| Step | Hyp | Ref
| Expression |
| 1 | | impexp 450 |
. . . . . 6
⊢ (((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘) ↔ (𝑓:ℕ⟶𝑋 → (∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1 → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) |
| 2 | | r19.35 3108 |
. . . . . . 7
⊢
(∃𝑘 ∈
ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘) ↔ (∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1 → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) |
| 3 | 2 | imbi2i 336 |
. . . . . 6
⊢ ((𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) ↔ (𝑓:ℕ⟶𝑋 → (∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1 → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) |
| 4 | 1, 3 | bitr4i 278 |
. . . . 5
⊢ (((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘) ↔ (𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) |
| 5 | 4 | albii 1819 |
. . . 4
⊢
(∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) |
| 6 | | nmoubi.1 |
. . . . . . . . 9
⊢ 𝑋 = (BaseSet‘𝑈) |
| 7 | 6 | fvexi 6920 |
. . . . . . . 8
⊢ 𝑋 ∈ V |
| 8 | | nnenom 14021 |
. . . . . . . 8
⊢ ℕ
≈ ω |
| 9 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑓‘𝑘) → (𝐿‘𝑦) = (𝐿‘(𝑓‘𝑘))) |
| 10 | 9 | breq1d 5153 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑓‘𝑘) → ((𝐿‘𝑦) ≤ 1 ↔ (𝐿‘(𝑓‘𝑘)) ≤ 1)) |
| 11 | | 2fveq3 6911 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑓‘𝑘) → (𝑀‘(𝑇‘𝑦)) = (𝑀‘(𝑇‘(𝑓‘𝑘)))) |
| 12 | 11 | breq1d 5153 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑓‘𝑘) → ((𝑀‘(𝑇‘𝑦)) ≤ 𝑘 ↔ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) |
| 13 | 10, 12 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑦 = (𝑓‘𝑘) → (((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘) ↔ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) |
| 14 | 13 | notbid 318 |
. . . . . . . 8
⊢ (𝑦 = (𝑓‘𝑘) → (¬ ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘) ↔ ¬ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) |
| 15 | 7, 8, 14 | axcc4 10479 |
. . . . . . 7
⊢
(∀𝑘 ∈
ℕ ∃𝑦 ∈
𝑋 ¬ ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘) → ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ¬ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) |
| 16 | 15 | con3i 154 |
. . . . . 6
⊢ (¬
∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ¬ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) → ¬ ∀𝑘 ∈ ℕ ∃𝑦 ∈ 𝑋 ¬ ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘)) |
| 17 | | dfrex2 3073 |
. . . . . . . . 9
⊢
(∃𝑘 ∈
ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘) ↔ ¬ ∀𝑘 ∈ ℕ ¬ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) |
| 18 | 17 | imbi2i 336 |
. . . . . . . 8
⊢ ((𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) ↔ (𝑓:ℕ⟶𝑋 → ¬ ∀𝑘 ∈ ℕ ¬ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) |
| 19 | 18 | albii 1819 |
. . . . . . 7
⊢
(∀𝑓(𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ¬ ∀𝑘 ∈ ℕ ¬ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) |
| 20 | | alinexa 1843 |
. . . . . . 7
⊢
(∀𝑓(𝑓:ℕ⟶𝑋 → ¬ ∀𝑘 ∈ ℕ ¬ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) ↔ ¬ ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ¬ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) |
| 21 | 19, 20 | bitri 275 |
. . . . . 6
⊢
(∀𝑓(𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) ↔ ¬ ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ¬ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) |
| 22 | | dfral2 3099 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘) ↔ ¬ ∃𝑦 ∈ 𝑋 ¬ ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘)) |
| 23 | 22 | rexbii 3094 |
. . . . . . 7
⊢
(∃𝑘 ∈
ℕ ∀𝑦 ∈
𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘) ↔ ∃𝑘 ∈ ℕ ¬ ∃𝑦 ∈ 𝑋 ¬ ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘)) |
| 24 | | rexnal 3100 |
. . . . . . 7
⊢
(∃𝑘 ∈
ℕ ¬ ∃𝑦
∈ 𝑋 ¬ ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘) ↔ ¬ ∀𝑘 ∈ ℕ ∃𝑦 ∈ 𝑋 ¬ ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘)) |
| 25 | 23, 24 | bitri 275 |
. . . . . 6
⊢
(∃𝑘 ∈
ℕ ∀𝑦 ∈
𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘) ↔ ¬ ∀𝑘 ∈ ℕ ∃𝑦 ∈ 𝑋 ¬ ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘)) |
| 26 | 16, 21, 25 | 3imtr4i 292 |
. . . . 5
⊢
(∀𝑓(𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) → ∃𝑘 ∈ ℕ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘)) |
| 27 | | nnre 12273 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ) |
| 28 | 27 | anim1i 615 |
. . . . . 6
⊢ ((𝑘 ∈ ℕ ∧
∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘)) → (𝑘 ∈ ℝ ∧ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘))) |
| 29 | 28 | reximi2 3079 |
. . . . 5
⊢
(∃𝑘 ∈
ℕ ∀𝑦 ∈
𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘) → ∃𝑘 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘)) |
| 30 | 26, 29 | syl 17 |
. . . 4
⊢
(∀𝑓(𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) → ∃𝑘 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘)) |
| 31 | 5, 30 | sylbi 217 |
. . 3
⊢
(∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘) → ∃𝑘 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘)) |
| 32 | | nmoubi.y |
. . . 4
⊢ 𝑌 = (BaseSet‘𝑊) |
| 33 | | nmoubi.l |
. . . 4
⊢ 𝐿 =
(normCV‘𝑈) |
| 34 | | nmoubi.m |
. . . 4
⊢ 𝑀 =
(normCV‘𝑊) |
| 35 | | nmoubi.3 |
. . . 4
⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
| 36 | | nmoubi.u |
. . . 4
⊢ 𝑈 ∈ NrmCVec |
| 37 | | nmoubi.w |
. . . 4
⊢ 𝑊 ∈ NrmCVec |
| 38 | 6, 32, 33, 34, 35, 36, 37 | nmobndi 30794 |
. . 3
⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) ∈ ℝ ↔ ∃𝑘 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘))) |
| 39 | 31, 38 | imbitrrid 246 |
. 2
⊢ (𝑇:𝑋⟶𝑌 → (∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘) → (𝑁‘𝑇) ∈ ℝ)) |
| 40 | 39 | imp 406 |
1
⊢ ((𝑇:𝑋⟶𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) → (𝑁‘𝑇) ∈ ℝ) |