MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcmono Structured version   Visualization version   GIF version

Theorem bcmono 27122
Description: The binomial coefficient is monotone in its second argument, up to the midway point. (Contributed by Mario Carneiro, 5-Mar-2014.)
Assertion
Ref Expression
bcmono ((𝑁 ∈ ℕ0𝐵 ∈ (ℤ𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) → (𝑁C𝐴) ≤ (𝑁C𝐵))

Proof of Theorem bcmono
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1191 . . 3 (((𝑁 ∈ ℕ0𝐵 ∈ (ℤ𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) ∧ 0 ≤ 𝐴) → 𝐵 ∈ (ℤ𝐴))
2 simpl1 1190 . . 3 (((𝑁 ∈ ℕ0𝐵 ∈ (ℤ𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) ∧ 0 ≤ 𝐴) → 𝑁 ∈ ℕ0)
3 eluzel2 12834 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → 𝐴 ∈ ℤ)
433ad2ant2 1133 . . . . 5 ((𝑁 ∈ ℕ0𝐵 ∈ (ℤ𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) → 𝐴 ∈ ℤ)
54anim1i 614 . . . 4 (((𝑁 ∈ ℕ0𝐵 ∈ (ℤ𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) ∧ 0 ≤ 𝐴) → (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴))
6 elnn0z 12578 . . . 4 (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴))
75, 6sylibr 233 . . 3 (((𝑁 ∈ ℕ0𝐵 ∈ (ℤ𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℕ0)
8 simpl3 1192 . . 3 (((𝑁 ∈ ℕ0𝐵 ∈ (ℤ𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) ∧ 0 ≤ 𝐴) → 𝐵 ≤ (𝑁 / 2))
9 breq1 5151 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 ≤ (𝑁 / 2) ↔ 𝐴 ≤ (𝑁 / 2)))
10 oveq2 7420 . . . . . . . 8 (𝑥 = 𝐴 → (𝑁C𝑥) = (𝑁C𝐴))
1110breq2d 5160 . . . . . . 7 (𝑥 = 𝐴 → ((𝑁C𝐴) ≤ (𝑁C𝑥) ↔ (𝑁C𝐴) ≤ (𝑁C𝐴)))
129, 11imbi12d 344 . . . . . 6 (𝑥 = 𝐴 → ((𝑥 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝑥)) ↔ (𝐴 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝐴))))
1312imbi2d 340 . . . . 5 (𝑥 = 𝐴 → (((𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → (𝑥 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝑥))) ↔ ((𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝐴)))))
14 breq1 5151 . . . . . . 7 (𝑥 = 𝑘 → (𝑥 ≤ (𝑁 / 2) ↔ 𝑘 ≤ (𝑁 / 2)))
15 oveq2 7420 . . . . . . . 8 (𝑥 = 𝑘 → (𝑁C𝑥) = (𝑁C𝑘))
1615breq2d 5160 . . . . . . 7 (𝑥 = 𝑘 → ((𝑁C𝐴) ≤ (𝑁C𝑥) ↔ (𝑁C𝐴) ≤ (𝑁C𝑘)))
1714, 16imbi12d 344 . . . . . 6 (𝑥 = 𝑘 → ((𝑥 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝑥)) ↔ (𝑘 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝑘))))
1817imbi2d 340 . . . . 5 (𝑥 = 𝑘 → (((𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → (𝑥 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝑥))) ↔ ((𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → (𝑘 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝑘)))))
19 breq1 5151 . . . . . . 7 (𝑥 = (𝑘 + 1) → (𝑥 ≤ (𝑁 / 2) ↔ (𝑘 + 1) ≤ (𝑁 / 2)))
20 oveq2 7420 . . . . . . . 8 (𝑥 = (𝑘 + 1) → (𝑁C𝑥) = (𝑁C(𝑘 + 1)))
2120breq2d 5160 . . . . . . 7 (𝑥 = (𝑘 + 1) → ((𝑁C𝐴) ≤ (𝑁C𝑥) ↔ (𝑁C𝐴) ≤ (𝑁C(𝑘 + 1))))
2219, 21imbi12d 344 . . . . . 6 (𝑥 = (𝑘 + 1) → ((𝑥 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝑥)) ↔ ((𝑘 + 1) ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C(𝑘 + 1)))))
2322imbi2d 340 . . . . 5 (𝑥 = (𝑘 + 1) → (((𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → (𝑥 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝑥))) ↔ ((𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → ((𝑘 + 1) ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C(𝑘 + 1))))))
24 breq1 5151 . . . . . . 7 (𝑥 = 𝐵 → (𝑥 ≤ (𝑁 / 2) ↔ 𝐵 ≤ (𝑁 / 2)))
25 oveq2 7420 . . . . . . . 8 (𝑥 = 𝐵 → (𝑁C𝑥) = (𝑁C𝐵))
2625breq2d 5160 . . . . . . 7 (𝑥 = 𝐵 → ((𝑁C𝐴) ≤ (𝑁C𝑥) ↔ (𝑁C𝐴) ≤ (𝑁C𝐵)))
2724, 26imbi12d 344 . . . . . 6 (𝑥 = 𝐵 → ((𝑥 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝑥)) ↔ (𝐵 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝐵))))
2827imbi2d 340 . . . . 5 (𝑥 = 𝐵 → (((𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → (𝑥 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝑥))) ↔ ((𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → (𝐵 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝐵)))))
29 bccl 14289 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (𝑁C𝐴) ∈ ℕ0)
3029nn0red 12540 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (𝑁C𝐴) ∈ ℝ)
3130leidd 11787 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (𝑁C𝐴) ≤ (𝑁C𝐴))
3231a1d 25 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (𝐴 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝐴)))
3332expcom 413 . . . . . 6 (𝐴 ∈ ℤ → (𝑁 ∈ ℕ0 → (𝐴 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝐴))))
3433adantrd 491 . . . . 5 (𝐴 ∈ ℤ → ((𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → (𝐴 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝐴))))
35 eluzelz 12839 . . . . . . . . . . . . 13 (𝑘 ∈ (ℤ𝐴) → 𝑘 ∈ ℤ)
36353ad2ant1 1132 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ𝐴) ∧ 𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → 𝑘 ∈ ℤ)
3736zred 12673 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝐴) ∧ 𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → 𝑘 ∈ ℝ)
3837lep1d 12152 . . . . . . . . . 10 ((𝑘 ∈ (ℤ𝐴) ∧ 𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → 𝑘 ≤ (𝑘 + 1))
39 peano2re 11394 . . . . . . . . . . . 12 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
4037, 39syl 17 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝐴) ∧ 𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → (𝑘 + 1) ∈ ℝ)
41 nn0re 12488 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
42413ad2ant2 1133 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ𝐴) ∧ 𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → 𝑁 ∈ ℝ)
4342rehalfcld 12466 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝐴) ∧ 𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → (𝑁 / 2) ∈ ℝ)
44 letr 11315 . . . . . . . . . . 11 ((𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ ∧ (𝑁 / 2) ∈ ℝ) → ((𝑘 ≤ (𝑘 + 1) ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 𝑘 ≤ (𝑁 / 2)))
4537, 40, 43, 44syl3anc 1370 . . . . . . . . . 10 ((𝑘 ∈ (ℤ𝐴) ∧ 𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → ((𝑘 ≤ (𝑘 + 1) ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 𝑘 ≤ (𝑁 / 2)))
4638, 45mpand 692 . . . . . . . . 9 ((𝑘 ∈ (ℤ𝐴) ∧ 𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → ((𝑘 + 1) ≤ (𝑁 / 2) → 𝑘 ≤ (𝑁 / 2)))
4746imim1d 82 . . . . . . . 8 ((𝑘 ∈ (ℤ𝐴) ∧ 𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → ((𝑘 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝑘)) → ((𝑘 + 1) ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝑘))))
48 eluznn0 12908 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝑘 ∈ (ℤ𝐴)) → 𝑘 ∈ ℕ0)
49413ad2ant2 1133 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 𝑁 ∈ ℝ)
50 nn0re 12488 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
51503ad2ant1 1132 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 𝑘 ∈ ℝ)
52 nn0p1nn 12518 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ)
53523ad2ant1 1132 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑘 + 1) ∈ ℕ)
5453nnnn0d 12539 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑘 + 1) ∈ ℕ0)
5554nn0red 12540 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑘 + 1) ∈ ℝ)
5653nncnd 12235 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑘 + 1) ∈ ℂ)
57562timesd 12462 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (2 · (𝑘 + 1)) = ((𝑘 + 1) + (𝑘 + 1)))
58 simp3 1137 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑘 + 1) ≤ (𝑁 / 2))
59 2re 12293 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℝ
60 2pos 12322 . . . . . . . . . . . . . . . . . . . . . 22 0 < 2
6159, 60pm3.2i 470 . . . . . . . . . . . . . . . . . . . . 21 (2 ∈ ℝ ∧ 0 < 2)
6261a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (2 ∈ ℝ ∧ 0 < 2))
63 lemuldiv2 12102 . . . . . . . . . . . . . . . . . . . 20 (((𝑘 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · (𝑘 + 1)) ≤ 𝑁 ↔ (𝑘 + 1) ≤ (𝑁 / 2)))
6455, 49, 62, 63syl3anc 1370 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → ((2 · (𝑘 + 1)) ≤ 𝑁 ↔ (𝑘 + 1) ≤ (𝑁 / 2)))
6558, 64mpbird 257 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (2 · (𝑘 + 1)) ≤ 𝑁)
6657, 65eqbrtrrd 5172 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → ((𝑘 + 1) + (𝑘 + 1)) ≤ 𝑁)
6751lep1d 12152 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 𝑘 ≤ (𝑘 + 1))
6849, 51, 55, 55, 66, 67lesub3d 11839 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑘 + 1) ≤ (𝑁𝑘))
69 nnre 12226 . . . . . . . . . . . . . . . . . . 19 ((𝑘 + 1) ∈ ℕ → (𝑘 + 1) ∈ ℝ)
70 nngt0 12250 . . . . . . . . . . . . . . . . . . 19 ((𝑘 + 1) ∈ ℕ → 0 < (𝑘 + 1))
7169, 70jca 511 . . . . . . . . . . . . . . . . . 18 ((𝑘 + 1) ∈ ℕ → ((𝑘 + 1) ∈ ℝ ∧ 0 < (𝑘 + 1)))
7253, 71syl 17 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → ((𝑘 + 1) ∈ ℝ ∧ 0 < (𝑘 + 1)))
73 nn0z 12590 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
74733ad2ant2 1133 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 𝑁 ∈ ℤ)
75 nn0z 12590 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℕ0𝑘 ∈ ℤ)
76753ad2ant1 1132 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 𝑘 ∈ ℤ)
7774, 76zsubcld 12678 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑁𝑘) ∈ ℤ)
7849rehalfcld 12466 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑁 / 2) ∈ ℝ)
7949, 59jctir 520 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑁 ∈ ℝ ∧ 2 ∈ ℝ))
80 nn0ge0 12504 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
81803ad2ant2 1133 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 0 ≤ 𝑁)
82 1le2 12428 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ≤ 2
8381, 82jctir 520 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (0 ≤ 𝑁 ∧ 1 ≤ 2))
84 lemulge12 12084 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑁 ∈ ℝ ∧ 2 ∈ ℝ) ∧ (0 ≤ 𝑁 ∧ 1 ≤ 2)) → 𝑁 ≤ (2 · 𝑁))
8579, 83, 84syl2anc 583 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 𝑁 ≤ (2 · 𝑁))
86 ledivmul 12097 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑁 / 2) ≤ 𝑁𝑁 ≤ (2 · 𝑁)))
8749, 49, 62, 86syl3anc 1370 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → ((𝑁 / 2) ≤ 𝑁𝑁 ≤ (2 · 𝑁)))
8885, 87mpbird 257 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑁 / 2) ≤ 𝑁)
8955, 78, 49, 58, 88letrd 11378 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑘 + 1) ≤ 𝑁)
90 1red 11222 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 1 ∈ ℝ)
9151, 90, 49leaddsub2d 11823 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → ((𝑘 + 1) ≤ 𝑁 ↔ 1 ≤ (𝑁𝑘)))
9289, 91mpbid 231 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 1 ≤ (𝑁𝑘))
93 elnnz1 12595 . . . . . . . . . . . . . . . . . . 19 ((𝑁𝑘) ∈ ℕ ↔ ((𝑁𝑘) ∈ ℤ ∧ 1 ≤ (𝑁𝑘)))
9477, 92, 93sylanbrc 582 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑁𝑘) ∈ ℕ)
95 nnre 12226 . . . . . . . . . . . . . . . . . . 19 ((𝑁𝑘) ∈ ℕ → (𝑁𝑘) ∈ ℝ)
96 nngt0 12250 . . . . . . . . . . . . . . . . . . 19 ((𝑁𝑘) ∈ ℕ → 0 < (𝑁𝑘))
9795, 96jca 511 . . . . . . . . . . . . . . . . . 18 ((𝑁𝑘) ∈ ℕ → ((𝑁𝑘) ∈ ℝ ∧ 0 < (𝑁𝑘)))
9894, 97syl 17 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → ((𝑁𝑘) ∈ ℝ ∧ 0 < (𝑁𝑘)))
99 faccl 14250 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
100993ad2ant2 1133 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (!‘𝑁) ∈ ℕ)
101 nnm1nn0 12520 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁𝑘) ∈ ℕ → ((𝑁𝑘) − 1) ∈ ℕ0)
102 faccl 14250 . . . . . . . . . . . . . . . . . . . . 21 (((𝑁𝑘) − 1) ∈ ℕ0 → (!‘((𝑁𝑘) − 1)) ∈ ℕ)
10394, 101, 1023syl 18 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (!‘((𝑁𝑘) − 1)) ∈ ℕ)
104 faccl 14250 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
1051043ad2ant1 1132 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (!‘𝑘) ∈ ℕ)
106103, 105nnmulcld 12272 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → ((!‘((𝑁𝑘) − 1)) · (!‘𝑘)) ∈ ℕ)
107 nnrp 12992 . . . . . . . . . . . . . . . . . . . 20 ((!‘𝑁) ∈ ℕ → (!‘𝑁) ∈ ℝ+)
108 nnrp 12992 . . . . . . . . . . . . . . . . . . . 20 (((!‘((𝑁𝑘) − 1)) · (!‘𝑘)) ∈ ℕ → ((!‘((𝑁𝑘) − 1)) · (!‘𝑘)) ∈ ℝ+)
109 rpdivcl 13006 . . . . . . . . . . . . . . . . . . . 20 (((!‘𝑁) ∈ ℝ+ ∧ ((!‘((𝑁𝑘) − 1)) · (!‘𝑘)) ∈ ℝ+) → ((!‘𝑁) / ((!‘((𝑁𝑘) − 1)) · (!‘𝑘))) ∈ ℝ+)
110107, 108, 109syl2an 595 . . . . . . . . . . . . . . . . . . 19 (((!‘𝑁) ∈ ℕ ∧ ((!‘((𝑁𝑘) − 1)) · (!‘𝑘)) ∈ ℕ) → ((!‘𝑁) / ((!‘((𝑁𝑘) − 1)) · (!‘𝑘))) ∈ ℝ+)
111100, 106, 110syl2anc 583 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → ((!‘𝑁) / ((!‘((𝑁𝑘) − 1)) · (!‘𝑘))) ∈ ℝ+)
112111rpregt0d 13029 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (((!‘𝑁) / ((!‘((𝑁𝑘) − 1)) · (!‘𝑘))) ∈ ℝ ∧ 0 < ((!‘𝑁) / ((!‘((𝑁𝑘) − 1)) · (!‘𝑘)))))
113 lediv2 12111 . . . . . . . . . . . . . . . . 17 ((((𝑘 + 1) ∈ ℝ ∧ 0 < (𝑘 + 1)) ∧ ((𝑁𝑘) ∈ ℝ ∧ 0 < (𝑁𝑘)) ∧ (((!‘𝑁) / ((!‘((𝑁𝑘) − 1)) · (!‘𝑘))) ∈ ℝ ∧ 0 < ((!‘𝑁) / ((!‘((𝑁𝑘) − 1)) · (!‘𝑘))))) → ((𝑘 + 1) ≤ (𝑁𝑘) ↔ (((!‘𝑁) / ((!‘((𝑁𝑘) − 1)) · (!‘𝑘))) / (𝑁𝑘)) ≤ (((!‘𝑁) / ((!‘((𝑁𝑘) − 1)) · (!‘𝑘))) / (𝑘 + 1))))
11472, 98, 112, 113syl3anc 1370 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → ((𝑘 + 1) ≤ (𝑁𝑘) ↔ (((!‘𝑁) / ((!‘((𝑁𝑘) − 1)) · (!‘𝑘))) / (𝑁𝑘)) ≤ (((!‘𝑁) / ((!‘((𝑁𝑘) − 1)) · (!‘𝑘))) / (𝑘 + 1))))
11568, 114mpbid 231 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (((!‘𝑁) / ((!‘((𝑁𝑘) − 1)) · (!‘𝑘))) / (𝑁𝑘)) ≤ (((!‘𝑁) / ((!‘((𝑁𝑘) − 1)) · (!‘𝑘))) / (𝑘 + 1)))
116 facnn2 14249 . . . . . . . . . . . . . . . . . . . 20 ((𝑁𝑘) ∈ ℕ → (!‘(𝑁𝑘)) = ((!‘((𝑁𝑘) − 1)) · (𝑁𝑘)))
11794, 116syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (!‘(𝑁𝑘)) = ((!‘((𝑁𝑘) − 1)) · (𝑁𝑘)))
118117oveq1d 7427 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → ((!‘(𝑁𝑘)) · (!‘𝑘)) = (((!‘((𝑁𝑘) − 1)) · (𝑁𝑘)) · (!‘𝑘)))
119103nncnd 12235 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (!‘((𝑁𝑘) − 1)) ∈ ℂ)
120105nncnd 12235 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (!‘𝑘) ∈ ℂ)
12177zcnd 12674 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑁𝑘) ∈ ℂ)
122119, 120, 121mul32d 11431 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (((!‘((𝑁𝑘) − 1)) · (!‘𝑘)) · (𝑁𝑘)) = (((!‘((𝑁𝑘) − 1)) · (𝑁𝑘)) · (!‘𝑘)))
123118, 122eqtr4d 2774 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → ((!‘(𝑁𝑘)) · (!‘𝑘)) = (((!‘((𝑁𝑘) − 1)) · (!‘𝑘)) · (𝑁𝑘)))
124123oveq2d 7428 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → ((!‘𝑁) / ((!‘(𝑁𝑘)) · (!‘𝑘))) = ((!‘𝑁) / (((!‘((𝑁𝑘) − 1)) · (!‘𝑘)) · (𝑁𝑘))))
125 0zd 12577 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 0 ∈ ℤ)
126 nn0ge0 12504 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → 0 ≤ 𝑘)
1271263ad2ant1 1132 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 0 ≤ 𝑘)
12851, 55, 49, 67, 89letrd 11378 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 𝑘𝑁)
129125, 74, 76, 127, 128elfzd 13499 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 𝑘 ∈ (0...𝑁))
130 bcval2 14272 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ (0...𝑁) → (𝑁C𝑘) = ((!‘𝑁) / ((!‘(𝑁𝑘)) · (!‘𝑘))))
131129, 130syl 17 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑁C𝑘) = ((!‘𝑁) / ((!‘(𝑁𝑘)) · (!‘𝑘))))
132100nncnd 12235 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (!‘𝑁) ∈ ℂ)
133106nncnd 12235 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → ((!‘((𝑁𝑘) − 1)) · (!‘𝑘)) ∈ ℂ)
134106nnne0d 12269 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → ((!‘((𝑁𝑘) − 1)) · (!‘𝑘)) ≠ 0)
13594nnne0d 12269 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑁𝑘) ≠ 0)
136132, 133, 121, 134, 135divdiv1d 12028 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (((!‘𝑁) / ((!‘((𝑁𝑘) − 1)) · (!‘𝑘))) / (𝑁𝑘)) = ((!‘𝑁) / (((!‘((𝑁𝑘) − 1)) · (!‘𝑘)) · (𝑁𝑘))))
137124, 131, 1363eqtr4d 2781 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑁C𝑘) = (((!‘𝑁) / ((!‘((𝑁𝑘) − 1)) · (!‘𝑘))) / (𝑁𝑘)))
138 nn0cn 12489 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
1391383ad2ant2 1133 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 𝑁 ∈ ℂ)
140 nn0cn 12489 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
1411403ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 𝑘 ∈ ℂ)
142 1cnd 11216 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 1 ∈ ℂ)
143139, 141, 142subsub4d 11609 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → ((𝑁𝑘) − 1) = (𝑁 − (𝑘 + 1)))
144143eqcomd 2737 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑁 − (𝑘 + 1)) = ((𝑁𝑘) − 1))
145144fveq2d 6895 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (!‘(𝑁 − (𝑘 + 1))) = (!‘((𝑁𝑘) − 1)))
146 facp1 14245 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0 → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
1471463ad2ant1 1132 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1)))
148145, 147oveq12d 7430 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → ((!‘(𝑁 − (𝑘 + 1))) · (!‘(𝑘 + 1))) = ((!‘((𝑁𝑘) − 1)) · ((!‘𝑘) · (𝑘 + 1))))
149119, 120, 56mulassd 11244 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (((!‘((𝑁𝑘) − 1)) · (!‘𝑘)) · (𝑘 + 1)) = ((!‘((𝑁𝑘) − 1)) · ((!‘𝑘) · (𝑘 + 1))))
150148, 149eqtr4d 2774 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → ((!‘(𝑁 − (𝑘 + 1))) · (!‘(𝑘 + 1))) = (((!‘((𝑁𝑘) − 1)) · (!‘𝑘)) · (𝑘 + 1)))
151150oveq2d 7428 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → ((!‘𝑁) / ((!‘(𝑁 − (𝑘 + 1))) · (!‘(𝑘 + 1)))) = ((!‘𝑁) / (((!‘((𝑁𝑘) − 1)) · (!‘𝑘)) · (𝑘 + 1))))
15253nnzd 12592 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑘 + 1) ∈ ℤ)
15354nn0ge0d 12542 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 0 ≤ (𝑘 + 1))
154125, 74, 152, 153, 89elfzd 13499 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑘 + 1) ∈ (0...𝑁))
155 bcval2 14272 . . . . . . . . . . . . . . . . 17 ((𝑘 + 1) ∈ (0...𝑁) → (𝑁C(𝑘 + 1)) = ((!‘𝑁) / ((!‘(𝑁 − (𝑘 + 1))) · (!‘(𝑘 + 1)))))
156154, 155syl 17 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑁C(𝑘 + 1)) = ((!‘𝑁) / ((!‘(𝑁 − (𝑘 + 1))) · (!‘(𝑘 + 1)))))
15753nnne0d 12269 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑘 + 1) ≠ 0)
158132, 133, 56, 134, 157divdiv1d 12028 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (((!‘𝑁) / ((!‘((𝑁𝑘) − 1)) · (!‘𝑘))) / (𝑘 + 1)) = ((!‘𝑁) / (((!‘((𝑁𝑘) − 1)) · (!‘𝑘)) · (𝑘 + 1))))
159151, 156, 1583eqtr4d 2781 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑁C(𝑘 + 1)) = (((!‘𝑁) / ((!‘((𝑁𝑘) − 1)) · (!‘𝑘))) / (𝑘 + 1)))
160115, 137, 1593brtr4d 5180 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑁C𝑘) ≤ (𝑁C(𝑘 + 1)))
1611603exp 1118 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (𝑁 ∈ ℕ0 → ((𝑘 + 1) ≤ (𝑁 / 2) → (𝑁C𝑘) ≤ (𝑁C(𝑘 + 1)))))
16248, 161syl 17 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑘 ∈ (ℤ𝐴)) → (𝑁 ∈ ℕ0 → ((𝑘 + 1) ≤ (𝑁 / 2) → (𝑁C𝑘) ≤ (𝑁C(𝑘 + 1)))))
1631623impia 1116 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑘 ∈ (ℤ𝐴) ∧ 𝑁 ∈ ℕ0) → ((𝑘 + 1) ≤ (𝑁 / 2) → (𝑁C𝑘) ≤ (𝑁C(𝑘 + 1))))
1641633coml 1126 . . . . . . . . . 10 ((𝑘 ∈ (ℤ𝐴) ∧ 𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → ((𝑘 + 1) ≤ (𝑁 / 2) → (𝑁C𝑘) ≤ (𝑁C(𝑘 + 1))))
165 simp2 1136 . . . . . . . . . . . . . 14 ((𝑘 ∈ (ℤ𝐴) ∧ 𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → 𝑁 ∈ ℕ0)
166 nn0z 12590 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
1671663ad2ant3 1134 . . . . . . . . . . . . . 14 ((𝑘 ∈ (ℤ𝐴) ∧ 𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → 𝐴 ∈ ℤ)
168165, 167, 29syl2anc 583 . . . . . . . . . . . . 13 ((𝑘 ∈ (ℤ𝐴) ∧ 𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → (𝑁C𝐴) ∈ ℕ0)
169168nn0red 12540 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ𝐴) ∧ 𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → (𝑁C𝐴) ∈ ℝ)
170 bccl 14289 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁C𝑘) ∈ ℕ0)
171165, 36, 170syl2anc 583 . . . . . . . . . . . . 13 ((𝑘 ∈ (ℤ𝐴) ∧ 𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → (𝑁C𝑘) ∈ ℕ0)
172171nn0red 12540 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ𝐴) ∧ 𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → (𝑁C𝑘) ∈ ℝ)
17336peano2zd 12676 . . . . . . . . . . . . . 14 ((𝑘 ∈ (ℤ𝐴) ∧ 𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → (𝑘 + 1) ∈ ℤ)
174 bccl 14289 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ (𝑘 + 1) ∈ ℤ) → (𝑁C(𝑘 + 1)) ∈ ℕ0)
175165, 173, 174syl2anc 583 . . . . . . . . . . . . 13 ((𝑘 ∈ (ℤ𝐴) ∧ 𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → (𝑁C(𝑘 + 1)) ∈ ℕ0)
176175nn0red 12540 . . . . . . . . . . . 12 ((𝑘 ∈ (ℤ𝐴) ∧ 𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → (𝑁C(𝑘 + 1)) ∈ ℝ)
177 letr 11315 . . . . . . . . . . . 12 (((𝑁C𝐴) ∈ ℝ ∧ (𝑁C𝑘) ∈ ℝ ∧ (𝑁C(𝑘 + 1)) ∈ ℝ) → (((𝑁C𝐴) ≤ (𝑁C𝑘) ∧ (𝑁C𝑘) ≤ (𝑁C(𝑘 + 1))) → (𝑁C𝐴) ≤ (𝑁C(𝑘 + 1))))
178169, 172, 176, 177syl3anc 1370 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ𝐴) ∧ 𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → (((𝑁C𝐴) ≤ (𝑁C𝑘) ∧ (𝑁C𝑘) ≤ (𝑁C(𝑘 + 1))) → (𝑁C𝐴) ≤ (𝑁C(𝑘 + 1))))
179178expcomd 416 . . . . . . . . . 10 ((𝑘 ∈ (ℤ𝐴) ∧ 𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → ((𝑁C𝑘) ≤ (𝑁C(𝑘 + 1)) → ((𝑁C𝐴) ≤ (𝑁C𝑘) → (𝑁C𝐴) ≤ (𝑁C(𝑘 + 1)))))
180164, 179syld 47 . . . . . . . . 9 ((𝑘 ∈ (ℤ𝐴) ∧ 𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → ((𝑘 + 1) ≤ (𝑁 / 2) → ((𝑁C𝐴) ≤ (𝑁C𝑘) → (𝑁C𝐴) ≤ (𝑁C(𝑘 + 1)))))
181180a2d 29 . . . . . . . 8 ((𝑘 ∈ (ℤ𝐴) ∧ 𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → (((𝑘 + 1) ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝑘)) → ((𝑘 + 1) ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C(𝑘 + 1)))))
18247, 181syld 47 . . . . . . 7 ((𝑘 ∈ (ℤ𝐴) ∧ 𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → ((𝑘 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝑘)) → ((𝑘 + 1) ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C(𝑘 + 1)))))
1831823expib 1121 . . . . . 6 (𝑘 ∈ (ℤ𝐴) → ((𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → ((𝑘 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝑘)) → ((𝑘 + 1) ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C(𝑘 + 1))))))
184183a2d 29 . . . . 5 (𝑘 ∈ (ℤ𝐴) → (((𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → (𝑘 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝑘))) → ((𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → ((𝑘 + 1) ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C(𝑘 + 1))))))
18513, 18, 23, 28, 34, 184uzind4 12897 . . . 4 (𝐵 ∈ (ℤ𝐴) → ((𝑁 ∈ ℕ0𝐴 ∈ ℕ0) → (𝐵 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝐵))))
1861853imp 1110 . . 3 ((𝐵 ∈ (ℤ𝐴) ∧ (𝑁 ∈ ℕ0𝐴 ∈ ℕ0) ∧ 𝐵 ≤ (𝑁 / 2)) → (𝑁C𝐴) ≤ (𝑁C𝐵))
1871, 2, 7, 8, 186syl121anc 1374 . 2 (((𝑁 ∈ ℕ0𝐵 ∈ (ℤ𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) ∧ 0 ≤ 𝐴) → (𝑁C𝐴) ≤ (𝑁C𝐵))
188 simpl1 1190 . . . 4 (((𝑁 ∈ ℕ0𝐵 ∈ (ℤ𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) ∧ 𝐴 < 0) → 𝑁 ∈ ℕ0)
1894adantr 480 . . . 4 (((𝑁 ∈ ℕ0𝐵 ∈ (ℤ𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) ∧ 𝐴 < 0) → 𝐴 ∈ ℤ)
190 animorrl 978 . . . 4 (((𝑁 ∈ ℕ0𝐵 ∈ (ℤ𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) ∧ 𝐴 < 0) → (𝐴 < 0 ∨ 𝑁 < 𝐴))
191 bcval4 14274 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ (𝐴 < 0 ∨ 𝑁 < 𝐴)) → (𝑁C𝐴) = 0)
192188, 189, 190, 191syl3anc 1370 . . 3 (((𝑁 ∈ ℕ0𝐵 ∈ (ℤ𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) ∧ 𝐴 < 0) → (𝑁C𝐴) = 0)
193 simpl2 1191 . . . . . 6 (((𝑁 ∈ ℕ0𝐵 ∈ (ℤ𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) ∧ 𝐴 < 0) → 𝐵 ∈ (ℤ𝐴))
194 eluzelz 12839 . . . . . 6 (𝐵 ∈ (ℤ𝐴) → 𝐵 ∈ ℤ)
195193, 194syl 17 . . . . 5 (((𝑁 ∈ ℕ0𝐵 ∈ (ℤ𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) ∧ 𝐴 < 0) → 𝐵 ∈ ℤ)
196 bccl 14289 . . . . 5 ((𝑁 ∈ ℕ0𝐵 ∈ ℤ) → (𝑁C𝐵) ∈ ℕ0)
197188, 195, 196syl2anc 583 . . . 4 (((𝑁 ∈ ℕ0𝐵 ∈ (ℤ𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) ∧ 𝐴 < 0) → (𝑁C𝐵) ∈ ℕ0)
198197nn0ge0d 12542 . . 3 (((𝑁 ∈ ℕ0𝐵 ∈ (ℤ𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) ∧ 𝐴 < 0) → 0 ≤ (𝑁C𝐵))
199192, 198eqbrtrd 5170 . 2 (((𝑁 ∈ ℕ0𝐵 ∈ (ℤ𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) ∧ 𝐴 < 0) → (𝑁C𝐴) ≤ (𝑁C𝐵))
200 0re 11223 . . 3 0 ∈ ℝ
2014zred 12673 . . 3 ((𝑁 ∈ ℕ0𝐵 ∈ (ℤ𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) → 𝐴 ∈ ℝ)
202 lelttric 11328 . . 3 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴𝐴 < 0))
203200, 201, 202sylancr 586 . 2 ((𝑁 ∈ ℕ0𝐵 ∈ (ℤ𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) → (0 ≤ 𝐴𝐴 < 0))
204187, 199, 203mpjaodan 956 1 ((𝑁 ∈ ℕ0𝐵 ∈ (ℤ𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) → (𝑁C𝐴) ≤ (𝑁C𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 844  w3a 1086   = wceq 1540  wcel 2105   class class class wbr 5148  cfv 6543  (class class class)co 7412  cc 11114  cr 11115  0cc0 11116  1c1 11117   + caddc 11119   · cmul 11121   < clt 11255  cle 11256  cmin 11451   / cdiv 11878  cn 12219  2c2 12274  0cn0 12479  cz 12565  cuz 12829  +crp 12981  ...cfz 13491  !cfa 14240  Ccbc 14269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-n0 12480  df-z 12566  df-uz 12830  df-rp 12982  df-fz 13492  df-seq 13974  df-fac 14241  df-bc 14270
This theorem is referenced by:  bcmax  27123
  Copyright terms: Public domain W3C validator