| Step | Hyp | Ref
| Expression |
| 1 | | simpl2 1193 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ 𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) ∧ 0 ≤ 𝐴) → 𝐵 ∈ (ℤ≥‘𝐴)) |
| 2 | | simpl1 1192 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ 𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) ∧ 0 ≤ 𝐴) → 𝑁 ∈
ℕ0) |
| 3 | | eluzel2 12883 |
. . . . . 6
⊢ (𝐵 ∈
(ℤ≥‘𝐴) → 𝐴 ∈ ℤ) |
| 4 | 3 | 3ad2ant2 1135 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) → 𝐴 ∈ ℤ) |
| 5 | 4 | anim1i 615 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) ∧ 0 ≤ 𝐴) → (𝐴 ∈ ℤ ∧ 0 ≤ 𝐴)) |
| 6 | | elnn0z 12626 |
. . . 4
⊢ (𝐴 ∈ ℕ0
↔ (𝐴 ∈ ℤ
∧ 0 ≤ 𝐴)) |
| 7 | 5, 6 | sylibr 234 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ 𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) ∧ 0 ≤ 𝐴) → 𝐴 ∈
ℕ0) |
| 8 | | simpl3 1194 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ 𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) ∧ 0 ≤ 𝐴) → 𝐵 ≤ (𝑁 / 2)) |
| 9 | | breq1 5146 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑥 ≤ (𝑁 / 2) ↔ 𝐴 ≤ (𝑁 / 2))) |
| 10 | | oveq2 7439 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑁C𝑥) = (𝑁C𝐴)) |
| 11 | 10 | breq2d 5155 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → ((𝑁C𝐴) ≤ (𝑁C𝑥) ↔ (𝑁C𝐴) ≤ (𝑁C𝐴))) |
| 12 | 9, 11 | imbi12d 344 |
. . . . . 6
⊢ (𝑥 = 𝐴 → ((𝑥 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝑥)) ↔ (𝐴 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝐴)))) |
| 13 | 12 | imbi2d 340 |
. . . . 5
⊢ (𝑥 = 𝐴 → (((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
→ (𝑥 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝑥))) ↔ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
→ (𝐴 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝐴))))) |
| 14 | | breq1 5146 |
. . . . . . 7
⊢ (𝑥 = 𝑘 → (𝑥 ≤ (𝑁 / 2) ↔ 𝑘 ≤ (𝑁 / 2))) |
| 15 | | oveq2 7439 |
. . . . . . . 8
⊢ (𝑥 = 𝑘 → (𝑁C𝑥) = (𝑁C𝑘)) |
| 16 | 15 | breq2d 5155 |
. . . . . . 7
⊢ (𝑥 = 𝑘 → ((𝑁C𝐴) ≤ (𝑁C𝑥) ↔ (𝑁C𝐴) ≤ (𝑁C𝑘))) |
| 17 | 14, 16 | imbi12d 344 |
. . . . . 6
⊢ (𝑥 = 𝑘 → ((𝑥 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝑥)) ↔ (𝑘 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝑘)))) |
| 18 | 17 | imbi2d 340 |
. . . . 5
⊢ (𝑥 = 𝑘 → (((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
→ (𝑥 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝑥))) ↔ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
→ (𝑘 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝑘))))) |
| 19 | | breq1 5146 |
. . . . . . 7
⊢ (𝑥 = (𝑘 + 1) → (𝑥 ≤ (𝑁 / 2) ↔ (𝑘 + 1) ≤ (𝑁 / 2))) |
| 20 | | oveq2 7439 |
. . . . . . . 8
⊢ (𝑥 = (𝑘 + 1) → (𝑁C𝑥) = (𝑁C(𝑘 + 1))) |
| 21 | 20 | breq2d 5155 |
. . . . . . 7
⊢ (𝑥 = (𝑘 + 1) → ((𝑁C𝐴) ≤ (𝑁C𝑥) ↔ (𝑁C𝐴) ≤ (𝑁C(𝑘 + 1)))) |
| 22 | 19, 21 | imbi12d 344 |
. . . . . 6
⊢ (𝑥 = (𝑘 + 1) → ((𝑥 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝑥)) ↔ ((𝑘 + 1) ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C(𝑘 + 1))))) |
| 23 | 22 | imbi2d 340 |
. . . . 5
⊢ (𝑥 = (𝑘 + 1) → (((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
→ (𝑥 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝑥))) ↔ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
→ ((𝑘 + 1) ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C(𝑘 + 1)))))) |
| 24 | | breq1 5146 |
. . . . . . 7
⊢ (𝑥 = 𝐵 → (𝑥 ≤ (𝑁 / 2) ↔ 𝐵 ≤ (𝑁 / 2))) |
| 25 | | oveq2 7439 |
. . . . . . . 8
⊢ (𝑥 = 𝐵 → (𝑁C𝑥) = (𝑁C𝐵)) |
| 26 | 25 | breq2d 5155 |
. . . . . . 7
⊢ (𝑥 = 𝐵 → ((𝑁C𝐴) ≤ (𝑁C𝑥) ↔ (𝑁C𝐴) ≤ (𝑁C𝐵))) |
| 27 | 24, 26 | imbi12d 344 |
. . . . . 6
⊢ (𝑥 = 𝐵 → ((𝑥 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝑥)) ↔ (𝐵 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝐵)))) |
| 28 | 27 | imbi2d 340 |
. . . . 5
⊢ (𝑥 = 𝐵 → (((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
→ (𝑥 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝑥))) ↔ ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
→ (𝐵 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝐵))))) |
| 29 | | bccl 14361 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (𝑁C𝐴) ∈
ℕ0) |
| 30 | 29 | nn0red 12588 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (𝑁C𝐴) ∈ ℝ) |
| 31 | 30 | leidd 11829 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (𝑁C𝐴) ≤ (𝑁C𝐴)) |
| 32 | 31 | a1d 25 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ)
→ (𝐴 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝐴))) |
| 33 | 32 | expcom 413 |
. . . . . 6
⊢ (𝐴 ∈ ℤ → (𝑁 ∈ ℕ0
→ (𝐴 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝐴)))) |
| 34 | 33 | adantrd 491 |
. . . . 5
⊢ (𝐴 ∈ ℤ → ((𝑁 ∈ ℕ0
∧ 𝐴 ∈
ℕ0) → (𝐴 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝐴)))) |
| 35 | | eluzelz 12888 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈
(ℤ≥‘𝐴) → 𝑘 ∈ ℤ) |
| 36 | 35 | 3ad2ant1 1134 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈
(ℤ≥‘𝐴) ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
→ 𝑘 ∈
ℤ) |
| 37 | 36 | zred 12722 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈
(ℤ≥‘𝐴) ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
→ 𝑘 ∈
ℝ) |
| 38 | 37 | lep1d 12199 |
. . . . . . . . . 10
⊢ ((𝑘 ∈
(ℤ≥‘𝐴) ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
→ 𝑘 ≤ (𝑘 + 1)) |
| 39 | | peano2re 11434 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ℝ → (𝑘 + 1) ∈
ℝ) |
| 40 | 37, 39 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈
(ℤ≥‘𝐴) ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
→ (𝑘 + 1) ∈
ℝ) |
| 41 | | nn0re 12535 |
. . . . . . . . . . . . 13
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℝ) |
| 42 | 41 | 3ad2ant2 1135 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈
(ℤ≥‘𝐴) ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
→ 𝑁 ∈
ℝ) |
| 43 | 42 | rehalfcld 12513 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈
(ℤ≥‘𝐴) ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
→ (𝑁 / 2) ∈
ℝ) |
| 44 | | letr 11355 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ ∧
(𝑁 / 2) ∈ ℝ)
→ ((𝑘 ≤ (𝑘 + 1) ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 𝑘 ≤ (𝑁 / 2))) |
| 45 | 37, 40, 43, 44 | syl3anc 1373 |
. . . . . . . . . 10
⊢ ((𝑘 ∈
(ℤ≥‘𝐴) ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
→ ((𝑘 ≤ (𝑘 + 1) ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 𝑘 ≤ (𝑁 / 2))) |
| 46 | 38, 45 | mpand 695 |
. . . . . . . . 9
⊢ ((𝑘 ∈
(ℤ≥‘𝐴) ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
→ ((𝑘 + 1) ≤ (𝑁 / 2) → 𝑘 ≤ (𝑁 / 2))) |
| 47 | 46 | imim1d 82 |
. . . . . . . 8
⊢ ((𝑘 ∈
(ℤ≥‘𝐴) ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
→ ((𝑘 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝑘)) → ((𝑘 + 1) ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝑘)))) |
| 48 | | eluznn0 12959 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ0
∧ 𝑘 ∈
(ℤ≥‘𝐴)) → 𝑘 ∈ ℕ0) |
| 49 | 41 | 3ad2ant2 1135 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 𝑁 ∈ ℝ) |
| 50 | | nn0re 12535 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℝ) |
| 51 | 50 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 𝑘 ∈ ℝ) |
| 52 | | nn0p1nn 12565 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ ℕ0
→ (𝑘 + 1) ∈
ℕ) |
| 53 | 52 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑘 + 1) ∈ ℕ) |
| 54 | 53 | nnnn0d 12587 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑘 + 1) ∈
ℕ0) |
| 55 | 54 | nn0red 12588 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑘 + 1) ∈ ℝ) |
| 56 | 53 | nncnd 12282 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑘 + 1) ∈ ℂ) |
| 57 | 56 | 2timesd 12509 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (2 · (𝑘 + 1)) = ((𝑘 + 1) + (𝑘 + 1))) |
| 58 | | simp3 1139 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑘 + 1) ≤ (𝑁 / 2)) |
| 59 | | 2re 12340 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 2 ∈
ℝ |
| 60 | | 2pos 12369 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 0 <
2 |
| 61 | 59, 60 | pm3.2i 470 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (2 ∈
ℝ ∧ 0 < 2) |
| 62 | 61 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (2 ∈ ℝ ∧ 0 <
2)) |
| 63 | | lemuldiv2 12149 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑘 + 1) ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈
ℝ ∧ 0 < 2)) → ((2 · (𝑘 + 1)) ≤ 𝑁 ↔ (𝑘 + 1) ≤ (𝑁 / 2))) |
| 64 | 55, 49, 62, 63 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → ((2 · (𝑘 + 1)) ≤ 𝑁 ↔ (𝑘 + 1) ≤ (𝑁 / 2))) |
| 65 | 58, 64 | mpbird 257 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (2 · (𝑘 + 1)) ≤ 𝑁) |
| 66 | 57, 65 | eqbrtrrd 5167 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → ((𝑘 + 1) + (𝑘 + 1)) ≤ 𝑁) |
| 67 | 51 | lep1d 12199 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 𝑘 ≤ (𝑘 + 1)) |
| 68 | 49, 51, 55, 55, 66, 67 | lesub3d 11881 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑘 + 1) ≤ (𝑁 − 𝑘)) |
| 69 | | nnre 12273 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 + 1) ∈ ℕ →
(𝑘 + 1) ∈
ℝ) |
| 70 | | nngt0 12297 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 + 1) ∈ ℕ → 0
< (𝑘 +
1)) |
| 71 | 69, 70 | jca 511 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 + 1) ∈ ℕ →
((𝑘 + 1) ∈ ℝ
∧ 0 < (𝑘 +
1))) |
| 72 | 53, 71 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → ((𝑘 + 1) ∈ ℝ ∧ 0 < (𝑘 + 1))) |
| 73 | | nn0z 12638 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℤ) |
| 74 | 73 | 3ad2ant2 1135 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 𝑁 ∈ ℤ) |
| 75 | | nn0z 12638 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℤ) |
| 76 | 75 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 𝑘 ∈ ℤ) |
| 77 | 74, 76 | zsubcld 12727 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑁 − 𝑘) ∈ ℤ) |
| 78 | 49 | rehalfcld 12513 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑁 / 2) ∈ ℝ) |
| 79 | 49, 59 | jctir 520 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑁 ∈ ℝ ∧ 2 ∈
ℝ)) |
| 80 | | nn0ge0 12551 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑁 ∈ ℕ0
→ 0 ≤ 𝑁) |
| 81 | 80 | 3ad2ant2 1135 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 0 ≤ 𝑁) |
| 82 | | 1le2 12475 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 1 ≤
2 |
| 83 | 81, 82 | jctir 520 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (0 ≤ 𝑁 ∧ 1 ≤ 2)) |
| 84 | | lemulge12 12131 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑁 ∈ ℝ ∧ 2 ∈
ℝ) ∧ (0 ≤ 𝑁
∧ 1 ≤ 2)) → 𝑁
≤ (2 · 𝑁)) |
| 85 | 79, 83, 84 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 𝑁 ≤ (2 · 𝑁)) |
| 86 | | ledivmul 12144 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈
ℝ ∧ 0 < 2)) → ((𝑁 / 2) ≤ 𝑁 ↔ 𝑁 ≤ (2 · 𝑁))) |
| 87 | 49, 49, 62, 86 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → ((𝑁 / 2) ≤ 𝑁 ↔ 𝑁 ≤ (2 · 𝑁))) |
| 88 | 85, 87 | mpbird 257 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑁 / 2) ≤ 𝑁) |
| 89 | 55, 78, 49, 58, 88 | letrd 11418 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑘 + 1) ≤ 𝑁) |
| 90 | | 1red 11262 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 1 ∈
ℝ) |
| 91 | 51, 90, 49 | leaddsub2d 11865 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → ((𝑘 + 1) ≤ 𝑁 ↔ 1 ≤ (𝑁 − 𝑘))) |
| 92 | 89, 91 | mpbid 232 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 1 ≤ (𝑁 − 𝑘)) |
| 93 | | elnnz1 12643 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 − 𝑘) ∈ ℕ ↔ ((𝑁 − 𝑘) ∈ ℤ ∧ 1 ≤ (𝑁 − 𝑘))) |
| 94 | 77, 92, 93 | sylanbrc 583 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑁 − 𝑘) ∈ ℕ) |
| 95 | | nnre 12273 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 − 𝑘) ∈ ℕ → (𝑁 − 𝑘) ∈ ℝ) |
| 96 | | nngt0 12297 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑁 − 𝑘) ∈ ℕ → 0 < (𝑁 − 𝑘)) |
| 97 | 95, 96 | jca 511 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 − 𝑘) ∈ ℕ → ((𝑁 − 𝑘) ∈ ℝ ∧ 0 < (𝑁 − 𝑘))) |
| 98 | 94, 97 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → ((𝑁 − 𝑘) ∈ ℝ ∧ 0 < (𝑁 − 𝑘))) |
| 99 | | faccl 14322 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑁 ∈ ℕ0
→ (!‘𝑁) ∈
ℕ) |
| 100 | 99 | 3ad2ant2 1135 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (!‘𝑁) ∈ ℕ) |
| 101 | | nnm1nn0 12567 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑁 − 𝑘) ∈ ℕ → ((𝑁 − 𝑘) − 1) ∈
ℕ0) |
| 102 | | faccl 14322 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑁 − 𝑘) − 1) ∈ ℕ0
→ (!‘((𝑁 −
𝑘) − 1)) ∈
ℕ) |
| 103 | 94, 101, 102 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (!‘((𝑁 − 𝑘) − 1)) ∈
ℕ) |
| 104 | | faccl 14322 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ ℕ0
→ (!‘𝑘) ∈
ℕ) |
| 105 | 104 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (!‘𝑘) ∈ ℕ) |
| 106 | 103, 105 | nnmulcld 12319 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → ((!‘((𝑁 − 𝑘) − 1)) · (!‘𝑘)) ∈
ℕ) |
| 107 | | nnrp 13046 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((!‘𝑁) ∈
ℕ → (!‘𝑁)
∈ ℝ+) |
| 108 | | nnrp 13046 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((!‘((𝑁
− 𝑘) − 1))
· (!‘𝑘))
∈ ℕ → ((!‘((𝑁 − 𝑘) − 1)) · (!‘𝑘)) ∈
ℝ+) |
| 109 | | rpdivcl 13060 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((!‘𝑁) ∈
ℝ+ ∧ ((!‘((𝑁 − 𝑘) − 1)) · (!‘𝑘)) ∈ ℝ+)
→ ((!‘𝑁) /
((!‘((𝑁 − 𝑘) − 1)) ·
(!‘𝑘))) ∈
ℝ+) |
| 110 | 107, 108,
109 | syl2an 596 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((!‘𝑁) ∈
ℕ ∧ ((!‘((𝑁
− 𝑘) − 1))
· (!‘𝑘))
∈ ℕ) → ((!‘𝑁) / ((!‘((𝑁 − 𝑘) − 1)) · (!‘𝑘))) ∈
ℝ+) |
| 111 | 100, 106,
110 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → ((!‘𝑁) / ((!‘((𝑁 − 𝑘) − 1)) · (!‘𝑘))) ∈
ℝ+) |
| 112 | 111 | rpregt0d 13083 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (((!‘𝑁) / ((!‘((𝑁 − 𝑘) − 1)) · (!‘𝑘))) ∈ ℝ ∧ 0 <
((!‘𝑁) /
((!‘((𝑁 − 𝑘) − 1)) ·
(!‘𝑘))))) |
| 113 | | lediv2 12158 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑘 + 1) ∈ ℝ ∧ 0
< (𝑘 + 1)) ∧ ((𝑁 − 𝑘) ∈ ℝ ∧ 0 < (𝑁 − 𝑘)) ∧ (((!‘𝑁) / ((!‘((𝑁 − 𝑘) − 1)) · (!‘𝑘))) ∈ ℝ ∧ 0 <
((!‘𝑁) /
((!‘((𝑁 − 𝑘) − 1)) ·
(!‘𝑘))))) →
((𝑘 + 1) ≤ (𝑁 − 𝑘) ↔ (((!‘𝑁) / ((!‘((𝑁 − 𝑘) − 1)) · (!‘𝑘))) / (𝑁 − 𝑘)) ≤ (((!‘𝑁) / ((!‘((𝑁 − 𝑘) − 1)) · (!‘𝑘))) / (𝑘 + 1)))) |
| 114 | 72, 98, 112, 113 | syl3anc 1373 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → ((𝑘 + 1) ≤ (𝑁 − 𝑘) ↔ (((!‘𝑁) / ((!‘((𝑁 − 𝑘) − 1)) · (!‘𝑘))) / (𝑁 − 𝑘)) ≤ (((!‘𝑁) / ((!‘((𝑁 − 𝑘) − 1)) · (!‘𝑘))) / (𝑘 + 1)))) |
| 115 | 68, 114 | mpbid 232 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (((!‘𝑁) / ((!‘((𝑁 − 𝑘) − 1)) · (!‘𝑘))) / (𝑁 − 𝑘)) ≤ (((!‘𝑁) / ((!‘((𝑁 − 𝑘) − 1)) · (!‘𝑘))) / (𝑘 + 1))) |
| 116 | | facnn2 14321 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑁 − 𝑘) ∈ ℕ → (!‘(𝑁 − 𝑘)) = ((!‘((𝑁 − 𝑘) − 1)) · (𝑁 − 𝑘))) |
| 117 | 94, 116 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (!‘(𝑁 − 𝑘)) = ((!‘((𝑁 − 𝑘) − 1)) · (𝑁 − 𝑘))) |
| 118 | 117 | oveq1d 7446 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → ((!‘(𝑁 − 𝑘)) · (!‘𝑘)) = (((!‘((𝑁 − 𝑘) − 1)) · (𝑁 − 𝑘)) · (!‘𝑘))) |
| 119 | 103 | nncnd 12282 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (!‘((𝑁 − 𝑘) − 1)) ∈
ℂ) |
| 120 | 105 | nncnd 12282 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (!‘𝑘) ∈ ℂ) |
| 121 | 77 | zcnd 12723 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑁 − 𝑘) ∈ ℂ) |
| 122 | 119, 120,
121 | mul32d 11471 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (((!‘((𝑁 − 𝑘) − 1)) · (!‘𝑘)) · (𝑁 − 𝑘)) = (((!‘((𝑁 − 𝑘) − 1)) · (𝑁 − 𝑘)) · (!‘𝑘))) |
| 123 | 118, 122 | eqtr4d 2780 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → ((!‘(𝑁 − 𝑘)) · (!‘𝑘)) = (((!‘((𝑁 − 𝑘) − 1)) · (!‘𝑘)) · (𝑁 − 𝑘))) |
| 124 | 123 | oveq2d 7447 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → ((!‘𝑁) / ((!‘(𝑁 − 𝑘)) · (!‘𝑘))) = ((!‘𝑁) / (((!‘((𝑁 − 𝑘) − 1)) · (!‘𝑘)) · (𝑁 − 𝑘)))) |
| 125 | | 0zd 12625 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 0 ∈
ℤ) |
| 126 | | nn0ge0 12551 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 ∈ ℕ0
→ 0 ≤ 𝑘) |
| 127 | 126 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 0 ≤ 𝑘) |
| 128 | 51, 55, 49, 67, 89 | letrd 11418 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 𝑘 ≤ 𝑁) |
| 129 | 125, 74, 76, 127, 128 | elfzd 13555 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 𝑘 ∈ (0...𝑁)) |
| 130 | | bcval2 14344 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ (0...𝑁) → (𝑁C𝑘) = ((!‘𝑁) / ((!‘(𝑁 − 𝑘)) · (!‘𝑘)))) |
| 131 | 129, 130 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑁C𝑘) = ((!‘𝑁) / ((!‘(𝑁 − 𝑘)) · (!‘𝑘)))) |
| 132 | 100 | nncnd 12282 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (!‘𝑁) ∈ ℂ) |
| 133 | 106 | nncnd 12282 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → ((!‘((𝑁 − 𝑘) − 1)) · (!‘𝑘)) ∈
ℂ) |
| 134 | 106 | nnne0d 12316 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → ((!‘((𝑁 − 𝑘) − 1)) · (!‘𝑘)) ≠ 0) |
| 135 | 94 | nnne0d 12316 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑁 − 𝑘) ≠ 0) |
| 136 | 132, 133,
121, 134, 135 | divdiv1d 12074 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (((!‘𝑁) / ((!‘((𝑁 − 𝑘) − 1)) · (!‘𝑘))) / (𝑁 − 𝑘)) = ((!‘𝑁) / (((!‘((𝑁 − 𝑘) − 1)) · (!‘𝑘)) · (𝑁 − 𝑘)))) |
| 137 | 124, 131,
136 | 3eqtr4d 2787 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑁C𝑘) = (((!‘𝑁) / ((!‘((𝑁 − 𝑘) − 1)) · (!‘𝑘))) / (𝑁 − 𝑘))) |
| 138 | | nn0cn 12536 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑁 ∈ ℕ0
→ 𝑁 ∈
ℂ) |
| 139 | 138 | 3ad2ant2 1135 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 𝑁 ∈ ℂ) |
| 140 | | nn0cn 12536 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℂ) |
| 141 | 140 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 𝑘 ∈ ℂ) |
| 142 | | 1cnd 11256 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 1 ∈
ℂ) |
| 143 | 139, 141,
142 | subsub4d 11651 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → ((𝑁 − 𝑘) − 1) = (𝑁 − (𝑘 + 1))) |
| 144 | 143 | eqcomd 2743 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑁 − (𝑘 + 1)) = ((𝑁 − 𝑘) − 1)) |
| 145 | 144 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (!‘(𝑁 − (𝑘 + 1))) = (!‘((𝑁 − 𝑘) − 1))) |
| 146 | | facp1 14317 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ ℕ0
→ (!‘(𝑘 + 1)) =
((!‘𝑘) ·
(𝑘 + 1))) |
| 147 | 146 | 3ad2ant1 1134 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (!‘(𝑘 + 1)) = ((!‘𝑘) · (𝑘 + 1))) |
| 148 | 145, 147 | oveq12d 7449 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → ((!‘(𝑁 − (𝑘 + 1))) · (!‘(𝑘 + 1))) = ((!‘((𝑁 − 𝑘) − 1)) · ((!‘𝑘) · (𝑘 + 1)))) |
| 149 | 119, 120,
56 | mulassd 11284 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (((!‘((𝑁 − 𝑘) − 1)) · (!‘𝑘)) · (𝑘 + 1)) = ((!‘((𝑁 − 𝑘) − 1)) · ((!‘𝑘) · (𝑘 + 1)))) |
| 150 | 148, 149 | eqtr4d 2780 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → ((!‘(𝑁 − (𝑘 + 1))) · (!‘(𝑘 + 1))) = (((!‘((𝑁 − 𝑘) − 1)) · (!‘𝑘)) · (𝑘 + 1))) |
| 151 | 150 | oveq2d 7447 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → ((!‘𝑁) / ((!‘(𝑁 − (𝑘 + 1))) · (!‘(𝑘 + 1)))) = ((!‘𝑁) / (((!‘((𝑁 − 𝑘) − 1)) · (!‘𝑘)) · (𝑘 + 1)))) |
| 152 | 53 | nnzd 12640 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑘 + 1) ∈ ℤ) |
| 153 | 54 | nn0ge0d 12590 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → 0 ≤ (𝑘 + 1)) |
| 154 | 125, 74, 152, 153, 89 | elfzd 13555 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑘 + 1) ∈ (0...𝑁)) |
| 155 | | bcval2 14344 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 + 1) ∈ (0...𝑁) → (𝑁C(𝑘 + 1)) = ((!‘𝑁) / ((!‘(𝑁 − (𝑘 + 1))) · (!‘(𝑘 + 1))))) |
| 156 | 154, 155 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑁C(𝑘 + 1)) = ((!‘𝑁) / ((!‘(𝑁 − (𝑘 + 1))) · (!‘(𝑘 + 1))))) |
| 157 | 53 | nnne0d 12316 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑘 + 1) ≠ 0) |
| 158 | 132, 133,
56, 134, 157 | divdiv1d 12074 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (((!‘𝑁) / ((!‘((𝑁 − 𝑘) − 1)) · (!‘𝑘))) / (𝑘 + 1)) = ((!‘𝑁) / (((!‘((𝑁 − 𝑘) − 1)) · (!‘𝑘)) · (𝑘 + 1)))) |
| 159 | 151, 156,
158 | 3eqtr4d 2787 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑁C(𝑘 + 1)) = (((!‘𝑁) / ((!‘((𝑁 − 𝑘) − 1)) · (!‘𝑘))) / (𝑘 + 1))) |
| 160 | 115, 137,
159 | 3brtr4d 5175 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ ℕ0
∧ 𝑁 ∈
ℕ0 ∧ (𝑘 + 1) ≤ (𝑁 / 2)) → (𝑁C𝑘) ≤ (𝑁C(𝑘 + 1))) |
| 161 | 160 | 3exp 1120 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ ℕ0
→ (𝑁 ∈
ℕ0 → ((𝑘 + 1) ≤ (𝑁 / 2) → (𝑁C𝑘) ≤ (𝑁C(𝑘 + 1))))) |
| 162 | 48, 161 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ0
∧ 𝑘 ∈
(ℤ≥‘𝐴)) → (𝑁 ∈ ℕ0 → ((𝑘 + 1) ≤ (𝑁 / 2) → (𝑁C𝑘) ≤ (𝑁C(𝑘 + 1))))) |
| 163 | 162 | 3impia 1118 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝑘 ∈
(ℤ≥‘𝐴) ∧ 𝑁 ∈ ℕ0) → ((𝑘 + 1) ≤ (𝑁 / 2) → (𝑁C𝑘) ≤ (𝑁C(𝑘 + 1)))) |
| 164 | 163 | 3coml 1128 |
. . . . . . . . . 10
⊢ ((𝑘 ∈
(ℤ≥‘𝐴) ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
→ ((𝑘 + 1) ≤ (𝑁 / 2) → (𝑁C𝑘) ≤ (𝑁C(𝑘 + 1)))) |
| 165 | | simp2 1138 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈
(ℤ≥‘𝐴) ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
→ 𝑁 ∈
ℕ0) |
| 166 | | nn0z 12638 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℤ) |
| 167 | 166 | 3ad2ant3 1136 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈
(ℤ≥‘𝐴) ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
→ 𝐴 ∈
ℤ) |
| 168 | 165, 167,
29 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈
(ℤ≥‘𝐴) ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
→ (𝑁C𝐴) ∈
ℕ0) |
| 169 | 168 | nn0red 12588 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈
(ℤ≥‘𝐴) ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
→ (𝑁C𝐴) ∈ ℝ) |
| 170 | | bccl 14361 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ 𝑘 ∈ ℤ)
→ (𝑁C𝑘) ∈
ℕ0) |
| 171 | 165, 36, 170 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈
(ℤ≥‘𝐴) ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
→ (𝑁C𝑘) ∈
ℕ0) |
| 172 | 171 | nn0red 12588 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈
(ℤ≥‘𝐴) ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
→ (𝑁C𝑘) ∈
ℝ) |
| 173 | 36 | peano2zd 12725 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈
(ℤ≥‘𝐴) ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
→ (𝑘 + 1) ∈
ℤ) |
| 174 | | bccl 14361 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ0
∧ (𝑘 + 1) ∈
ℤ) → (𝑁C(𝑘 + 1)) ∈
ℕ0) |
| 175 | 165, 173,
174 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝑘 ∈
(ℤ≥‘𝐴) ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
→ (𝑁C(𝑘 + 1)) ∈
ℕ0) |
| 176 | 175 | nn0red 12588 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈
(ℤ≥‘𝐴) ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
→ (𝑁C(𝑘 + 1)) ∈
ℝ) |
| 177 | | letr 11355 |
. . . . . . . . . . . 12
⊢ (((𝑁C𝐴) ∈ ℝ ∧ (𝑁C𝑘) ∈ ℝ ∧ (𝑁C(𝑘 + 1)) ∈ ℝ) → (((𝑁C𝐴) ≤ (𝑁C𝑘) ∧ (𝑁C𝑘) ≤ (𝑁C(𝑘 + 1))) → (𝑁C𝐴) ≤ (𝑁C(𝑘 + 1)))) |
| 178 | 169, 172,
176, 177 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈
(ℤ≥‘𝐴) ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
→ (((𝑁C𝐴) ≤ (𝑁C𝑘) ∧ (𝑁C𝑘) ≤ (𝑁C(𝑘 + 1))) → (𝑁C𝐴) ≤ (𝑁C(𝑘 + 1)))) |
| 179 | 178 | expcomd 416 |
. . . . . . . . . 10
⊢ ((𝑘 ∈
(ℤ≥‘𝐴) ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
→ ((𝑁C𝑘) ≤ (𝑁C(𝑘 + 1)) → ((𝑁C𝐴) ≤ (𝑁C𝑘) → (𝑁C𝐴) ≤ (𝑁C(𝑘 + 1))))) |
| 180 | 164, 179 | syld 47 |
. . . . . . . . 9
⊢ ((𝑘 ∈
(ℤ≥‘𝐴) ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
→ ((𝑘 + 1) ≤ (𝑁 / 2) → ((𝑁C𝐴) ≤ (𝑁C𝑘) → (𝑁C𝐴) ≤ (𝑁C(𝑘 + 1))))) |
| 181 | 180 | a2d 29 |
. . . . . . . 8
⊢ ((𝑘 ∈
(ℤ≥‘𝐴) ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
→ (((𝑘 + 1) ≤
(𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝑘)) → ((𝑘 + 1) ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C(𝑘 + 1))))) |
| 182 | 47, 181 | syld 47 |
. . . . . . 7
⊢ ((𝑘 ∈
(ℤ≥‘𝐴) ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
→ ((𝑘 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝑘)) → ((𝑘 + 1) ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C(𝑘 + 1))))) |
| 183 | 182 | 3expib 1123 |
. . . . . 6
⊢ (𝑘 ∈
(ℤ≥‘𝐴) → ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
→ ((𝑘 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝑘)) → ((𝑘 + 1) ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C(𝑘 + 1)))))) |
| 184 | 183 | a2d 29 |
. . . . 5
⊢ (𝑘 ∈
(ℤ≥‘𝐴) → (((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
→ (𝑘 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝑘))) → ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
→ ((𝑘 + 1) ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C(𝑘 + 1)))))) |
| 185 | 13, 18, 23, 28, 34, 184 | uzind4 12948 |
. . . 4
⊢ (𝐵 ∈
(ℤ≥‘𝐴) → ((𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
→ (𝐵 ≤ (𝑁 / 2) → (𝑁C𝐴) ≤ (𝑁C𝐵)))) |
| 186 | 185 | 3imp 1111 |
. . 3
⊢ ((𝐵 ∈
(ℤ≥‘𝐴) ∧ (𝑁 ∈ ℕ0 ∧ 𝐴 ∈ ℕ0)
∧ 𝐵 ≤ (𝑁 / 2)) → (𝑁C𝐴) ≤ (𝑁C𝐵)) |
| 187 | 1, 2, 7, 8, 186 | syl121anc 1377 |
. 2
⊢ (((𝑁 ∈ ℕ0
∧ 𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) ∧ 0 ≤ 𝐴) → (𝑁C𝐴) ≤ (𝑁C𝐵)) |
| 188 | | simpl1 1192 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) ∧ 𝐴 < 0) → 𝑁 ∈
ℕ0) |
| 189 | 4 | adantr 480 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) ∧ 𝐴 < 0) → 𝐴 ∈ ℤ) |
| 190 | | animorrl 983 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) ∧ 𝐴 < 0) → (𝐴 < 0 ∨ 𝑁 < 𝐴)) |
| 191 | | bcval4 14346 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐴 ∈ ℤ
∧ (𝐴 < 0 ∨ 𝑁 < 𝐴)) → (𝑁C𝐴) = 0) |
| 192 | 188, 189,
190, 191 | syl3anc 1373 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ 𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) ∧ 𝐴 < 0) → (𝑁C𝐴) = 0) |
| 193 | | simpl2 1193 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ0
∧ 𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) ∧ 𝐴 < 0) → 𝐵 ∈ (ℤ≥‘𝐴)) |
| 194 | | eluzelz 12888 |
. . . . . 6
⊢ (𝐵 ∈
(ℤ≥‘𝐴) → 𝐵 ∈ ℤ) |
| 195 | 193, 194 | syl 17 |
. . . . 5
⊢ (((𝑁 ∈ ℕ0
∧ 𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) ∧ 𝐴 < 0) → 𝐵 ∈ ℤ) |
| 196 | | bccl 14361 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐵 ∈ ℤ)
→ (𝑁C𝐵) ∈
ℕ0) |
| 197 | 188, 195,
196 | syl2anc 584 |
. . . 4
⊢ (((𝑁 ∈ ℕ0
∧ 𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) ∧ 𝐴 < 0) → (𝑁C𝐵) ∈
ℕ0) |
| 198 | 197 | nn0ge0d 12590 |
. . 3
⊢ (((𝑁 ∈ ℕ0
∧ 𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) ∧ 𝐴 < 0) → 0 ≤ (𝑁C𝐵)) |
| 199 | 192, 198 | eqbrtrd 5165 |
. 2
⊢ (((𝑁 ∈ ℕ0
∧ 𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) ∧ 𝐴 < 0) → (𝑁C𝐴) ≤ (𝑁C𝐵)) |
| 200 | | 0re 11263 |
. . 3
⊢ 0 ∈
ℝ |
| 201 | 4 | zred 12722 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) → 𝐴 ∈ ℝ) |
| 202 | | lelttric 11368 |
. . 3
⊢ ((0
∈ ℝ ∧ 𝐴
∈ ℝ) → (0 ≤ 𝐴 ∨ 𝐴 < 0)) |
| 203 | 200, 201,
202 | sylancr 587 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) → (0 ≤ 𝐴 ∨ 𝐴 < 0)) |
| 204 | 187, 199,
203 | mpjaodan 961 |
1
⊢ ((𝑁 ∈ ℕ0
∧ 𝐵 ∈
(ℤ≥‘𝐴) ∧ 𝐵 ≤ (𝑁 / 2)) → (𝑁C𝐴) ≤ (𝑁C𝐵)) |