![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ac6n | Structured version Visualization version GIF version |
Description: Equivalent of Axiom of Choice. Contrapositive of ac6s 10485. (Contributed by NM, 10-Jun-2007.) |
Ref | Expression |
---|---|
ac6s.1 | ⊢ 𝐴 ∈ V |
ac6s.2 | ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ac6n | ⊢ (∀𝑓(𝑓:𝐴⟶𝐵 → ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ac6s.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | ac6s.2 | . . . . 5 ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) | |
3 | 2 | notbid 318 | . . . 4 ⊢ (𝑦 = (𝑓‘𝑥) → (¬ 𝜑 ↔ ¬ 𝜓)) |
4 | 1, 3 | ac6s 10485 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ¬ 𝜑 → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝜓)) |
5 | 4 | con3i 154 | . 2 ⊢ (¬ ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝜓) → ¬ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ¬ 𝜑) |
6 | dfrex2 3072 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜓) | |
7 | 6 | imbi2i 336 | . . . 4 ⊢ ((𝑓:𝐴⟶𝐵 → ∃𝑥 ∈ 𝐴 𝜓) ↔ (𝑓:𝐴⟶𝐵 → ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜓)) |
8 | 7 | albii 1820 | . . 3 ⊢ (∀𝑓(𝑓:𝐴⟶𝐵 → ∃𝑥 ∈ 𝐴 𝜓) ↔ ∀𝑓(𝑓:𝐴⟶𝐵 → ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜓)) |
9 | alinexa 1844 | . . 3 ⊢ (∀𝑓(𝑓:𝐴⟶𝐵 → ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜓) ↔ ¬ ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝜓)) | |
10 | 8, 9 | bitri 275 | . 2 ⊢ (∀𝑓(𝑓:𝐴⟶𝐵 → ∃𝑥 ∈ 𝐴 𝜓) ↔ ¬ ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝜓)) |
11 | dfral2 3098 | . . . 4 ⊢ (∀𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∃𝑦 ∈ 𝐵 ¬ 𝜑) | |
12 | 11 | rexbii 3093 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ¬ ∃𝑦 ∈ 𝐵 ¬ 𝜑) |
13 | rexnal 3099 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ ∃𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ¬ 𝜑) | |
14 | 12, 13 | bitri 275 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 ¬ 𝜑) |
15 | 5, 10, 14 | 3imtr4i 292 | 1 ⊢ (∀𝑓(𝑓:𝐴⟶𝐵 → ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ∀wral 3060 ∃wrex 3069 Vcvv 3473 ⟶wf 6539 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-reg 9593 ax-inf2 9642 ax-ac2 10464 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-en 8946 df-r1 9765 df-rank 9766 df-card 9940 df-ac 10117 |
This theorem is referenced by: nmobndseqiALT 30315 |
Copyright terms: Public domain | W3C validator |