|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ac6n | Structured version Visualization version GIF version | ||
| Description: Equivalent of Axiom of Choice. Contrapositive of ac6s 10524. (Contributed by NM, 10-Jun-2007.) | 
| Ref | Expression | 
|---|---|
| ac6s.1 | ⊢ 𝐴 ∈ V | 
| ac6s.2 | ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) | 
| Ref | Expression | 
|---|---|
| ac6n | ⊢ (∀𝑓(𝑓:𝐴⟶𝐵 → ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ac6s.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | ac6s.2 | . . . . 5 ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | notbid 318 | . . . 4 ⊢ (𝑦 = (𝑓‘𝑥) → (¬ 𝜑 ↔ ¬ 𝜓)) | 
| 4 | 1, 3 | ac6s 10524 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ¬ 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝜓)) | 
| 5 | 4 | con3i 154 | . 2 ⊢ (¬ ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝜓) → ¬ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ¬ 𝜑) | 
| 6 | dfrex2 3073 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜓) | |
| 7 | 6 | imbi2i 336 | . . . 4 ⊢ ((𝑓:𝐴⟶𝐵 → ∃𝑥 ∈ 𝐴 𝜓) ↔ (𝑓:𝐴⟶𝐵 → ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜓)) | 
| 8 | 7 | albii 1819 | . . 3 ⊢ (∀𝑓(𝑓:𝐴⟶𝐵 → ∃𝑥 ∈ 𝐴 𝜓) ↔ ∀𝑓(𝑓:𝐴⟶𝐵 → ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜓)) | 
| 9 | alinexa 1843 | . . 3 ⊢ (∀𝑓(𝑓:𝐴⟶𝐵 → ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜓) ↔ ¬ ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝜓)) | |
| 10 | 8, 9 | bitri 275 | . 2 ⊢ (∀𝑓(𝑓:𝐴⟶𝐵 → ∃𝑥 ∈ 𝐴 𝜓) ↔ ¬ ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝜓)) | 
| 11 | dfral2 3099 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐵 ¬ 𝜑) | |
| 12 | 11 | rexbii 3094 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ¬ ∃𝑦 ∈ 𝐵 ¬ 𝜑) | 
| 13 | rexnal 3100 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ ∃𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ¬ 𝜑) | |
| 14 | 12, 13 | bitri 275 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ¬ 𝜑) | 
| 15 | 5, 10, 14 | 3imtr4i 292 | 1 ⊢ (∀𝑓(𝑓:𝐴⟶𝐵 → ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 Vcvv 3480 ⟶wf 6557 ‘cfv 6561 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-reg 9632 ax-inf2 9681 ax-ac2 10503 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-en 8986 df-r1 9804 df-rank 9805 df-card 9979 df-ac 10156 | 
| This theorem is referenced by: nmobndseqiALT 30799 | 
| Copyright terms: Public domain | W3C validator |