Step | Hyp | Ref
| Expression |
1 | | simpr 485 |
. . 3
⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 = 𝑌) |
2 | | linds2eq.12 |
. . . . . 6
⊢ (𝜑 → (𝐾 · 𝑋) = (𝐿 · 𝑌)) |
3 | 2 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐾 · 𝑋) = (𝐿 · 𝑌)) |
4 | 1 | oveq2d 7291 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐿 · 𝑋) = (𝐿 · 𝑌)) |
5 | 3, 4 | eqtr4d 2781 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝐾 · 𝑋) = (𝐿 · 𝑋)) |
6 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝑊) =
(Base‘𝑊) |
7 | | linds2eq.2 |
. . . . 5
⊢ · = (
·𝑠 ‘𝑊) |
8 | | eqid 2738 |
. . . . 5
⊢
(Scalar‘𝑊) =
(Scalar‘𝑊) |
9 | | linds2eq.1 |
. . . . 5
⊢ 𝐹 =
(Base‘(Scalar‘𝑊)) |
10 | | eqid 2738 |
. . . . 5
⊢
(0g‘𝑊) = (0g‘𝑊) |
11 | | linds2eq.5 |
. . . . . 6
⊢ (𝜑 → 𝑊 ∈ LVec) |
12 | 11 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑊 ∈ LVec) |
13 | | linds2eq.9 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ 𝐹) |
14 | 13 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝐾 ∈ 𝐹) |
15 | | linds2eq.10 |
. . . . . 6
⊢ (𝜑 → 𝐿 ∈ 𝐹) |
16 | 15 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝐿 ∈ 𝐹) |
17 | | linds2eq.6 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ (LIndS‘𝑊)) |
18 | 6 | linds1 21017 |
. . . . . . . 8
⊢ (𝐵 ∈ (LIndS‘𝑊) → 𝐵 ⊆ (Base‘𝑊)) |
19 | 17, 18 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑊)) |
20 | | linds2eq.7 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
21 | 19, 20 | sseldd 3922 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ (Base‘𝑊)) |
22 | 21 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 ∈ (Base‘𝑊)) |
23 | 10 | 0nellinds 31566 |
. . . . . . . 8
⊢ ((𝑊 ∈ LVec ∧ 𝐵 ∈ (LIndS‘𝑊)) → ¬
(0g‘𝑊)
∈ 𝐵) |
24 | 11, 17, 23 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ¬
(0g‘𝑊)
∈ 𝐵) |
25 | | nelne2 3042 |
. . . . . . 7
⊢ ((𝑋 ∈ 𝐵 ∧ ¬ (0g‘𝑊) ∈ 𝐵) → 𝑋 ≠ (0g‘𝑊)) |
26 | 20, 24, 25 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → 𝑋 ≠ (0g‘𝑊)) |
27 | 26 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝑋 ≠ (0g‘𝑊)) |
28 | 6, 7, 8, 9, 10, 12, 14, 16, 22, 27 | lvecvscan2 20374 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 = 𝑌) → ((𝐾 · 𝑋) = (𝐿 · 𝑋) ↔ 𝐾 = 𝐿)) |
29 | 5, 28 | mpbid 231 |
. . 3
⊢ ((𝜑 ∧ 𝑋 = 𝑌) → 𝐾 = 𝐿) |
30 | 1, 29 | jca 512 |
. 2
⊢ ((𝜑 ∧ 𝑋 = 𝑌) → (𝑋 = 𝑌 ∧ 𝐾 = 𝐿)) |
31 | 20 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ 𝐵) |
32 | 13 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝐾 ∈ 𝐹) |
33 | | opex 5379 |
. . . . . . 7
⊢
〈𝑋, 𝐾〉 ∈ V |
34 | 33 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 〈𝑋, 𝐾〉 ∈ V) |
35 | | opex 5379 |
. . . . . . 7
⊢
〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉 ∈ V |
36 | 35 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉 ∈ V) |
37 | | animorrl 978 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑋 ≠ 𝑌 ∨ 𝐾 ≠
((invg‘(Scalar‘𝑊))‘𝐿))) |
38 | | opthneg 5396 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝐵 ∧ 𝐾 ∈ 𝐹) → (〈𝑋, 𝐾〉 ≠ 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉 ↔ (𝑋 ≠ 𝑌 ∨ 𝐾 ≠
((invg‘(Scalar‘𝑊))‘𝐿)))) |
39 | 38 | biimpar 478 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝐵 ∧ 𝐾 ∈ 𝐹) ∧ (𝑋 ≠ 𝑌 ∨ 𝐾 ≠
((invg‘(Scalar‘𝑊))‘𝐿))) → 〈𝑋, 𝐾〉 ≠ 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉) |
40 | 31, 32, 37, 39 | syl21anc 835 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 〈𝑋, 𝐾〉 ≠ 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉) |
41 | | animorrl 978 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑋 ≠ 𝑌 ∨ 𝐾 ≠ 0 )) |
42 | | opthneg 5396 |
. . . . . . . . 9
⊢ ((𝑋 ∈ 𝐵 ∧ 𝐾 ∈ 𝐹) → (〈𝑋, 𝐾〉 ≠ 〈𝑌, 0 〉 ↔ (𝑋 ≠ 𝑌 ∨ 𝐾 ≠ 0 ))) |
43 | 42 | biimpar 478 |
. . . . . . . 8
⊢ (((𝑋 ∈ 𝐵 ∧ 𝐾 ∈ 𝐹) ∧ (𝑋 ≠ 𝑌 ∨ 𝐾 ≠ 0 )) → 〈𝑋, 𝐾〉 ≠ 〈𝑌, 0 〉) |
44 | 31, 32, 41, 43 | syl21anc 835 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 〈𝑋, 𝐾〉 ≠ 〈𝑌, 0 〉) |
45 | 40, 44 | jca 512 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (〈𝑋, 𝐾〉 ≠ 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉 ∧ 〈𝑋, 𝐾〉 ≠ 〈𝑌, 0 〉)) |
46 | | linds2eq.8 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
47 | 46 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ 𝐵) |
48 | | fvexd 6789 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) →
((invg‘(Scalar‘𝑊))‘𝐿) ∈ V) |
49 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ≠ 𝑌) |
50 | | fprg 7027 |
. . . . . . . . . 10
⊢ (((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝐾 ∈ 𝐹 ∧
((invg‘(Scalar‘𝑊))‘𝐿) ∈ V) ∧ 𝑋 ≠ 𝑌) → {〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}:{𝑋, 𝑌}⟶{𝐾,
((invg‘(Scalar‘𝑊))‘𝐿)}) |
51 | 31, 47, 32, 48, 49, 50 | syl221anc 1380 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}:{𝑋, 𝑌}⟶{𝐾,
((invg‘(Scalar‘𝑊))‘𝐿)}) |
52 | | prfi 9089 |
. . . . . . . . . 10
⊢ {𝑋, 𝑌} ∈ Fin |
53 | 52 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ∈ Fin) |
54 | | linds2eq.4 |
. . . . . . . . . . 11
⊢ 0 =
(0g‘(Scalar‘𝑊)) |
55 | 54 | fvexi 6788 |
. . . . . . . . . 10
⊢ 0 ∈
V |
56 | 55 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 0 ∈ V) |
57 | 51, 53, 56 | fdmfifsupp 9138 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉} finSupp 0 ) |
58 | | lveclmod 20368 |
. . . . . . . . . . . . 13
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) |
59 | 11, 58 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑊 ∈ LMod) |
60 | | lmodcmn 20171 |
. . . . . . . . . . . 12
⊢ (𝑊 ∈ LMod → 𝑊 ∈ CMnd) |
61 | 59, 60 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑊 ∈ CMnd) |
62 | 61 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑊 ∈ CMnd) |
63 | 59 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑊 ∈ LMod) |
64 | 8 | lmodring 20131 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑊 ∈ LMod →
(Scalar‘𝑊) ∈
Ring) |
65 | | ringgrp 19788 |
. . . . . . . . . . . . . . . . 17
⊢
((Scalar‘𝑊)
∈ Ring → (Scalar‘𝑊) ∈ Grp) |
66 | 59, 64, 65 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (Scalar‘𝑊) ∈ Grp) |
67 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢
(invg‘(Scalar‘𝑊)) =
(invg‘(Scalar‘𝑊)) |
68 | 9, 67 | grpinvcl 18627 |
. . . . . . . . . . . . . . . 16
⊢
(((Scalar‘𝑊)
∈ Grp ∧ 𝐿 ∈
𝐹) →
((invg‘(Scalar‘𝑊))‘𝐿) ∈ 𝐹) |
69 | 66, 15, 68 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 →
((invg‘(Scalar‘𝑊))‘𝐿) ∈ 𝐹) |
70 | 13, 69 | prssd 4755 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → {𝐾,
((invg‘(Scalar‘𝑊))‘𝐿)} ⊆ 𝐹) |
71 | 70 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝐾,
((invg‘(Scalar‘𝑊))‘𝐿)} ⊆ 𝐹) |
72 | 51, 71 | fssd 6618 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}:{𝑋, 𝑌}⟶𝐹) |
73 | | eqidd 2739 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 = 𝑋) |
74 | 73 | orcd 870 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑋 = 𝑋 ∨ 𝑋 = 𝑌)) |
75 | | elprg 4582 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈ 𝐵 → (𝑋 ∈ {𝑋, 𝑌} ↔ (𝑋 = 𝑋 ∨ 𝑋 = 𝑌))) |
76 | 75 | biimpar 478 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∈ 𝐵 ∧ (𝑋 = 𝑋 ∨ 𝑋 = 𝑌)) → 𝑋 ∈ {𝑋, 𝑌}) |
77 | 31, 74, 76 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ {𝑋, 𝑌}) |
78 | 72, 77 | ffvelrnd 6962 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑋) ∈ 𝐹) |
79 | 21 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑋 ∈ (Base‘𝑊)) |
80 | 6, 8, 7, 9 | lmodvscl 20140 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ LMod ∧ ({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑋) ∈ 𝐹 ∧ 𝑋 ∈ (Base‘𝑊)) → (({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑋) · 𝑋) ∈ (Base‘𝑊)) |
81 | 63, 78, 79, 80 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑋) · 𝑋) ∈ (Base‘𝑊)) |
82 | | eqidd 2739 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑌 = 𝑌) |
83 | 82 | olcd 871 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑌 = 𝑋 ∨ 𝑌 = 𝑌)) |
84 | | elprg 4582 |
. . . . . . . . . . . . . 14
⊢ (𝑌 ∈ 𝐵 → (𝑌 ∈ {𝑋, 𝑌} ↔ (𝑌 = 𝑋 ∨ 𝑌 = 𝑌))) |
85 | 84 | biimpar 478 |
. . . . . . . . . . . . 13
⊢ ((𝑌 ∈ 𝐵 ∧ (𝑌 = 𝑋 ∨ 𝑌 = 𝑌)) → 𝑌 ∈ {𝑋, 𝑌}) |
86 | 47, 83, 85 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ {𝑋, 𝑌}) |
87 | 72, 86 | ffvelrnd 6962 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑌) ∈ 𝐹) |
88 | 19, 46 | sseldd 3922 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑌 ∈ (Base‘𝑊)) |
89 | 88 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝑌 ∈ (Base‘𝑊)) |
90 | 6, 8, 7, 9 | lmodvscl 20140 |
. . . . . . . . . . 11
⊢ ((𝑊 ∈ LMod ∧ ({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑌) ∈ 𝐹 ∧ 𝑌 ∈ (Base‘𝑊)) → (({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑌) · 𝑌) ∈ (Base‘𝑊)) |
91 | 63, 87, 89, 90 | syl3anc 1370 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑌) · 𝑌) ∈ (Base‘𝑊)) |
92 | | linds2eq.3 |
. . . . . . . . . . 11
⊢ + =
(+g‘𝑊) |
93 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑋 → ({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑏) = ({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑋)) |
94 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑋 → 𝑏 = 𝑋) |
95 | 93, 94 | oveq12d 7293 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑋 → (({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑏) · 𝑏) = (({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑋) · 𝑋)) |
96 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑌 → ({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑏) = ({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑌)) |
97 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑏 = 𝑌 → 𝑏 = 𝑌) |
98 | 96, 97 | oveq12d 7293 |
. . . . . . . . . . 11
⊢ (𝑏 = 𝑌 → (({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑏) · 𝑏) = (({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑌) · 𝑌)) |
99 | 6, 92, 95, 98 | gsumpr 19556 |
. . . . . . . . . 10
⊢ ((𝑊 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ≠ 𝑌) ∧ ((({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑋) · 𝑋) ∈ (Base‘𝑊) ∧ (({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑌) · 𝑌) ∈ (Base‘𝑊))) → (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑏) · 𝑏))) = ((({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑋) · 𝑋) + (({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑌) · 𝑌))) |
100 | 62, 31, 47, 49, 81, 91, 99 | syl132anc 1387 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑏) · 𝑏))) = ((({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑋) · 𝑋) + (({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑌) · 𝑌))) |
101 | | fvpr1g 7062 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ 𝐵 ∧ 𝐾 ∈ 𝐹 ∧ 𝑋 ≠ 𝑌) → ({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑋) = 𝐾) |
102 | 31, 32, 49, 101 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑋) = 𝐾) |
103 | 102 | oveq1d 7290 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑋) · 𝑋) = (𝐾 · 𝑋)) |
104 | 69 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) →
((invg‘(Scalar‘𝑊))‘𝐿) ∈ 𝐹) |
105 | | fvpr2g 7063 |
. . . . . . . . . . . 12
⊢ ((𝑌 ∈ 𝐵 ∧
((invg‘(Scalar‘𝑊))‘𝐿) ∈ 𝐹 ∧ 𝑋 ≠ 𝑌) → ({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑌) =
((invg‘(Scalar‘𝑊))‘𝐿)) |
106 | 47, 104, 49, 105 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑌) =
((invg‘(Scalar‘𝑊))‘𝐿)) |
107 | 106 | oveq1d 7290 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑌) · 𝑌) =
(((invg‘(Scalar‘𝑊))‘𝐿) · 𝑌)) |
108 | 103, 107 | oveq12d 7293 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ((({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑋) · 𝑋) + (({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑌) · 𝑌)) = ((𝐾 · 𝑋) +
(((invg‘(Scalar‘𝑊))‘𝐿) · 𝑌))) |
109 | 6, 8, 7, 9 | lmodvscl 20140 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ LMod ∧ 𝐾 ∈ 𝐹 ∧ 𝑋 ∈ (Base‘𝑊)) → (𝐾 · 𝑋) ∈ (Base‘𝑊)) |
110 | 59, 13, 21, 109 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐾 · 𝑋) ∈ (Base‘𝑊)) |
111 | 2, 110 | eqeltrrd 2840 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐿 · 𝑌) ∈ (Base‘𝑊)) |
112 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(invg‘𝑊) = (invg‘𝑊) |
113 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢
(-g‘𝑊) = (-g‘𝑊) |
114 | 6, 92, 112, 113 | grpsubval 18625 |
. . . . . . . . . . . 12
⊢ (((𝐾 · 𝑋) ∈ (Base‘𝑊) ∧ (𝐿 · 𝑌) ∈ (Base‘𝑊)) → ((𝐾 · 𝑋)(-g‘𝑊)(𝐿 · 𝑌)) = ((𝐾 · 𝑋) +
((invg‘𝑊)‘(𝐿 · 𝑌)))) |
115 | 110, 111,
114 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐾 · 𝑋)(-g‘𝑊)(𝐿 · 𝑌)) = ((𝐾 · 𝑋) +
((invg‘𝑊)‘(𝐿 · 𝑌)))) |
116 | | lmodgrp 20130 |
. . . . . . . . . . . . . 14
⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
117 | 59, 116 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑊 ∈ Grp) |
118 | 6, 10, 113 | grpsubeq0 18661 |
. . . . . . . . . . . . 13
⊢ ((𝑊 ∈ Grp ∧ (𝐾 · 𝑋) ∈ (Base‘𝑊) ∧ (𝐿 · 𝑌) ∈ (Base‘𝑊)) → (((𝐾 · 𝑋)(-g‘𝑊)(𝐿 · 𝑌)) = (0g‘𝑊) ↔ (𝐾 · 𝑋) = (𝐿 · 𝑌))) |
119 | 117, 110,
111, 118 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝐾 · 𝑋)(-g‘𝑊)(𝐿 · 𝑌)) = (0g‘𝑊) ↔ (𝐾 · 𝑋) = (𝐿 · 𝑌))) |
120 | 2, 119 | mpbird 256 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐾 · 𝑋)(-g‘𝑊)(𝐿 · 𝑌)) = (0g‘𝑊)) |
121 | 6, 8, 7, 112, 9, 67, 59, 88, 15 | lmodvsneg 20167 |
. . . . . . . . . . . 12
⊢ (𝜑 →
((invg‘𝑊)‘(𝐿 · 𝑌)) =
(((invg‘(Scalar‘𝑊))‘𝐿) · 𝑌)) |
122 | 121 | oveq2d 7291 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝐾 · 𝑋) +
((invg‘𝑊)‘(𝐿 · 𝑌))) = ((𝐾 · 𝑋) +
(((invg‘(Scalar‘𝑊))‘𝐿) · 𝑌))) |
123 | 115, 120,
122 | 3eqtr3rd 2787 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐾 · 𝑋) +
(((invg‘(Scalar‘𝑊))‘𝐿) · 𝑌)) = (0g‘𝑊)) |
124 | 123 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ((𝐾 · 𝑋) +
(((invg‘(Scalar‘𝑊))‘𝐿) · 𝑌)) = (0g‘𝑊)) |
125 | 100, 108,
124 | 3eqtrd 2782 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑏) · 𝑏))) = (0g‘𝑊)) |
126 | | breq1 5077 |
. . . . . . . . . . 11
⊢ (𝑎 = {〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉} → (𝑎 finSupp 0 ↔ {〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉} finSupp 0 )) |
127 | | fveq1 6773 |
. . . . . . . . . . . . . . 15
⊢ (𝑎 = {〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉} → (𝑎‘𝑏) = ({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑏)) |
128 | 127 | oveq1d 7290 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = {〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉} → ((𝑎‘𝑏) · 𝑏) = (({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑏) · 𝑏)) |
129 | 128 | mpteq2dv 5176 |
. . . . . . . . . . . . 13
⊢ (𝑎 = {〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉} → (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎‘𝑏) · 𝑏)) = (𝑏 ∈ {𝑋, 𝑌} ↦ (({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑏) · 𝑏))) |
130 | 129 | oveq2d 7291 |
. . . . . . . . . . . 12
⊢ (𝑎 = {〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉} → (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎‘𝑏) · 𝑏))) = (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑏) · 𝑏)))) |
131 | 130 | eqeq1d 2740 |
. . . . . . . . . . 11
⊢ (𝑎 = {〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉} → ((𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎‘𝑏) · 𝑏))) = (0g‘𝑊) ↔ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑏) · 𝑏))) = (0g‘𝑊))) |
132 | 126, 131 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑎 = {〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉} → ((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎‘𝑏) · 𝑏))) = (0g‘𝑊)) ↔ ({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉} finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑏) · 𝑏))) = (0g‘𝑊)))) |
133 | | eqeq1 2742 |
. . . . . . . . . 10
⊢ (𝑎 = {〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉} → (𝑎 = ({𝑋, 𝑌} × { 0 }) ↔ {〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉} = ({𝑋, 𝑌} × { 0 }))) |
134 | 132, 133 | imbi12d 345 |
. . . . . . . . 9
⊢ (𝑎 = {〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉} → (((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎‘𝑏) · 𝑏))) = (0g‘𝑊)) → 𝑎 = ({𝑋, 𝑌} × { 0 })) ↔ (({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉} finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑏) · 𝑏))) = (0g‘𝑊)) → {〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉} = ({𝑋, 𝑌} × { 0 })))) |
135 | 20, 46 | prssd 4755 |
. . . . . . . . . . . 12
⊢ (𝜑 → {𝑋, 𝑌} ⊆ 𝐵) |
136 | 135, 19 | sstrd 3931 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝑋, 𝑌} ⊆ (Base‘𝑊)) |
137 | | lindsss 21031 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ LMod ∧ 𝐵 ∈ (LIndS‘𝑊) ∧ {𝑋, 𝑌} ⊆ 𝐵) → {𝑋, 𝑌} ∈ (LIndS‘𝑊)) |
138 | 59, 17, 135, 137 | syl3anc 1370 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝑋, 𝑌} ∈ (LIndS‘𝑊)) |
139 | 6, 9, 8, 7, 10, 54 | islinds5 31563 |
. . . . . . . . . . . 12
⊢ ((𝑊 ∈ LMod ∧ {𝑋, 𝑌} ⊆ (Base‘𝑊)) → ({𝑋, 𝑌} ∈ (LIndS‘𝑊) ↔ ∀𝑎 ∈ (𝐹 ↑m {𝑋, 𝑌})((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎‘𝑏) · 𝑏))) = (0g‘𝑊)) → 𝑎 = ({𝑋, 𝑌} × { 0 })))) |
140 | 139 | biimpa 477 |
. . . . . . . . . . 11
⊢ (((𝑊 ∈ LMod ∧ {𝑋, 𝑌} ⊆ (Base‘𝑊)) ∧ {𝑋, 𝑌} ∈ (LIndS‘𝑊)) → ∀𝑎 ∈ (𝐹 ↑m {𝑋, 𝑌})((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎‘𝑏) · 𝑏))) = (0g‘𝑊)) → 𝑎 = ({𝑋, 𝑌} × { 0 }))) |
141 | 59, 136, 138, 140 | syl21anc 835 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑎 ∈ (𝐹 ↑m {𝑋, 𝑌})((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎‘𝑏) · 𝑏))) = (0g‘𝑊)) → 𝑎 = ({𝑋, 𝑌} × { 0 }))) |
142 | 141 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ∀𝑎 ∈ (𝐹 ↑m {𝑋, 𝑌})((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎‘𝑏) · 𝑏))) = (0g‘𝑊)) → 𝑎 = ({𝑋, 𝑌} × { 0 }))) |
143 | 9 | fvexi 6788 |
. . . . . . . . . . . 12
⊢ 𝐹 ∈ V |
144 | 143 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝐹 ∈ V) |
145 | 138 | elexd 3452 |
. . . . . . . . . . . 12
⊢ (𝜑 → {𝑋, 𝑌} ∈ V) |
146 | 145 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ∈ V) |
147 | 144, 146 | elmapd 8629 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉} ∈ (𝐹 ↑m {𝑋, 𝑌}) ↔ {〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}:{𝑋, 𝑌}⟶𝐹)) |
148 | 72, 147 | mpbird 256 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉} ∈ (𝐹 ↑m {𝑋, 𝑌})) |
149 | 134, 142,
148 | rspcdva 3562 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉} finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉}‘𝑏) · 𝑏))) = (0g‘𝑊)) → {〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉} = ({𝑋, 𝑌} × { 0 }))) |
150 | 57, 125, 149 | mp2and 696 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉} = ({𝑋, 𝑌} × { 0 })) |
151 | | xpprsng 7012 |
. . . . . . . 8
⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 0 ∈ V) → ({𝑋, 𝑌} × { 0 }) = {〈𝑋, 0 〉, 〈𝑌, 0 〉}) |
152 | 31, 47, 56, 151 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → ({𝑋, 𝑌} × { 0 }) = {〈𝑋, 0 〉, 〈𝑌, 0 〉}) |
153 | 150, 152 | eqtrd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉} = {〈𝑋, 0 〉, 〈𝑌, 0 〉}) |
154 | | opthprneg 4795 |
. . . . . . 7
⊢
(((〈𝑋, 𝐾〉 ∈ V ∧
〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉 ∈ V) ∧ (〈𝑋, 𝐾〉 ≠ 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉 ∧ 〈𝑋, 𝐾〉 ≠ 〈𝑌, 0 〉)) →
({〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉} = {〈𝑋, 0 〉, 〈𝑌, 0 〉} ↔
(〈𝑋, 𝐾〉 = 〈𝑋, 0 〉 ∧ 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉 = 〈𝑌, 0 〉))) |
155 | 154 | biimpa 477 |
. . . . . 6
⊢
((((〈𝑋, 𝐾〉 ∈ V ∧
〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉 ∈ V) ∧ (〈𝑋, 𝐾〉 ≠ 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉 ∧ 〈𝑋, 𝐾〉 ≠ 〈𝑌, 0 〉)) ∧
{〈𝑋, 𝐾〉, 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉} = {〈𝑋, 0 〉, 〈𝑌, 0 〉}) →
(〈𝑋, 𝐾〉 = 〈𝑋, 0 〉 ∧ 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉 = 〈𝑌, 0 〉)) |
156 | 34, 36, 45, 153, 155 | syl1111anc 837 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (〈𝑋, 𝐾〉 = 〈𝑋, 0 〉 ∧ 〈𝑌,
((invg‘(Scalar‘𝑊))‘𝐿)〉 = 〈𝑌, 0 〉)) |
157 | 156 | simpld 495 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 〈𝑋, 𝐾〉 = 〈𝑋, 0 〉) |
158 | | opthg 5392 |
. . . . 5
⊢ ((𝑋 ∈ 𝐵 ∧ 𝐾 ∈ 𝐹) → (〈𝑋, 𝐾〉 = 〈𝑋, 0 〉 ↔ (𝑋 = 𝑋 ∧ 𝐾 = 0 ))) |
159 | 158 | simplbda 500 |
. . . 4
⊢ (((𝑋 ∈ 𝐵 ∧ 𝐾 ∈ 𝐹) ∧ 〈𝑋, 𝐾〉 = 〈𝑋, 0 〉) → 𝐾 = 0 ) |
160 | 31, 32, 157, 159 | syl21anc 835 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝐾 = 0 ) |
161 | | linds2eq.11 |
. . . 4
⊢ (𝜑 → 𝐾 ≠ 0 ) |
162 | 161 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → 𝐾 ≠ 0 ) |
163 | 160, 162 | pm2.21ddne 3029 |
. 2
⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → (𝑋 = 𝑌 ∧ 𝐾 = 𝐿)) |
164 | 30, 163 | pm2.61dane 3032 |
1
⊢ (𝜑 → (𝑋 = 𝑌 ∧ 𝐾 = 𝐿)) |