax-ac2 10354
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-iin 4944  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-en 8870  df-r1 9657  df-rank 9658  df-card 9832  df-ac 10007
This theorem is referenced by:  nmobndseqiALT  30758
  Copyright terms: Public domain W3C validator