Step | Hyp | Ref
| Expression |
1 | | impexp 450 |
. . . . . 6
⊢ (((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘) ↔ (𝑓:ℕ⟶𝑋 → (∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1 → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) |
2 | | r19.35 3268 |
. . . . . . 7
⊢
(∃𝑘 ∈
ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘) ↔ (∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1 → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) |
3 | 2 | imbi2i 335 |
. . . . . 6
⊢ ((𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) ↔ (𝑓:ℕ⟶𝑋 → (∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1 → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) |
4 | 1, 3 | bitr4i 277 |
. . . . 5
⊢ (((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘) ↔ (𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) |
5 | 4 | albii 1823 |
. . . 4
⊢
(∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) |
6 | | nmoubi.1 |
. . . . . . . . 9
⊢ 𝑋 = (BaseSet‘𝑈) |
7 | 6 | fvexi 6770 |
. . . . . . . 8
⊢ 𝑋 ∈ V |
8 | | nnenom 13628 |
. . . . . . . 8
⊢ ℕ
≈ ω |
9 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑓‘𝑘) → (𝐿‘𝑦) = (𝐿‘(𝑓‘𝑘))) |
10 | 9 | breq1d 5080 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑓‘𝑘) → ((𝐿‘𝑦) ≤ 1 ↔ (𝐿‘(𝑓‘𝑘)) ≤ 1)) |
11 | | 2fveq3 6761 |
. . . . . . . . . . 11
⊢ (𝑦 = (𝑓‘𝑘) → (𝑀‘(𝑇‘𝑦)) = (𝑀‘(𝑇‘(𝑓‘𝑘)))) |
12 | 11 | breq1d 5080 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑓‘𝑘) → ((𝑀‘(𝑇‘𝑦)) ≤ 𝑘 ↔ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) |
13 | 10, 12 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑦 = (𝑓‘𝑘) → (((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘) ↔ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) |
14 | 13 | notbid 317 |
. . . . . . . 8
⊢ (𝑦 = (𝑓‘𝑘) → (¬ ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘) ↔ ¬ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) |
15 | 7, 8, 14 | axcc4 10126 |
. . . . . . 7
⊢
(∀𝑘 ∈
ℕ ∃𝑦 ∈
𝑋 ¬ ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘) → ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ¬ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) |
16 | 15 | con3i 154 |
. . . . . 6
⊢ (¬
∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ¬ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) → ¬ ∀𝑘 ∈ ℕ ∃𝑦 ∈ 𝑋 ¬ ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘)) |
17 | | dfrex2 3166 |
. . . . . . . . 9
⊢
(∃𝑘 ∈
ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘) ↔ ¬ ∀𝑘 ∈ ℕ ¬ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) |
18 | 17 | imbi2i 335 |
. . . . . . . 8
⊢ ((𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) ↔ (𝑓:ℕ⟶𝑋 → ¬ ∀𝑘 ∈ ℕ ¬ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) |
19 | 18 | albii 1823 |
. . . . . . 7
⊢
(∀𝑓(𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) ↔ ∀𝑓(𝑓:ℕ⟶𝑋 → ¬ ∀𝑘 ∈ ℕ ¬ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) |
20 | | alinexa 1846 |
. . . . . . 7
⊢
(∀𝑓(𝑓:ℕ⟶𝑋 → ¬ ∀𝑘 ∈ ℕ ¬ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) ↔ ¬ ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ¬ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) |
21 | 19, 20 | bitri 274 |
. . . . . 6
⊢
(∀𝑓(𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) ↔ ¬ ∃𝑓(𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ ¬ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘))) |
22 | | dfral2 3164 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘) ↔ ¬ ∃𝑦 ∈ 𝑋 ¬ ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘)) |
23 | 22 | rexbii 3177 |
. . . . . . 7
⊢
(∃𝑘 ∈
ℕ ∀𝑦 ∈
𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘) ↔ ∃𝑘 ∈ ℕ ¬ ∃𝑦 ∈ 𝑋 ¬ ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘)) |
24 | | rexnal 3165 |
. . . . . . 7
⊢
(∃𝑘 ∈
ℕ ¬ ∃𝑦
∈ 𝑋 ¬ ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘) ↔ ¬ ∀𝑘 ∈ ℕ ∃𝑦 ∈ 𝑋 ¬ ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘)) |
25 | 23, 24 | bitri 274 |
. . . . . 6
⊢
(∃𝑘 ∈
ℕ ∀𝑦 ∈
𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘) ↔ ¬ ∀𝑘 ∈ ℕ ∃𝑦 ∈ 𝑋 ¬ ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘)) |
26 | 16, 21, 25 | 3imtr4i 291 |
. . . . 5
⊢
(∀𝑓(𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) → ∃𝑘 ∈ ℕ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘)) |
27 | | nnre 11910 |
. . . . . . 7
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℝ) |
28 | 27 | anim1i 614 |
. . . . . 6
⊢ ((𝑘 ∈ ℕ ∧
∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘)) → (𝑘 ∈ ℝ ∧ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘))) |
29 | 28 | reximi2 3171 |
. . . . 5
⊢
(∃𝑘 ∈
ℕ ∀𝑦 ∈
𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘) → ∃𝑘 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘)) |
30 | 26, 29 | syl 17 |
. . . 4
⊢
(∀𝑓(𝑓:ℕ⟶𝑋 → ∃𝑘 ∈ ℕ ((𝐿‘(𝑓‘𝑘)) ≤ 1 → (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) → ∃𝑘 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘)) |
31 | 5, 30 | sylbi 216 |
. . 3
⊢
(∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘) → ∃𝑘 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘)) |
32 | | nmoubi.y |
. . . 4
⊢ 𝑌 = (BaseSet‘𝑊) |
33 | | nmoubi.l |
. . . 4
⊢ 𝐿 =
(normCV‘𝑈) |
34 | | nmoubi.m |
. . . 4
⊢ 𝑀 =
(normCV‘𝑊) |
35 | | nmoubi.3 |
. . . 4
⊢ 𝑁 = (𝑈 normOpOLD 𝑊) |
36 | | nmoubi.u |
. . . 4
⊢ 𝑈 ∈ NrmCVec |
37 | | nmoubi.w |
. . . 4
⊢ 𝑊 ∈ NrmCVec |
38 | 6, 32, 33, 34, 35, 36, 37 | nmobndi 29038 |
. . 3
⊢ (𝑇:𝑋⟶𝑌 → ((𝑁‘𝑇) ∈ ℝ ↔ ∃𝑘 ∈ ℝ ∀𝑦 ∈ 𝑋 ((𝐿‘𝑦) ≤ 1 → (𝑀‘(𝑇‘𝑦)) ≤ 𝑘))) |
39 | 31, 38 | syl5ibr 245 |
. 2
⊢ (𝑇:𝑋⟶𝑌 → (∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘) → (𝑁‘𝑇) ∈ ℝ)) |
40 | 39 | imp 406 |
1
⊢ ((𝑇:𝑋⟶𝑌 ∧ ∀𝑓((𝑓:ℕ⟶𝑋 ∧ ∀𝑘 ∈ ℕ (𝐿‘(𝑓‘𝑘)) ≤ 1) → ∃𝑘 ∈ ℕ (𝑀‘(𝑇‘(𝑓‘𝑘))) ≤ 𝑘)) → (𝑁‘𝑇) ∈ ℝ) |