| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > altopthg | Structured version Visualization version GIF version | ||
| Description: Alternate ordered pair theorem. (Contributed by Scott Fenton, 22-Mar-2012.) |
| Ref | Expression |
|---|---|
| altopthg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | altopthsn 36005 | . 2 ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ ({𝐴} = {𝐶} ∧ {𝐵} = {𝐷})) | |
| 2 | sneqbg 4792 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐶} ↔ 𝐴 = 𝐶)) | |
| 3 | sneqbg 4792 | . . 3 ⊢ (𝐵 ∈ 𝑊 → ({𝐵} = {𝐷} ↔ 𝐵 = 𝐷)) | |
| 4 | 2, 3 | bi2anan9 638 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (({𝐴} = {𝐶} ∧ {𝐵} = {𝐷}) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| 5 | 1, 4 | bitrid 283 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {csn 4573 ⟪caltop 36000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-sn 4574 df-pr 4576 df-altop 36002 |
| This theorem is referenced by: altopth 36013 |
| Copyright terms: Public domain | W3C validator |