Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linds2eq Structured version   Visualization version   GIF version

Theorem linds2eq 31575
Description: Deduce equality of elements in an independent set. (Contributed by Thierry Arnoux, 18-Jul-2023.)
Hypotheses
Ref Expression
linds2eq.1 𝐹 = (Base‘(Scalar‘𝑊))
linds2eq.2 · = ( ·𝑠𝑊)
linds2eq.3 + = (+g𝑊)
linds2eq.4 0 = (0g‘(Scalar‘𝑊))
linds2eq.5 (𝜑𝑊 ∈ LVec)
linds2eq.6 (𝜑𝐵 ∈ (LIndS‘𝑊))
linds2eq.7 (𝜑𝑋𝐵)
linds2eq.8 (𝜑𝑌𝐵)
linds2eq.9 (𝜑𝐾𝐹)
linds2eq.10 (𝜑𝐿𝐹)
linds2eq.11 (𝜑𝐾0 )
linds2eq.12 (𝜑 → (𝐾 · 𝑋) = (𝐿 · 𝑌))
Assertion
Ref Expression
linds2eq (𝜑 → (𝑋 = 𝑌𝐾 = 𝐿))

Proof of Theorem linds2eq
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . 3 ((𝜑𝑋 = 𝑌) → 𝑋 = 𝑌)
2 linds2eq.12 . . . . . 6 (𝜑 → (𝐾 · 𝑋) = (𝐿 · 𝑌))
32adantr 481 . . . . 5 ((𝜑𝑋 = 𝑌) → (𝐾 · 𝑋) = (𝐿 · 𝑌))
41oveq2d 7291 . . . . 5 ((𝜑𝑋 = 𝑌) → (𝐿 · 𝑋) = (𝐿 · 𝑌))
53, 4eqtr4d 2781 . . . 4 ((𝜑𝑋 = 𝑌) → (𝐾 · 𝑋) = (𝐿 · 𝑋))
6 eqid 2738 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
7 linds2eq.2 . . . . 5 · = ( ·𝑠𝑊)
8 eqid 2738 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
9 linds2eq.1 . . . . 5 𝐹 = (Base‘(Scalar‘𝑊))
10 eqid 2738 . . . . 5 (0g𝑊) = (0g𝑊)
11 linds2eq.5 . . . . . 6 (𝜑𝑊 ∈ LVec)
1211adantr 481 . . . . 5 ((𝜑𝑋 = 𝑌) → 𝑊 ∈ LVec)
13 linds2eq.9 . . . . . 6 (𝜑𝐾𝐹)
1413adantr 481 . . . . 5 ((𝜑𝑋 = 𝑌) → 𝐾𝐹)
15 linds2eq.10 . . . . . 6 (𝜑𝐿𝐹)
1615adantr 481 . . . . 5 ((𝜑𝑋 = 𝑌) → 𝐿𝐹)
17 linds2eq.6 . . . . . . . 8 (𝜑𝐵 ∈ (LIndS‘𝑊))
186linds1 21017 . . . . . . . 8 (𝐵 ∈ (LIndS‘𝑊) → 𝐵 ⊆ (Base‘𝑊))
1917, 18syl 17 . . . . . . 7 (𝜑𝐵 ⊆ (Base‘𝑊))
20 linds2eq.7 . . . . . . 7 (𝜑𝑋𝐵)
2119, 20sseldd 3922 . . . . . 6 (𝜑𝑋 ∈ (Base‘𝑊))
2221adantr 481 . . . . 5 ((𝜑𝑋 = 𝑌) → 𝑋 ∈ (Base‘𝑊))
23100nellinds 31566 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝐵 ∈ (LIndS‘𝑊)) → ¬ (0g𝑊) ∈ 𝐵)
2411, 17, 23syl2anc 584 . . . . . . 7 (𝜑 → ¬ (0g𝑊) ∈ 𝐵)
25 nelne2 3042 . . . . . . 7 ((𝑋𝐵 ∧ ¬ (0g𝑊) ∈ 𝐵) → 𝑋 ≠ (0g𝑊))
2620, 24, 25syl2anc 584 . . . . . 6 (𝜑𝑋 ≠ (0g𝑊))
2726adantr 481 . . . . 5 ((𝜑𝑋 = 𝑌) → 𝑋 ≠ (0g𝑊))
286, 7, 8, 9, 10, 12, 14, 16, 22, 27lvecvscan2 20374 . . . 4 ((𝜑𝑋 = 𝑌) → ((𝐾 · 𝑋) = (𝐿 · 𝑋) ↔ 𝐾 = 𝐿))
295, 28mpbid 231 . . 3 ((𝜑𝑋 = 𝑌) → 𝐾 = 𝐿)
301, 29jca 512 . 2 ((𝜑𝑋 = 𝑌) → (𝑋 = 𝑌𝐾 = 𝐿))
3120adantr 481 . . . 4 ((𝜑𝑋𝑌) → 𝑋𝐵)
3213adantr 481 . . . 4 ((𝜑𝑋𝑌) → 𝐾𝐹)
33 opex 5379 . . . . . . 7 𝑋, 𝐾⟩ ∈ V
3433a1i 11 . . . . . 6 ((𝜑𝑋𝑌) → ⟨𝑋, 𝐾⟩ ∈ V)
35 opex 5379 . . . . . . 7 𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ∈ V
3635a1i 11 . . . . . 6 ((𝜑𝑋𝑌) → ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ∈ V)
37 animorrl 978 . . . . . . . 8 ((𝜑𝑋𝑌) → (𝑋𝑌𝐾 ≠ ((invg‘(Scalar‘𝑊))‘𝐿)))
38 opthneg 5396 . . . . . . . . 9 ((𝑋𝐵𝐾𝐹) → (⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ↔ (𝑋𝑌𝐾 ≠ ((invg‘(Scalar‘𝑊))‘𝐿))))
3938biimpar 478 . . . . . . . 8 (((𝑋𝐵𝐾𝐹) ∧ (𝑋𝑌𝐾 ≠ ((invg‘(Scalar‘𝑊))‘𝐿))) → ⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩)
4031, 32, 37, 39syl21anc 835 . . . . . . 7 ((𝜑𝑋𝑌) → ⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩)
41 animorrl 978 . . . . . . . 8 ((𝜑𝑋𝑌) → (𝑋𝑌𝐾0 ))
42 opthneg 5396 . . . . . . . . 9 ((𝑋𝐵𝐾𝐹) → (⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, 0 ⟩ ↔ (𝑋𝑌𝐾0 )))
4342biimpar 478 . . . . . . . 8 (((𝑋𝐵𝐾𝐹) ∧ (𝑋𝑌𝐾0 )) → ⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, 0 ⟩)
4431, 32, 41, 43syl21anc 835 . . . . . . 7 ((𝜑𝑋𝑌) → ⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, 0 ⟩)
4540, 44jca 512 . . . . . 6 ((𝜑𝑋𝑌) → (⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ∧ ⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, 0 ⟩))
46 linds2eq.8 . . . . . . . . . . 11 (𝜑𝑌𝐵)
4746adantr 481 . . . . . . . . . 10 ((𝜑𝑋𝑌) → 𝑌𝐵)
48 fvexd 6789 . . . . . . . . . 10 ((𝜑𝑋𝑌) → ((invg‘(Scalar‘𝑊))‘𝐿) ∈ V)
49 simpr 485 . . . . . . . . . 10 ((𝜑𝑋𝑌) → 𝑋𝑌)
50 fprg 7027 . . . . . . . . . 10 (((𝑋𝐵𝑌𝐵) ∧ (𝐾𝐹 ∧ ((invg‘(Scalar‘𝑊))‘𝐿) ∈ V) ∧ 𝑋𝑌) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}:{𝑋, 𝑌}⟶{𝐾, ((invg‘(Scalar‘𝑊))‘𝐿)})
5131, 47, 32, 48, 49, 50syl221anc 1380 . . . . . . . . 9 ((𝜑𝑋𝑌) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}:{𝑋, 𝑌}⟶{𝐾, ((invg‘(Scalar‘𝑊))‘𝐿)})
52 prfi 9089 . . . . . . . . . 10 {𝑋, 𝑌} ∈ Fin
5352a1i 11 . . . . . . . . 9 ((𝜑𝑋𝑌) → {𝑋, 𝑌} ∈ Fin)
54 linds2eq.4 . . . . . . . . . . 11 0 = (0g‘(Scalar‘𝑊))
5554fvexi 6788 . . . . . . . . . 10 0 ∈ V
5655a1i 11 . . . . . . . . 9 ((𝜑𝑋𝑌) → 0 ∈ V)
5751, 53, 56fdmfifsupp 9138 . . . . . . . 8 ((𝜑𝑋𝑌) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} finSupp 0 )
58 lveclmod 20368 . . . . . . . . . . . . 13 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
5911, 58syl 17 . . . . . . . . . . . 12 (𝜑𝑊 ∈ LMod)
60 lmodcmn 20171 . . . . . . . . . . . 12 (𝑊 ∈ LMod → 𝑊 ∈ CMnd)
6159, 60syl 17 . . . . . . . . . . 11 (𝜑𝑊 ∈ CMnd)
6261adantr 481 . . . . . . . . . 10 ((𝜑𝑋𝑌) → 𝑊 ∈ CMnd)
6359adantr 481 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → 𝑊 ∈ LMod)
648lmodring 20131 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
65 ringgrp 19788 . . . . . . . . . . . . . . . . 17 ((Scalar‘𝑊) ∈ Ring → (Scalar‘𝑊) ∈ Grp)
6659, 64, 653syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (Scalar‘𝑊) ∈ Grp)
67 eqid 2738 . . . . . . . . . . . . . . . . 17 (invg‘(Scalar‘𝑊)) = (invg‘(Scalar‘𝑊))
689, 67grpinvcl 18627 . . . . . . . . . . . . . . . 16 (((Scalar‘𝑊) ∈ Grp ∧ 𝐿𝐹) → ((invg‘(Scalar‘𝑊))‘𝐿) ∈ 𝐹)
6966, 15, 68syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → ((invg‘(Scalar‘𝑊))‘𝐿) ∈ 𝐹)
7013, 69prssd 4755 . . . . . . . . . . . . . 14 (𝜑 → {𝐾, ((invg‘(Scalar‘𝑊))‘𝐿)} ⊆ 𝐹)
7170adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑋𝑌) → {𝐾, ((invg‘(Scalar‘𝑊))‘𝐿)} ⊆ 𝐹)
7251, 71fssd 6618 . . . . . . . . . . . 12 ((𝜑𝑋𝑌) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}:{𝑋, 𝑌}⟶𝐹)
73 eqidd 2739 . . . . . . . . . . . . . 14 ((𝜑𝑋𝑌) → 𝑋 = 𝑋)
7473orcd 870 . . . . . . . . . . . . 13 ((𝜑𝑋𝑌) → (𝑋 = 𝑋𝑋 = 𝑌))
75 elprg 4582 . . . . . . . . . . . . . 14 (𝑋𝐵 → (𝑋 ∈ {𝑋, 𝑌} ↔ (𝑋 = 𝑋𝑋 = 𝑌)))
7675biimpar 478 . . . . . . . . . . . . 13 ((𝑋𝐵 ∧ (𝑋 = 𝑋𝑋 = 𝑌)) → 𝑋 ∈ {𝑋, 𝑌})
7731, 74, 76syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑋𝑌) → 𝑋 ∈ {𝑋, 𝑌})
7872, 77ffvelrnd 6962 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) ∈ 𝐹)
7921adantr 481 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → 𝑋 ∈ (Base‘𝑊))
806, 8, 7, 9lmodvscl 20140 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) ∈ 𝐹𝑋 ∈ (Base‘𝑊)) → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋) ∈ (Base‘𝑊))
8163, 78, 79, 80syl3anc 1370 . . . . . . . . . 10 ((𝜑𝑋𝑌) → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋) ∈ (Base‘𝑊))
82 eqidd 2739 . . . . . . . . . . . . . 14 ((𝜑𝑋𝑌) → 𝑌 = 𝑌)
8382olcd 871 . . . . . . . . . . . . 13 ((𝜑𝑋𝑌) → (𝑌 = 𝑋𝑌 = 𝑌))
84 elprg 4582 . . . . . . . . . . . . . 14 (𝑌𝐵 → (𝑌 ∈ {𝑋, 𝑌} ↔ (𝑌 = 𝑋𝑌 = 𝑌)))
8584biimpar 478 . . . . . . . . . . . . 13 ((𝑌𝐵 ∧ (𝑌 = 𝑋𝑌 = 𝑌)) → 𝑌 ∈ {𝑋, 𝑌})
8647, 83, 85syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑋𝑌) → 𝑌 ∈ {𝑋, 𝑌})
8772, 86ffvelrnd 6962 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) ∈ 𝐹)
8819, 46sseldd 3922 . . . . . . . . . . . 12 (𝜑𝑌 ∈ (Base‘𝑊))
8988adantr 481 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → 𝑌 ∈ (Base‘𝑊))
906, 8, 7, 9lmodvscl 20140 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) ∈ 𝐹𝑌 ∈ (Base‘𝑊)) → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌) ∈ (Base‘𝑊))
9163, 87, 89, 90syl3anc 1370 . . . . . . . . . 10 ((𝜑𝑋𝑌) → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌) ∈ (Base‘𝑊))
92 linds2eq.3 . . . . . . . . . . 11 + = (+g𝑊)
93 fveq2 6774 . . . . . . . . . . . 12 (𝑏 = 𝑋 → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) = ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋))
94 id 22 . . . . . . . . . . . 12 (𝑏 = 𝑋𝑏 = 𝑋)
9593, 94oveq12d 7293 . . . . . . . . . . 11 (𝑏 = 𝑋 → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏) = (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋))
96 fveq2 6774 . . . . . . . . . . . 12 (𝑏 = 𝑌 → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) = ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌))
97 id 22 . . . . . . . . . . . 12 (𝑏 = 𝑌𝑏 = 𝑌)
9896, 97oveq12d 7293 . . . . . . . . . . 11 (𝑏 = 𝑌 → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏) = (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌))
996, 92, 95, 98gsumpr 19556 . . . . . . . . . 10 ((𝑊 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵𝑋𝑌) ∧ ((({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋) ∈ (Base‘𝑊) ∧ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌) ∈ (Base‘𝑊))) → (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))) = ((({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋) + (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌)))
10062, 31, 47, 49, 81, 91, 99syl132anc 1387 . . . . . . . . 9 ((𝜑𝑋𝑌) → (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))) = ((({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋) + (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌)))
101 fvpr1g 7062 . . . . . . . . . . . 12 ((𝑋𝐵𝐾𝐹𝑋𝑌) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) = 𝐾)
10231, 32, 49, 101syl3anc 1370 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) = 𝐾)
103102oveq1d 7290 . . . . . . . . . 10 ((𝜑𝑋𝑌) → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋) = (𝐾 · 𝑋))
10469adantr 481 . . . . . . . . . . . 12 ((𝜑𝑋𝑌) → ((invg‘(Scalar‘𝑊))‘𝐿) ∈ 𝐹)
105 fvpr2g 7063 . . . . . . . . . . . 12 ((𝑌𝐵 ∧ ((invg‘(Scalar‘𝑊))‘𝐿) ∈ 𝐹𝑋𝑌) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) = ((invg‘(Scalar‘𝑊))‘𝐿))
10647, 104, 49, 105syl3anc 1370 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) = ((invg‘(Scalar‘𝑊))‘𝐿))
107106oveq1d 7290 . . . . . . . . . 10 ((𝜑𝑋𝑌) → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌) = (((invg‘(Scalar‘𝑊))‘𝐿) · 𝑌))
108103, 107oveq12d 7293 . . . . . . . . 9 ((𝜑𝑋𝑌) → ((({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋) + (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌)) = ((𝐾 · 𝑋) + (((invg‘(Scalar‘𝑊))‘𝐿) · 𝑌)))
1096, 8, 7, 9lmodvscl 20140 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝐾𝐹𝑋 ∈ (Base‘𝑊)) → (𝐾 · 𝑋) ∈ (Base‘𝑊))
11059, 13, 21, 109syl3anc 1370 . . . . . . . . . . . 12 (𝜑 → (𝐾 · 𝑋) ∈ (Base‘𝑊))
1112, 110eqeltrrd 2840 . . . . . . . . . . . 12 (𝜑 → (𝐿 · 𝑌) ∈ (Base‘𝑊))
112 eqid 2738 . . . . . . . . . . . . 13 (invg𝑊) = (invg𝑊)
113 eqid 2738 . . . . . . . . . . . . 13 (-g𝑊) = (-g𝑊)
1146, 92, 112, 113grpsubval 18625 . . . . . . . . . . . 12 (((𝐾 · 𝑋) ∈ (Base‘𝑊) ∧ (𝐿 · 𝑌) ∈ (Base‘𝑊)) → ((𝐾 · 𝑋)(-g𝑊)(𝐿 · 𝑌)) = ((𝐾 · 𝑋) + ((invg𝑊)‘(𝐿 · 𝑌))))
115110, 111, 114syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((𝐾 · 𝑋)(-g𝑊)(𝐿 · 𝑌)) = ((𝐾 · 𝑋) + ((invg𝑊)‘(𝐿 · 𝑌))))
116 lmodgrp 20130 . . . . . . . . . . . . . 14 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
11759, 116syl 17 . . . . . . . . . . . . 13 (𝜑𝑊 ∈ Grp)
1186, 10, 113grpsubeq0 18661 . . . . . . . . . . . . 13 ((𝑊 ∈ Grp ∧ (𝐾 · 𝑋) ∈ (Base‘𝑊) ∧ (𝐿 · 𝑌) ∈ (Base‘𝑊)) → (((𝐾 · 𝑋)(-g𝑊)(𝐿 · 𝑌)) = (0g𝑊) ↔ (𝐾 · 𝑋) = (𝐿 · 𝑌)))
119117, 110, 111, 118syl3anc 1370 . . . . . . . . . . . 12 (𝜑 → (((𝐾 · 𝑋)(-g𝑊)(𝐿 · 𝑌)) = (0g𝑊) ↔ (𝐾 · 𝑋) = (𝐿 · 𝑌)))
1202, 119mpbird 256 . . . . . . . . . . 11 (𝜑 → ((𝐾 · 𝑋)(-g𝑊)(𝐿 · 𝑌)) = (0g𝑊))
1216, 8, 7, 112, 9, 67, 59, 88, 15lmodvsneg 20167 . . . . . . . . . . . 12 (𝜑 → ((invg𝑊)‘(𝐿 · 𝑌)) = (((invg‘(Scalar‘𝑊))‘𝐿) · 𝑌))
122121oveq2d 7291 . . . . . . . . . . 11 (𝜑 → ((𝐾 · 𝑋) + ((invg𝑊)‘(𝐿 · 𝑌))) = ((𝐾 · 𝑋) + (((invg‘(Scalar‘𝑊))‘𝐿) · 𝑌)))
123115, 120, 1223eqtr3rd 2787 . . . . . . . . . 10 (𝜑 → ((𝐾 · 𝑋) + (((invg‘(Scalar‘𝑊))‘𝐿) · 𝑌)) = (0g𝑊))
124123adantr 481 . . . . . . . . 9 ((𝜑𝑋𝑌) → ((𝐾 · 𝑋) + (((invg‘(Scalar‘𝑊))‘𝐿) · 𝑌)) = (0g𝑊))
125100, 108, 1243eqtrd 2782 . . . . . . . 8 ((𝜑𝑋𝑌) → (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))) = (0g𝑊))
126 breq1 5077 . . . . . . . . . . 11 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → (𝑎 finSupp 0 ↔ {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} finSupp 0 ))
127 fveq1 6773 . . . . . . . . . . . . . . 15 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → (𝑎𝑏) = ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏))
128127oveq1d 7290 . . . . . . . . . . . . . 14 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → ((𝑎𝑏) · 𝑏) = (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))
129128mpteq2dv 5176 . . . . . . . . . . . . 13 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏)) = (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏)))
130129oveq2d 7291 . . . . . . . . . . . 12 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))))
131130eqeq1d 2740 . . . . . . . . . . 11 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → ((𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (0g𝑊) ↔ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))) = (0g𝑊)))
132126, 131anbi12d 631 . . . . . . . . . 10 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → ((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (0g𝑊)) ↔ ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))) = (0g𝑊))))
133 eqeq1 2742 . . . . . . . . . 10 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → (𝑎 = ({𝑋, 𝑌} × { 0 }) ↔ {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} = ({𝑋, 𝑌} × { 0 })))
134132, 133imbi12d 345 . . . . . . . . 9 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → (((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (0g𝑊)) → 𝑎 = ({𝑋, 𝑌} × { 0 })) ↔ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))) = (0g𝑊)) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} = ({𝑋, 𝑌} × { 0 }))))
13520, 46prssd 4755 . . . . . . . . . . . 12 (𝜑 → {𝑋, 𝑌} ⊆ 𝐵)
136135, 19sstrd 3931 . . . . . . . . . . 11 (𝜑 → {𝑋, 𝑌} ⊆ (Base‘𝑊))
137 lindsss 21031 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝐵 ∈ (LIndS‘𝑊) ∧ {𝑋, 𝑌} ⊆ 𝐵) → {𝑋, 𝑌} ∈ (LIndS‘𝑊))
13859, 17, 135, 137syl3anc 1370 . . . . . . . . . . 11 (𝜑 → {𝑋, 𝑌} ∈ (LIndS‘𝑊))
1396, 9, 8, 7, 10, 54islinds5 31563 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ {𝑋, 𝑌} ⊆ (Base‘𝑊)) → ({𝑋, 𝑌} ∈ (LIndS‘𝑊) ↔ ∀𝑎 ∈ (𝐹m {𝑋, 𝑌})((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (0g𝑊)) → 𝑎 = ({𝑋, 𝑌} × { 0 }))))
140139biimpa 477 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ {𝑋, 𝑌} ⊆ (Base‘𝑊)) ∧ {𝑋, 𝑌} ∈ (LIndS‘𝑊)) → ∀𝑎 ∈ (𝐹m {𝑋, 𝑌})((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (0g𝑊)) → 𝑎 = ({𝑋, 𝑌} × { 0 })))
14159, 136, 138, 140syl21anc 835 . . . . . . . . . 10 (𝜑 → ∀𝑎 ∈ (𝐹m {𝑋, 𝑌})((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (0g𝑊)) → 𝑎 = ({𝑋, 𝑌} × { 0 })))
142141adantr 481 . . . . . . . . 9 ((𝜑𝑋𝑌) → ∀𝑎 ∈ (𝐹m {𝑋, 𝑌})((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (0g𝑊)) → 𝑎 = ({𝑋, 𝑌} × { 0 })))
1439fvexi 6788 . . . . . . . . . . . 12 𝐹 ∈ V
144143a1i 11 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → 𝐹 ∈ V)
145138elexd 3452 . . . . . . . . . . . 12 (𝜑 → {𝑋, 𝑌} ∈ V)
146145adantr 481 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → {𝑋, 𝑌} ∈ V)
147144, 146elmapd 8629 . . . . . . . . . 10 ((𝜑𝑋𝑌) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} ∈ (𝐹m {𝑋, 𝑌}) ↔ {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}:{𝑋, 𝑌}⟶𝐹))
14872, 147mpbird 256 . . . . . . . . 9 ((𝜑𝑋𝑌) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} ∈ (𝐹m {𝑋, 𝑌}))
149134, 142, 148rspcdva 3562 . . . . . . . 8 ((𝜑𝑋𝑌) → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))) = (0g𝑊)) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} = ({𝑋, 𝑌} × { 0 })))
15057, 125, 149mp2and 696 . . . . . . 7 ((𝜑𝑋𝑌) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} = ({𝑋, 𝑌} × { 0 }))
151 xpprsng 7012 . . . . . . . 8 ((𝑋𝐵𝑌𝐵0 ∈ V) → ({𝑋, 𝑌} × { 0 }) = {⟨𝑋, 0 ⟩, ⟨𝑌, 0 ⟩})
15231, 47, 56, 151syl3anc 1370 . . . . . . 7 ((𝜑𝑋𝑌) → ({𝑋, 𝑌} × { 0 }) = {⟨𝑋, 0 ⟩, ⟨𝑌, 0 ⟩})
153150, 152eqtrd 2778 . . . . . 6 ((𝜑𝑋𝑌) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} = {⟨𝑋, 0 ⟩, ⟨𝑌, 0 ⟩})
154 opthprneg 4795 . . . . . . 7 (((⟨𝑋, 𝐾⟩ ∈ V ∧ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ∈ V) ∧ (⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ∧ ⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, 0 ⟩)) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} = {⟨𝑋, 0 ⟩, ⟨𝑌, 0 ⟩} ↔ (⟨𝑋, 𝐾⟩ = ⟨𝑋, 0 ⟩ ∧ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ = ⟨𝑌, 0 ⟩)))
155154biimpa 477 . . . . . 6 ((((⟨𝑋, 𝐾⟩ ∈ V ∧ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ∈ V) ∧ (⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ∧ ⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, 0 ⟩)) ∧ {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} = {⟨𝑋, 0 ⟩, ⟨𝑌, 0 ⟩}) → (⟨𝑋, 𝐾⟩ = ⟨𝑋, 0 ⟩ ∧ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ = ⟨𝑌, 0 ⟩))
15634, 36, 45, 153, 155syl1111anc 837 . . . . 5 ((𝜑𝑋𝑌) → (⟨𝑋, 𝐾⟩ = ⟨𝑋, 0 ⟩ ∧ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ = ⟨𝑌, 0 ⟩))
157156simpld 495 . . . 4 ((𝜑𝑋𝑌) → ⟨𝑋, 𝐾⟩ = ⟨𝑋, 0 ⟩)
158 opthg 5392 . . . . 5 ((𝑋𝐵𝐾𝐹) → (⟨𝑋, 𝐾⟩ = ⟨𝑋, 0 ⟩ ↔ (𝑋 = 𝑋𝐾 = 0 )))
159158simplbda 500 . . . 4 (((𝑋𝐵𝐾𝐹) ∧ ⟨𝑋, 𝐾⟩ = ⟨𝑋, 0 ⟩) → 𝐾 = 0 )
16031, 32, 157, 159syl21anc 835 . . 3 ((𝜑𝑋𝑌) → 𝐾 = 0 )
161 linds2eq.11 . . . 4 (𝜑𝐾0 )
162161adantr 481 . . 3 ((𝜑𝑋𝑌) → 𝐾0 )
163160, 162pm2.21ddne 3029 . 2 ((𝜑𝑋𝑌) → (𝑋 = 𝑌𝐾 = 𝐿))
16430, 163pm2.61dane 3032 1 (𝜑 → (𝑋 = 𝑌𝐾 = 𝐿))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943  wral 3064  Vcvv 3432  wss 3887  {csn 4561  {cpr 4563  cop 4567   class class class wbr 5074  cmpt 5157   × cxp 5587  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  Fincfn 8733   finSupp cfsupp 9128  Basecbs 16912  +gcplusg 16962  Scalarcsca 16965   ·𝑠 cvsca 16966  0gc0g 17150   Σg cgsu 17151  Grpcgrp 18577  invgcminusg 18578  -gcsg 18579  CMndccmn 19386  Ringcrg 19783  LModclmod 20123  LVecclvec 20364  LIndSclinds 21012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-hom 16986  df-cco 16987  df-0g 17152  df-gsum 17153  df-prds 17158  df-pws 17160  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-drng 19993  df-subrg 20022  df-lmod 20125  df-lss 20194  df-lsp 20234  df-lmhm 20284  df-lbs 20337  df-lvec 20365  df-sra 20434  df-rgmod 20435  df-nzr 20529  df-dsmm 20939  df-frlm 20954  df-uvc 20990  df-lindf 21013  df-linds 21014
This theorem is referenced by:  fedgmul  31712
  Copyright terms: Public domain W3C validator