![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ac6n | Structured version Visualization version GIF version |
Description: Equivalent of Axiom of Choice. Contrapositive of ac6s 9594. (Contributed by NM, 10-Jun-2007.) |
Ref | Expression |
---|---|
ac6s.1 | ⊢ 𝐴 ∈ V |
ac6s.2 | ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ac6n | ⊢ (∀𝑓(𝑓:𝐴⟶𝐵 → ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ac6s.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | ac6s.2 | . . . . 5 ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) | |
3 | 2 | notbid 310 | . . . 4 ⊢ (𝑦 = (𝑓‘𝑥) → (¬ 𝜑 ↔ ¬ 𝜓)) |
4 | 1, 3 | ac6s 9594 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ¬ 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝜓)) |
5 | 4 | con3i 152 | . 2 ⊢ (¬ ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝜓) → ¬ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ¬ 𝜑) |
6 | dfrex2 3176 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜓) | |
7 | 6 | imbi2i 328 | . . . 4 ⊢ ((𝑓:𝐴⟶𝐵 → ∃𝑥 ∈ 𝐴 𝜓) ↔ (𝑓:𝐴⟶𝐵 → ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜓)) |
8 | 7 | albii 1915 | . . 3 ⊢ (∀𝑓(𝑓:𝐴⟶𝐵 → ∃𝑥 ∈ 𝐴 𝜓) ↔ ∀𝑓(𝑓:𝐴⟶𝐵 → ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜓)) |
9 | alinexa 1940 | . . 3 ⊢ (∀𝑓(𝑓:𝐴⟶𝐵 → ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜓) ↔ ¬ ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝜓)) | |
10 | 8, 9 | bitri 267 | . 2 ⊢ (∀𝑓(𝑓:𝐴⟶𝐵 → ∃𝑥 ∈ 𝐴 𝜓) ↔ ¬ ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝜓)) |
11 | dfral2 3174 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐵 ¬ 𝜑) | |
12 | 11 | rexbii 3222 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ¬ ∃𝑦 ∈ 𝐵 ¬ 𝜑) |
13 | rexnal 3175 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ ∃𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ¬ 𝜑) | |
14 | 12, 13 | bitri 267 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ¬ 𝜑) |
15 | 5, 10, 14 | 3imtr4i 284 | 1 ⊢ (∀𝑓(𝑓:𝐴⟶𝐵 → ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 385 ∀wal 1651 = wceq 1653 ∃wex 1875 ∈ wcel 2157 ∀wral 3089 ∃wrex 3090 Vcvv 3385 ⟶wf 6097 ‘cfv 6101 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-reg 8739 ax-inf2 8788 ax-ac2 9573 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-iin 4713 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-om 7300 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-en 8196 df-r1 8877 df-rank 8878 df-card 9051 df-ac 9225 |
This theorem is referenced by: nmobndseqiALT 28160 |
Copyright terms: Public domain | W3C validator |