| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zfregs2 | Structured version Visualization version GIF version | ||
| Description: Alternate strong form of the Axiom of Regularity. Not every element of a nonempty class contains some element of that class. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by Wolf Lammen, 27-Sep-2013.) |
| Ref | Expression |
|---|---|
| zfregs2 | ⊢ (𝐴 ≠ ∅ → ¬ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfregs 9661 | . . . . . 6 ⊢ (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅) | |
| 2 | incom 4168 | . . . . . . . 8 ⊢ (𝑥 ∩ 𝐴) = (𝐴 ∩ 𝑥) | |
| 3 | 2 | eqeq1i 2734 | . . . . . . 7 ⊢ ((𝑥 ∩ 𝐴) = ∅ ↔ (𝐴 ∩ 𝑥) = ∅) |
| 4 | 3 | rexbii 3076 | . . . . . 6 ⊢ (∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅ ↔ ∃𝑥 ∈ 𝐴 (𝐴 ∩ 𝑥) = ∅) |
| 5 | 1, 4 | sylib 218 | . . . . 5 ⊢ (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐴 (𝐴 ∩ 𝑥) = ∅) |
| 6 | disj1 4411 | . . . . . 6 ⊢ ((𝐴 ∩ 𝑥) = ∅ ↔ ∀𝑦(𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥)) | |
| 7 | 6 | rexbii 3076 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 (𝐴 ∩ 𝑥) = ∅ ↔ ∃𝑥 ∈ 𝐴 ∀𝑦(𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥)) |
| 8 | 5, 7 | sylib 218 | . . . 4 ⊢ (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐴 ∀𝑦(𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥)) |
| 9 | alinexa 1843 | . . . . 5 ⊢ (∀𝑦(𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥) ↔ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) | |
| 10 | 9 | rexbii 3076 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦(𝑦 ∈ 𝐴 → ¬ 𝑦 ∈ 𝑥) ↔ ∃𝑥 ∈ 𝐴 ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) |
| 11 | 8, 10 | sylib 218 | . . 3 ⊢ (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐴 ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) |
| 12 | dfrex2 3056 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) | |
| 13 | 11, 12 | sylib 218 | . 2 ⊢ (𝐴 ≠ ∅ → ¬ ∀𝑥 ∈ 𝐴 ¬ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) |
| 14 | notnotb 315 | . . 3 ⊢ (∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) ↔ ¬ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) | |
| 15 | 14 | ralbii 3075 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥) ↔ ∀𝑥 ∈ 𝐴 ¬ ¬ ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) |
| 16 | 13, 15 | sylnibr 329 | 1 ⊢ (𝐴 ≠ ∅ → ¬ ∀𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ∩ cin 3910 ∅c0 4292 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 ax-reg 9521 ax-inf2 9570 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 |
| This theorem is referenced by: en3lpVD 44807 |
| Copyright terms: Public domain | W3C validator |