MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmobndseqi Structured version   Visualization version   GIF version

Theorem nmobndseqi 30798
Description: A bounded sequence determines a bounded operator. (Contributed by NM, 18-Jan-2008.) (Revised by Mario Carneiro, 7-Apr-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoubi.1 𝑋 = (BaseSet‘𝑈)
nmoubi.y 𝑌 = (BaseSet‘𝑊)
nmoubi.l 𝐿 = (normCV𝑈)
nmoubi.m 𝑀 = (normCV𝑊)
nmoubi.3 𝑁 = (𝑈 normOpOLD 𝑊)
nmoubi.u 𝑈 ∈ NrmCVec
nmoubi.w 𝑊 ∈ NrmCVec
Assertion
Ref Expression
nmobndseqi ((𝑇:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)) → (𝑁𝑇) ∈ ℝ)
Distinct variable groups:   𝑓,𝑘,𝐿   𝑘,𝑌   𝑓,𝑀,𝑘   𝑇,𝑓,𝑘   𝑓,𝑋,𝑘   𝑘,𝑁
Allowed substitution hints:   𝑈(𝑓,𝑘)   𝑁(𝑓)   𝑊(𝑓,𝑘)   𝑌(𝑓)

Proof of Theorem nmobndseqi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 impexp 450 . . . . . 6 (((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘) ↔ (𝑓:ℕ⟶𝑋 → (∀𝑘 ∈ ℕ (𝐿‘(𝑓𝑘)) ≤ 1 → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)))
2 r19.35 3108 . . . . . . 7 (∃𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘) ↔ (∀𝑘 ∈ ℕ (𝐿‘(𝑓𝑘)) ≤ 1 → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘))
32imbi2i 336 . . . . . 6 ((𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)) ↔ (𝑓:ℕ⟶𝑋 → (∀𝑘 ∈ ℕ (𝐿‘(𝑓𝑘)) ≤ 1 → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)))
41, 3bitr4i 278 . . . . 5 (((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘) ↔ (𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)))
54albii 1819 . . . 4 (∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)))
6 nmoubi.1 . . . . . . . . 9 𝑋 = (BaseSet‘𝑈)
76fvexi 6920 . . . . . . . 8 𝑋 ∈ V
8 nnenom 14021 . . . . . . . 8 ℕ ≈ ω
9 fveq2 6906 . . . . . . . . . . 11 (𝑦 = (𝑓𝑘) → (𝐿𝑦) = (𝐿‘(𝑓𝑘)))
109breq1d 5153 . . . . . . . . . 10 (𝑦 = (𝑓𝑘) → ((𝐿𝑦) ≤ 1 ↔ (𝐿‘(𝑓𝑘)) ≤ 1))
11 2fveq3 6911 . . . . . . . . . . 11 (𝑦 = (𝑓𝑘) → (𝑀‘(𝑇𝑦)) = (𝑀‘(𝑇‘(𝑓𝑘))))
1211breq1d 5153 . . . . . . . . . 10 (𝑦 = (𝑓𝑘) → ((𝑀‘(𝑇𝑦)) ≤ 𝑘 ↔ (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘))
1310, 12imbi12d 344 . . . . . . . . 9 (𝑦 = (𝑓𝑘) → (((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘) ↔ ((𝐿‘(𝑓𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)))
1413notbid 318 . . . . . . . 8 (𝑦 = (𝑓𝑘) → (¬ ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘) ↔ ¬ ((𝐿‘(𝑓𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)))
157, 8, 14axcc4 10479 . . . . . . 7 (∀𝑘 ∈ ℕ ∃𝑦𝑋 ¬ ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘) → ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ¬ ((𝐿‘(𝑓𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)))
1615con3i 154 . . . . . 6 (¬ ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ¬ ((𝐿‘(𝑓𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)) → ¬ ∀𝑘 ∈ ℕ ∃𝑦𝑋 ¬ ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘))
17 dfrex2 3073 . . . . . . . . 9 (∃𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘) ↔ ¬ ∀𝑘 ∈ ℕ ¬ ((𝐿‘(𝑓𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘))
1817imbi2i 336 . . . . . . . 8 ((𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)) ↔ (𝑓:ℕ⟶𝑋 → ¬ ∀𝑘 ∈ ℕ ¬ ((𝐿‘(𝑓𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)))
1918albii 1819 . . . . . . 7 (∀𝑓(𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ¬ ∀𝑘 ∈ ℕ ¬ ((𝐿‘(𝑓𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)))
20 alinexa 1843 . . . . . . 7 (∀𝑓(𝑓:ℕ⟶𝑋 → ¬ ∀𝑘 ∈ ℕ ¬ ((𝐿‘(𝑓𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)) ↔ ¬ ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ¬ ((𝐿‘(𝑓𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)))
2119, 20bitri 275 . . . . . 6 (∀𝑓(𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)) ↔ ¬ ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ¬ ((𝐿‘(𝑓𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)))
22 dfral2 3099 . . . . . . . 8 (∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘) ↔ ¬ ∃𝑦𝑋 ¬ ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘))
2322rexbii 3094 . . . . . . 7 (∃𝑘 ∈ ℕ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘) ↔ ∃𝑘 ∈ ℕ ¬ ∃𝑦𝑋 ¬ ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘))
24 rexnal 3100 . . . . . . 7 (∃𝑘 ∈ ℕ ¬ ∃𝑦𝑋 ¬ ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘) ↔ ¬ ∀𝑘 ∈ ℕ ∃𝑦𝑋 ¬ ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘))
2523, 24bitri 275 . . . . . 6 (∃𝑘 ∈ ℕ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘) ↔ ¬ ∀𝑘 ∈ ℕ ∃𝑦𝑋 ¬ ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘))
2616, 21, 253imtr4i 292 . . . . 5 (∀𝑓(𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)) → ∃𝑘 ∈ ℕ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘))
27 nnre 12273 . . . . . . 7 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ)
2827anim1i 615 . . . . . 6 ((𝑘 ∈ ℕ ∧ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘)) → (𝑘 ∈ ℝ ∧ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘)))
2928reximi2 3079 . . . . 5 (∃𝑘 ∈ ℕ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘) → ∃𝑘 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘))
3026, 29syl 17 . . . 4 (∀𝑓(𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)) → ∃𝑘 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘))
315, 30sylbi 217 . . 3 (∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘) → ∃𝑘 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘))
32 nmoubi.y . . . 4 𝑌 = (BaseSet‘𝑊)
33 nmoubi.l . . . 4 𝐿 = (normCV𝑈)
34 nmoubi.m . . . 4 𝑀 = (normCV𝑊)
35 nmoubi.3 . . . 4 𝑁 = (𝑈 normOpOLD 𝑊)
36 nmoubi.u . . . 4 𝑈 ∈ NrmCVec
37 nmoubi.w . . . 4 𝑊 ∈ NrmCVec
386, 32, 33, 34, 35, 36, 37nmobndi 30794 . . 3 (𝑇:𝑋𝑌 → ((𝑁𝑇) ∈ ℝ ↔ ∃𝑘 ∈ ℝ ∀𝑦𝑋 ((𝐿𝑦) ≤ 1 → (𝑀‘(𝑇𝑦)) ≤ 𝑘)))
3931, 38imbitrrid 246 . 2 (𝑇:𝑋𝑌 → (∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘) → (𝑁𝑇) ∈ ℝ))
4039imp 406 1 ((𝑇:𝑋𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓𝑘))) ≤ 𝑘)) → (𝑁𝑇) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2108  wral 3061  wrex 3070   class class class wbr 5143  wf 6557  cfv 6561  (class class class)co 7431  cr 11154  1c1 11156  cle 11296  cn 12266  NrmCVeccnv 30603  BaseSetcba 30605  normCVcnmcv 30609   normOpOLD cnmoo 30760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-grpo 30512  df-gid 30513  df-ginv 30514  df-ablo 30564  df-vc 30578  df-nv 30611  df-va 30614  df-ba 30615  df-sm 30616  df-0v 30617  df-nmcv 30619  df-nmoo 30764
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator