![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ac6n | Structured version Visualization version GIF version |
Description: Equivalent of Axiom of Choice. Contrapositive of ac6s 10553. (Contributed by NM, 10-Jun-2007.) |
Ref | Expression |
---|---|
ac6s.1 | ⊢ 𝐴 ∈ V |
ac6s.2 | ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ac6n | ⊢ (∀𝑓(𝑓:𝐴⟶𝐵 → ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ac6s.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | ac6s.2 | . . . . 5 ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) | |
3 | 2 | notbid 318 | . . . 4 ⊢ (𝑦 = (𝑓‘𝑥) → (¬ 𝜑 ↔ ¬ 𝜓)) |
4 | 1, 3 | ac6s 10553 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ¬ 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝜓)) |
5 | 4 | con3i 154 | . 2 ⊢ (¬ ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝜓) → ¬ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ¬ 𝜑) |
6 | dfrex2 3079 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜓) | |
7 | 6 | imbi2i 336 | . . . 4 ⊢ ((𝑓:𝐴⟶𝐵 → ∃𝑥 ∈ 𝐴 𝜓) ↔ (𝑓:𝐴⟶𝐵 → ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜓)) |
8 | 7 | albii 1817 | . . 3 ⊢ (∀𝑓(𝑓:𝐴⟶𝐵 → ∃𝑥 ∈ 𝐴 𝜓) ↔ ∀𝑓(𝑓:𝐴⟶𝐵 → ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜓)) |
9 | alinexa 1841 | . . 3 ⊢ (∀𝑓(𝑓:𝐴⟶𝐵 → ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜓) ↔ ¬ ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝜓)) | |
10 | 8, 9 | bitri 275 | . 2 ⊢ (∀𝑓(𝑓:𝐴⟶𝐵 → ∃𝑥 ∈ 𝐴 𝜓) ↔ ¬ ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝜓)) |
11 | dfral2 3105 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐵 ¬ 𝜑) | |
12 | 11 | rexbii 3100 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ¬ ∃𝑦 ∈ 𝐵 ¬ 𝜑) |
13 | rexnal 3106 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ ∃𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ¬ 𝜑) | |
14 | 12, 13 | bitri 275 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ¬ 𝜑) |
15 | 5, 10, 14 | 3imtr4i 292 | 1 ⊢ (∀𝑓(𝑓:𝐴⟶𝐵 → ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 Vcvv 3488 ⟶wf 6569 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-reg 9661 ax-inf2 9710 ax-ac2 10532 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-en 9004 df-r1 9833 df-rank 9834 df-card 10008 df-ac 10185 |
This theorem is referenced by: nmobndseqiALT 30812 |
Copyright terms: Public domain | W3C validator |