MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfregs2 Structured version   Visualization version   GIF version

Theorem zfregs2 9727
Description: Alternate strong form of the Axiom of Regularity. Not every element of a nonempty class contains some element of that class. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by Wolf Lammen, 27-Sep-2013.)
Assertion
Ref Expression
zfregs2 (𝐴 ≠ ∅ → ¬ ∀𝑥𝐴𝑦(𝑦𝐴𝑦𝑥))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem zfregs2
StepHypRef Expression
1 zfregs 9726 . . . . . 6 (𝐴 ≠ ∅ → ∃𝑥𝐴 (𝑥𝐴) = ∅)
2 incom 4196 . . . . . . . 8 (𝑥𝐴) = (𝐴𝑥)
32eqeq1i 2731 . . . . . . 7 ((𝑥𝐴) = ∅ ↔ (𝐴𝑥) = ∅)
43rexbii 3088 . . . . . 6 (∃𝑥𝐴 (𝑥𝐴) = ∅ ↔ ∃𝑥𝐴 (𝐴𝑥) = ∅)
51, 4sylib 217 . . . . 5 (𝐴 ≠ ∅ → ∃𝑥𝐴 (𝐴𝑥) = ∅)
6 disj1 4445 . . . . . 6 ((𝐴𝑥) = ∅ ↔ ∀𝑦(𝑦𝐴 → ¬ 𝑦𝑥))
76rexbii 3088 . . . . 5 (∃𝑥𝐴 (𝐴𝑥) = ∅ ↔ ∃𝑥𝐴𝑦(𝑦𝐴 → ¬ 𝑦𝑥))
85, 7sylib 217 . . . 4 (𝐴 ≠ ∅ → ∃𝑥𝐴𝑦(𝑦𝐴 → ¬ 𝑦𝑥))
9 alinexa 1837 . . . . 5 (∀𝑦(𝑦𝐴 → ¬ 𝑦𝑥) ↔ ¬ ∃𝑦(𝑦𝐴𝑦𝑥))
109rexbii 3088 . . . 4 (∃𝑥𝐴𝑦(𝑦𝐴 → ¬ 𝑦𝑥) ↔ ∃𝑥𝐴 ¬ ∃𝑦(𝑦𝐴𝑦𝑥))
118, 10sylib 217 . . 3 (𝐴 ≠ ∅ → ∃𝑥𝐴 ¬ ∃𝑦(𝑦𝐴𝑦𝑥))
12 dfrex2 3067 . . 3 (∃𝑥𝐴 ¬ ∃𝑦(𝑦𝐴𝑦𝑥) ↔ ¬ ∀𝑥𝐴 ¬ ¬ ∃𝑦(𝑦𝐴𝑦𝑥))
1311, 12sylib 217 . 2 (𝐴 ≠ ∅ → ¬ ∀𝑥𝐴 ¬ ¬ ∃𝑦(𝑦𝐴𝑦𝑥))
14 notnotb 315 . . 3 (∃𝑦(𝑦𝐴𝑦𝑥) ↔ ¬ ¬ ∃𝑦(𝑦𝐴𝑦𝑥))
1514ralbii 3087 . 2 (∀𝑥𝐴𝑦(𝑦𝐴𝑦𝑥) ↔ ∀𝑥𝐴 ¬ ¬ ∃𝑦(𝑦𝐴𝑦𝑥))
1613, 15sylnibr 329 1 (𝐴 ≠ ∅ → ¬ ∀𝑥𝐴𝑦(𝑦𝐴𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1531   = wceq 1533  wex 1773  wcel 2098  wne 2934  wral 3055  wrex 3064  cin 3942  c0 4317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7721  ax-reg 9586  ax-inf2 9635
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-om 7852  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408
This theorem is referenced by:  en3lpVD  44164
  Copyright terms: Public domain W3C validator