Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linds2eq Structured version   Visualization version   GIF version

Theorem linds2eq 31477
Description: Deduce equality of elements in an independent set. (Contributed by Thierry Arnoux, 18-Jul-2023.)
Hypotheses
Ref Expression
linds2eq.1 𝐹 = (Base‘(Scalar‘𝑊))
linds2eq.2 · = ( ·𝑠𝑊)
linds2eq.3 + = (+g𝑊)
linds2eq.4 0 = (0g‘(Scalar‘𝑊))
linds2eq.5 (𝜑𝑊 ∈ LVec)
linds2eq.6 (𝜑𝐵 ∈ (LIndS‘𝑊))
linds2eq.7 (𝜑𝑋𝐵)
linds2eq.8 (𝜑𝑌𝐵)
linds2eq.9 (𝜑𝐾𝐹)
linds2eq.10 (𝜑𝐿𝐹)
linds2eq.11 (𝜑𝐾0 )
linds2eq.12 (𝜑 → (𝐾 · 𝑋) = (𝐿 · 𝑌))
Assertion
Ref Expression
linds2eq (𝜑 → (𝑋 = 𝑌𝐾 = 𝐿))

Proof of Theorem linds2eq
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . 3 ((𝜑𝑋 = 𝑌) → 𝑋 = 𝑌)
2 linds2eq.12 . . . . . 6 (𝜑 → (𝐾 · 𝑋) = (𝐿 · 𝑌))
32adantr 480 . . . . 5 ((𝜑𝑋 = 𝑌) → (𝐾 · 𝑋) = (𝐿 · 𝑌))
41oveq2d 7271 . . . . 5 ((𝜑𝑋 = 𝑌) → (𝐿 · 𝑋) = (𝐿 · 𝑌))
53, 4eqtr4d 2781 . . . 4 ((𝜑𝑋 = 𝑌) → (𝐾 · 𝑋) = (𝐿 · 𝑋))
6 eqid 2738 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
7 linds2eq.2 . . . . 5 · = ( ·𝑠𝑊)
8 eqid 2738 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
9 linds2eq.1 . . . . 5 𝐹 = (Base‘(Scalar‘𝑊))
10 eqid 2738 . . . . 5 (0g𝑊) = (0g𝑊)
11 linds2eq.5 . . . . . 6 (𝜑𝑊 ∈ LVec)
1211adantr 480 . . . . 5 ((𝜑𝑋 = 𝑌) → 𝑊 ∈ LVec)
13 linds2eq.9 . . . . . 6 (𝜑𝐾𝐹)
1413adantr 480 . . . . 5 ((𝜑𝑋 = 𝑌) → 𝐾𝐹)
15 linds2eq.10 . . . . . 6 (𝜑𝐿𝐹)
1615adantr 480 . . . . 5 ((𝜑𝑋 = 𝑌) → 𝐿𝐹)
17 linds2eq.6 . . . . . . . 8 (𝜑𝐵 ∈ (LIndS‘𝑊))
186linds1 20927 . . . . . . . 8 (𝐵 ∈ (LIndS‘𝑊) → 𝐵 ⊆ (Base‘𝑊))
1917, 18syl 17 . . . . . . 7 (𝜑𝐵 ⊆ (Base‘𝑊))
20 linds2eq.7 . . . . . . 7 (𝜑𝑋𝐵)
2119, 20sseldd 3918 . . . . . 6 (𝜑𝑋 ∈ (Base‘𝑊))
2221adantr 480 . . . . 5 ((𝜑𝑋 = 𝑌) → 𝑋 ∈ (Base‘𝑊))
23100nellinds 31468 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝐵 ∈ (LIndS‘𝑊)) → ¬ (0g𝑊) ∈ 𝐵)
2411, 17, 23syl2anc 583 . . . . . . 7 (𝜑 → ¬ (0g𝑊) ∈ 𝐵)
25 nelne2 3041 . . . . . . 7 ((𝑋𝐵 ∧ ¬ (0g𝑊) ∈ 𝐵) → 𝑋 ≠ (0g𝑊))
2620, 24, 25syl2anc 583 . . . . . 6 (𝜑𝑋 ≠ (0g𝑊))
2726adantr 480 . . . . 5 ((𝜑𝑋 = 𝑌) → 𝑋 ≠ (0g𝑊))
286, 7, 8, 9, 10, 12, 14, 16, 22, 27lvecvscan2 20289 . . . 4 ((𝜑𝑋 = 𝑌) → ((𝐾 · 𝑋) = (𝐿 · 𝑋) ↔ 𝐾 = 𝐿))
295, 28mpbid 231 . . 3 ((𝜑𝑋 = 𝑌) → 𝐾 = 𝐿)
301, 29jca 511 . 2 ((𝜑𝑋 = 𝑌) → (𝑋 = 𝑌𝐾 = 𝐿))
3120adantr 480 . . . 4 ((𝜑𝑋𝑌) → 𝑋𝐵)
3213adantr 480 . . . 4 ((𝜑𝑋𝑌) → 𝐾𝐹)
33 opex 5373 . . . . . . 7 𝑋, 𝐾⟩ ∈ V
3433a1i 11 . . . . . 6 ((𝜑𝑋𝑌) → ⟨𝑋, 𝐾⟩ ∈ V)
35 opex 5373 . . . . . . 7 𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ∈ V
3635a1i 11 . . . . . 6 ((𝜑𝑋𝑌) → ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ∈ V)
37 animorrl 977 . . . . . . . 8 ((𝜑𝑋𝑌) → (𝑋𝑌𝐾 ≠ ((invg‘(Scalar‘𝑊))‘𝐿)))
38 opthneg 5390 . . . . . . . . 9 ((𝑋𝐵𝐾𝐹) → (⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ↔ (𝑋𝑌𝐾 ≠ ((invg‘(Scalar‘𝑊))‘𝐿))))
3938biimpar 477 . . . . . . . 8 (((𝑋𝐵𝐾𝐹) ∧ (𝑋𝑌𝐾 ≠ ((invg‘(Scalar‘𝑊))‘𝐿))) → ⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩)
4031, 32, 37, 39syl21anc 834 . . . . . . 7 ((𝜑𝑋𝑌) → ⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩)
41 animorrl 977 . . . . . . . 8 ((𝜑𝑋𝑌) → (𝑋𝑌𝐾0 ))
42 opthneg 5390 . . . . . . . . 9 ((𝑋𝐵𝐾𝐹) → (⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, 0 ⟩ ↔ (𝑋𝑌𝐾0 )))
4342biimpar 477 . . . . . . . 8 (((𝑋𝐵𝐾𝐹) ∧ (𝑋𝑌𝐾0 )) → ⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, 0 ⟩)
4431, 32, 41, 43syl21anc 834 . . . . . . 7 ((𝜑𝑋𝑌) → ⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, 0 ⟩)
4540, 44jca 511 . . . . . 6 ((𝜑𝑋𝑌) → (⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ∧ ⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, 0 ⟩))
46 linds2eq.8 . . . . . . . . . . 11 (𝜑𝑌𝐵)
4746adantr 480 . . . . . . . . . 10 ((𝜑𝑋𝑌) → 𝑌𝐵)
48 fvexd 6771 . . . . . . . . . 10 ((𝜑𝑋𝑌) → ((invg‘(Scalar‘𝑊))‘𝐿) ∈ V)
49 simpr 484 . . . . . . . . . 10 ((𝜑𝑋𝑌) → 𝑋𝑌)
50 fprg 7009 . . . . . . . . . 10 (((𝑋𝐵𝑌𝐵) ∧ (𝐾𝐹 ∧ ((invg‘(Scalar‘𝑊))‘𝐿) ∈ V) ∧ 𝑋𝑌) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}:{𝑋, 𝑌}⟶{𝐾, ((invg‘(Scalar‘𝑊))‘𝐿)})
5131, 47, 32, 48, 49, 50syl221anc 1379 . . . . . . . . 9 ((𝜑𝑋𝑌) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}:{𝑋, 𝑌}⟶{𝐾, ((invg‘(Scalar‘𝑊))‘𝐿)})
52 prfi 9019 . . . . . . . . . 10 {𝑋, 𝑌} ∈ Fin
5352a1i 11 . . . . . . . . 9 ((𝜑𝑋𝑌) → {𝑋, 𝑌} ∈ Fin)
54 linds2eq.4 . . . . . . . . . . 11 0 = (0g‘(Scalar‘𝑊))
5554fvexi 6770 . . . . . . . . . 10 0 ∈ V
5655a1i 11 . . . . . . . . 9 ((𝜑𝑋𝑌) → 0 ∈ V)
5751, 53, 56fdmfifsupp 9068 . . . . . . . 8 ((𝜑𝑋𝑌) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} finSupp 0 )
58 lveclmod 20283 . . . . . . . . . . . . 13 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
5911, 58syl 17 . . . . . . . . . . . 12 (𝜑𝑊 ∈ LMod)
60 lmodcmn 20086 . . . . . . . . . . . 12 (𝑊 ∈ LMod → 𝑊 ∈ CMnd)
6159, 60syl 17 . . . . . . . . . . 11 (𝜑𝑊 ∈ CMnd)
6261adantr 480 . . . . . . . . . 10 ((𝜑𝑋𝑌) → 𝑊 ∈ CMnd)
6359adantr 480 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → 𝑊 ∈ LMod)
648lmodring 20046 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
65 ringgrp 19703 . . . . . . . . . . . . . . . . 17 ((Scalar‘𝑊) ∈ Ring → (Scalar‘𝑊) ∈ Grp)
6659, 64, 653syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (Scalar‘𝑊) ∈ Grp)
67 eqid 2738 . . . . . . . . . . . . . . . . 17 (invg‘(Scalar‘𝑊)) = (invg‘(Scalar‘𝑊))
689, 67grpinvcl 18542 . . . . . . . . . . . . . . . 16 (((Scalar‘𝑊) ∈ Grp ∧ 𝐿𝐹) → ((invg‘(Scalar‘𝑊))‘𝐿) ∈ 𝐹)
6966, 15, 68syl2anc 583 . . . . . . . . . . . . . . 15 (𝜑 → ((invg‘(Scalar‘𝑊))‘𝐿) ∈ 𝐹)
7013, 69prssd 4752 . . . . . . . . . . . . . 14 (𝜑 → {𝐾, ((invg‘(Scalar‘𝑊))‘𝐿)} ⊆ 𝐹)
7170adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑋𝑌) → {𝐾, ((invg‘(Scalar‘𝑊))‘𝐿)} ⊆ 𝐹)
7251, 71fssd 6602 . . . . . . . . . . . 12 ((𝜑𝑋𝑌) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}:{𝑋, 𝑌}⟶𝐹)
73 eqidd 2739 . . . . . . . . . . . . . 14 ((𝜑𝑋𝑌) → 𝑋 = 𝑋)
7473orcd 869 . . . . . . . . . . . . 13 ((𝜑𝑋𝑌) → (𝑋 = 𝑋𝑋 = 𝑌))
75 elprg 4579 . . . . . . . . . . . . . 14 (𝑋𝐵 → (𝑋 ∈ {𝑋, 𝑌} ↔ (𝑋 = 𝑋𝑋 = 𝑌)))
7675biimpar 477 . . . . . . . . . . . . 13 ((𝑋𝐵 ∧ (𝑋 = 𝑋𝑋 = 𝑌)) → 𝑋 ∈ {𝑋, 𝑌})
7731, 74, 76syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑋𝑌) → 𝑋 ∈ {𝑋, 𝑌})
7872, 77ffvelrnd 6944 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) ∈ 𝐹)
7921adantr 480 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → 𝑋 ∈ (Base‘𝑊))
806, 8, 7, 9lmodvscl 20055 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) ∈ 𝐹𝑋 ∈ (Base‘𝑊)) → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋) ∈ (Base‘𝑊))
8163, 78, 79, 80syl3anc 1369 . . . . . . . . . 10 ((𝜑𝑋𝑌) → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋) ∈ (Base‘𝑊))
82 eqidd 2739 . . . . . . . . . . . . . 14 ((𝜑𝑋𝑌) → 𝑌 = 𝑌)
8382olcd 870 . . . . . . . . . . . . 13 ((𝜑𝑋𝑌) → (𝑌 = 𝑋𝑌 = 𝑌))
84 elprg 4579 . . . . . . . . . . . . . 14 (𝑌𝐵 → (𝑌 ∈ {𝑋, 𝑌} ↔ (𝑌 = 𝑋𝑌 = 𝑌)))
8584biimpar 477 . . . . . . . . . . . . 13 ((𝑌𝐵 ∧ (𝑌 = 𝑋𝑌 = 𝑌)) → 𝑌 ∈ {𝑋, 𝑌})
8647, 83, 85syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑋𝑌) → 𝑌 ∈ {𝑋, 𝑌})
8772, 86ffvelrnd 6944 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) ∈ 𝐹)
8819, 46sseldd 3918 . . . . . . . . . . . 12 (𝜑𝑌 ∈ (Base‘𝑊))
8988adantr 480 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → 𝑌 ∈ (Base‘𝑊))
906, 8, 7, 9lmodvscl 20055 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) ∈ 𝐹𝑌 ∈ (Base‘𝑊)) → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌) ∈ (Base‘𝑊))
9163, 87, 89, 90syl3anc 1369 . . . . . . . . . 10 ((𝜑𝑋𝑌) → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌) ∈ (Base‘𝑊))
92 linds2eq.3 . . . . . . . . . . 11 + = (+g𝑊)
93 fveq2 6756 . . . . . . . . . . . 12 (𝑏 = 𝑋 → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) = ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋))
94 id 22 . . . . . . . . . . . 12 (𝑏 = 𝑋𝑏 = 𝑋)
9593, 94oveq12d 7273 . . . . . . . . . . 11 (𝑏 = 𝑋 → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏) = (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋))
96 fveq2 6756 . . . . . . . . . . . 12 (𝑏 = 𝑌 → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) = ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌))
97 id 22 . . . . . . . . . . . 12 (𝑏 = 𝑌𝑏 = 𝑌)
9896, 97oveq12d 7273 . . . . . . . . . . 11 (𝑏 = 𝑌 → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏) = (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌))
996, 92, 95, 98gsumpr 19471 . . . . . . . . . 10 ((𝑊 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵𝑋𝑌) ∧ ((({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋) ∈ (Base‘𝑊) ∧ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌) ∈ (Base‘𝑊))) → (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))) = ((({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋) + (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌)))
10062, 31, 47, 49, 81, 91, 99syl132anc 1386 . . . . . . . . 9 ((𝜑𝑋𝑌) → (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))) = ((({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋) + (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌)))
101 fvpr1g 7044 . . . . . . . . . . . 12 ((𝑋𝐵𝐾𝐹𝑋𝑌) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) = 𝐾)
10231, 32, 49, 101syl3anc 1369 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) = 𝐾)
103102oveq1d 7270 . . . . . . . . . 10 ((𝜑𝑋𝑌) → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋) = (𝐾 · 𝑋))
10469adantr 480 . . . . . . . . . . . 12 ((𝜑𝑋𝑌) → ((invg‘(Scalar‘𝑊))‘𝐿) ∈ 𝐹)
105 fvpr2g 7045 . . . . . . . . . . . 12 ((𝑌𝐵 ∧ ((invg‘(Scalar‘𝑊))‘𝐿) ∈ 𝐹𝑋𝑌) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) = ((invg‘(Scalar‘𝑊))‘𝐿))
10647, 104, 49, 105syl3anc 1369 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) = ((invg‘(Scalar‘𝑊))‘𝐿))
107106oveq1d 7270 . . . . . . . . . 10 ((𝜑𝑋𝑌) → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌) = (((invg‘(Scalar‘𝑊))‘𝐿) · 𝑌))
108103, 107oveq12d 7273 . . . . . . . . 9 ((𝜑𝑋𝑌) → ((({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋) + (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌)) = ((𝐾 · 𝑋) + (((invg‘(Scalar‘𝑊))‘𝐿) · 𝑌)))
1096, 8, 7, 9lmodvscl 20055 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝐾𝐹𝑋 ∈ (Base‘𝑊)) → (𝐾 · 𝑋) ∈ (Base‘𝑊))
11059, 13, 21, 109syl3anc 1369 . . . . . . . . . . . 12 (𝜑 → (𝐾 · 𝑋) ∈ (Base‘𝑊))
1112, 110eqeltrrd 2840 . . . . . . . . . . . 12 (𝜑 → (𝐿 · 𝑌) ∈ (Base‘𝑊))
112 eqid 2738 . . . . . . . . . . . . 13 (invg𝑊) = (invg𝑊)
113 eqid 2738 . . . . . . . . . . . . 13 (-g𝑊) = (-g𝑊)
1146, 92, 112, 113grpsubval 18540 . . . . . . . . . . . 12 (((𝐾 · 𝑋) ∈ (Base‘𝑊) ∧ (𝐿 · 𝑌) ∈ (Base‘𝑊)) → ((𝐾 · 𝑋)(-g𝑊)(𝐿 · 𝑌)) = ((𝐾 · 𝑋) + ((invg𝑊)‘(𝐿 · 𝑌))))
115110, 111, 114syl2anc 583 . . . . . . . . . . 11 (𝜑 → ((𝐾 · 𝑋)(-g𝑊)(𝐿 · 𝑌)) = ((𝐾 · 𝑋) + ((invg𝑊)‘(𝐿 · 𝑌))))
116 lmodgrp 20045 . . . . . . . . . . . . . 14 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
11759, 116syl 17 . . . . . . . . . . . . 13 (𝜑𝑊 ∈ Grp)
1186, 10, 113grpsubeq0 18576 . . . . . . . . . . . . 13 ((𝑊 ∈ Grp ∧ (𝐾 · 𝑋) ∈ (Base‘𝑊) ∧ (𝐿 · 𝑌) ∈ (Base‘𝑊)) → (((𝐾 · 𝑋)(-g𝑊)(𝐿 · 𝑌)) = (0g𝑊) ↔ (𝐾 · 𝑋) = (𝐿 · 𝑌)))
119117, 110, 111, 118syl3anc 1369 . . . . . . . . . . . 12 (𝜑 → (((𝐾 · 𝑋)(-g𝑊)(𝐿 · 𝑌)) = (0g𝑊) ↔ (𝐾 · 𝑋) = (𝐿 · 𝑌)))
1202, 119mpbird 256 . . . . . . . . . . 11 (𝜑 → ((𝐾 · 𝑋)(-g𝑊)(𝐿 · 𝑌)) = (0g𝑊))
1216, 8, 7, 112, 9, 67, 59, 88, 15lmodvsneg 20082 . . . . . . . . . . . 12 (𝜑 → ((invg𝑊)‘(𝐿 · 𝑌)) = (((invg‘(Scalar‘𝑊))‘𝐿) · 𝑌))
122121oveq2d 7271 . . . . . . . . . . 11 (𝜑 → ((𝐾 · 𝑋) + ((invg𝑊)‘(𝐿 · 𝑌))) = ((𝐾 · 𝑋) + (((invg‘(Scalar‘𝑊))‘𝐿) · 𝑌)))
123115, 120, 1223eqtr3rd 2787 . . . . . . . . . 10 (𝜑 → ((𝐾 · 𝑋) + (((invg‘(Scalar‘𝑊))‘𝐿) · 𝑌)) = (0g𝑊))
124123adantr 480 . . . . . . . . 9 ((𝜑𝑋𝑌) → ((𝐾 · 𝑋) + (((invg‘(Scalar‘𝑊))‘𝐿) · 𝑌)) = (0g𝑊))
125100, 108, 1243eqtrd 2782 . . . . . . . 8 ((𝜑𝑋𝑌) → (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))) = (0g𝑊))
126 breq1 5073 . . . . . . . . . . 11 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → (𝑎 finSupp 0 ↔ {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} finSupp 0 ))
127 fveq1 6755 . . . . . . . . . . . . . . 15 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → (𝑎𝑏) = ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏))
128127oveq1d 7270 . . . . . . . . . . . . . 14 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → ((𝑎𝑏) · 𝑏) = (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))
129128mpteq2dv 5172 . . . . . . . . . . . . 13 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏)) = (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏)))
130129oveq2d 7271 . . . . . . . . . . . 12 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))))
131130eqeq1d 2740 . . . . . . . . . . 11 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → ((𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (0g𝑊) ↔ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))) = (0g𝑊)))
132126, 131anbi12d 630 . . . . . . . . . 10 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → ((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (0g𝑊)) ↔ ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))) = (0g𝑊))))
133 eqeq1 2742 . . . . . . . . . 10 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → (𝑎 = ({𝑋, 𝑌} × { 0 }) ↔ {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} = ({𝑋, 𝑌} × { 0 })))
134132, 133imbi12d 344 . . . . . . . . 9 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → (((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (0g𝑊)) → 𝑎 = ({𝑋, 𝑌} × { 0 })) ↔ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))) = (0g𝑊)) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} = ({𝑋, 𝑌} × { 0 }))))
13520, 46prssd 4752 . . . . . . . . . . . 12 (𝜑 → {𝑋, 𝑌} ⊆ 𝐵)
136135, 19sstrd 3927 . . . . . . . . . . 11 (𝜑 → {𝑋, 𝑌} ⊆ (Base‘𝑊))
137 lindsss 20941 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝐵 ∈ (LIndS‘𝑊) ∧ {𝑋, 𝑌} ⊆ 𝐵) → {𝑋, 𝑌} ∈ (LIndS‘𝑊))
13859, 17, 135, 137syl3anc 1369 . . . . . . . . . . 11 (𝜑 → {𝑋, 𝑌} ∈ (LIndS‘𝑊))
1396, 9, 8, 7, 10, 54islinds5 31465 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ {𝑋, 𝑌} ⊆ (Base‘𝑊)) → ({𝑋, 𝑌} ∈ (LIndS‘𝑊) ↔ ∀𝑎 ∈ (𝐹m {𝑋, 𝑌})((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (0g𝑊)) → 𝑎 = ({𝑋, 𝑌} × { 0 }))))
140139biimpa 476 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ {𝑋, 𝑌} ⊆ (Base‘𝑊)) ∧ {𝑋, 𝑌} ∈ (LIndS‘𝑊)) → ∀𝑎 ∈ (𝐹m {𝑋, 𝑌})((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (0g𝑊)) → 𝑎 = ({𝑋, 𝑌} × { 0 })))
14159, 136, 138, 140syl21anc 834 . . . . . . . . . 10 (𝜑 → ∀𝑎 ∈ (𝐹m {𝑋, 𝑌})((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (0g𝑊)) → 𝑎 = ({𝑋, 𝑌} × { 0 })))
142141adantr 480 . . . . . . . . 9 ((𝜑𝑋𝑌) → ∀𝑎 ∈ (𝐹m {𝑋, 𝑌})((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (0g𝑊)) → 𝑎 = ({𝑋, 𝑌} × { 0 })))
1439fvexi 6770 . . . . . . . . . . . 12 𝐹 ∈ V
144143a1i 11 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → 𝐹 ∈ V)
145138elexd 3442 . . . . . . . . . . . 12 (𝜑 → {𝑋, 𝑌} ∈ V)
146145adantr 480 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → {𝑋, 𝑌} ∈ V)
147144, 146elmapd 8587 . . . . . . . . . 10 ((𝜑𝑋𝑌) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} ∈ (𝐹m {𝑋, 𝑌}) ↔ {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}:{𝑋, 𝑌}⟶𝐹))
14872, 147mpbird 256 . . . . . . . . 9 ((𝜑𝑋𝑌) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} ∈ (𝐹m {𝑋, 𝑌}))
149134, 142, 148rspcdva 3554 . . . . . . . 8 ((𝜑𝑋𝑌) → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))) = (0g𝑊)) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} = ({𝑋, 𝑌} × { 0 })))
15057, 125, 149mp2and 695 . . . . . . 7 ((𝜑𝑋𝑌) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} = ({𝑋, 𝑌} × { 0 }))
151 xpprsng 6994 . . . . . . . 8 ((𝑋𝐵𝑌𝐵0 ∈ V) → ({𝑋, 𝑌} × { 0 }) = {⟨𝑋, 0 ⟩, ⟨𝑌, 0 ⟩})
15231, 47, 56, 151syl3anc 1369 . . . . . . 7 ((𝜑𝑋𝑌) → ({𝑋, 𝑌} × { 0 }) = {⟨𝑋, 0 ⟩, ⟨𝑌, 0 ⟩})
153150, 152eqtrd 2778 . . . . . 6 ((𝜑𝑋𝑌) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} = {⟨𝑋, 0 ⟩, ⟨𝑌, 0 ⟩})
154 opthprneg 4792 . . . . . . 7 (((⟨𝑋, 𝐾⟩ ∈ V ∧ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ∈ V) ∧ (⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ∧ ⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, 0 ⟩)) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} = {⟨𝑋, 0 ⟩, ⟨𝑌, 0 ⟩} ↔ (⟨𝑋, 𝐾⟩ = ⟨𝑋, 0 ⟩ ∧ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ = ⟨𝑌, 0 ⟩)))
155154biimpa 476 . . . . . 6 ((((⟨𝑋, 𝐾⟩ ∈ V ∧ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ∈ V) ∧ (⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ∧ ⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, 0 ⟩)) ∧ {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} = {⟨𝑋, 0 ⟩, ⟨𝑌, 0 ⟩}) → (⟨𝑋, 𝐾⟩ = ⟨𝑋, 0 ⟩ ∧ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ = ⟨𝑌, 0 ⟩))
15634, 36, 45, 153, 155syl1111anc 836 . . . . 5 ((𝜑𝑋𝑌) → (⟨𝑋, 𝐾⟩ = ⟨𝑋, 0 ⟩ ∧ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ = ⟨𝑌, 0 ⟩))
157156simpld 494 . . . 4 ((𝜑𝑋𝑌) → ⟨𝑋, 𝐾⟩ = ⟨𝑋, 0 ⟩)
158 opthg 5386 . . . . 5 ((𝑋𝐵𝐾𝐹) → (⟨𝑋, 𝐾⟩ = ⟨𝑋, 0 ⟩ ↔ (𝑋 = 𝑋𝐾 = 0 )))
159158simplbda 499 . . . 4 (((𝑋𝐵𝐾𝐹) ∧ ⟨𝑋, 𝐾⟩ = ⟨𝑋, 0 ⟩) → 𝐾 = 0 )
16031, 32, 157, 159syl21anc 834 . . 3 ((𝜑𝑋𝑌) → 𝐾 = 0 )
161 linds2eq.11 . . . 4 (𝜑𝐾0 )
162161adantr 480 . . 3 ((𝜑𝑋𝑌) → 𝐾0 )
163160, 162pm2.21ddne 3028 . 2 ((𝜑𝑋𝑌) → (𝑋 = 𝑌𝐾 = 𝐿))
16430, 163pm2.61dane 3031 1 (𝜑 → (𝑋 = 𝑌𝐾 = 𝐿))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  wral 3063  Vcvv 3422  wss 3883  {csn 4558  {cpr 4560  cop 4564   class class class wbr 5070  cmpt 5153   × cxp 5578  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  Fincfn 8691   finSupp cfsupp 9058  Basecbs 16840  +gcplusg 16888  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067   Σg cgsu 17068  Grpcgrp 18492  invgcminusg 18493  -gcsg 18494  CMndccmn 19301  Ringcrg 19698  LModclmod 20038  LVecclvec 20279  LIndSclinds 20922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-fzo 13312  df-seq 13650  df-hash 13973  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-pws 17077  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cntz 18838  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-drng 19908  df-subrg 19937  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lmhm 20199  df-lbs 20252  df-lvec 20280  df-sra 20349  df-rgmod 20350  df-nzr 20442  df-dsmm 20849  df-frlm 20864  df-uvc 20900  df-lindf 20923  df-linds 20924
This theorem is referenced by:  fedgmul  31614
  Copyright terms: Public domain W3C validator