Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linds2eq Structured version   Visualization version   GIF version

Theorem linds2eq 33374
Description: Deduce equality of elements in an independent set. (Contributed by Thierry Arnoux, 18-Jul-2023.)
Hypotheses
Ref Expression
linds2eq.1 𝐹 = (Base‘(Scalar‘𝑊))
linds2eq.2 · = ( ·𝑠𝑊)
linds2eq.3 + = (+g𝑊)
linds2eq.4 0 = (0g‘(Scalar‘𝑊))
linds2eq.5 (𝜑𝑊 ∈ LVec)
linds2eq.6 (𝜑𝐵 ∈ (LIndS‘𝑊))
linds2eq.7 (𝜑𝑋𝐵)
linds2eq.8 (𝜑𝑌𝐵)
linds2eq.9 (𝜑𝐾𝐹)
linds2eq.10 (𝜑𝐿𝐹)
linds2eq.11 (𝜑𝐾0 )
linds2eq.12 (𝜑 → (𝐾 · 𝑋) = (𝐿 · 𝑌))
Assertion
Ref Expression
linds2eq (𝜑 → (𝑋 = 𝑌𝐾 = 𝐿))

Proof of Theorem linds2eq
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . 3 ((𝜑𝑋 = 𝑌) → 𝑋 = 𝑌)
2 linds2eq.12 . . . . . 6 (𝜑 → (𝐾 · 𝑋) = (𝐿 · 𝑌))
32adantr 480 . . . . 5 ((𝜑𝑋 = 𝑌) → (𝐾 · 𝑋) = (𝐿 · 𝑌))
41oveq2d 7464 . . . . 5 ((𝜑𝑋 = 𝑌) → (𝐿 · 𝑋) = (𝐿 · 𝑌))
53, 4eqtr4d 2783 . . . 4 ((𝜑𝑋 = 𝑌) → (𝐾 · 𝑋) = (𝐿 · 𝑋))
6 eqid 2740 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
7 linds2eq.2 . . . . 5 · = ( ·𝑠𝑊)
8 eqid 2740 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
9 linds2eq.1 . . . . 5 𝐹 = (Base‘(Scalar‘𝑊))
10 eqid 2740 . . . . 5 (0g𝑊) = (0g𝑊)
11 linds2eq.5 . . . . . 6 (𝜑𝑊 ∈ LVec)
1211adantr 480 . . . . 5 ((𝜑𝑋 = 𝑌) → 𝑊 ∈ LVec)
13 linds2eq.9 . . . . . 6 (𝜑𝐾𝐹)
1413adantr 480 . . . . 5 ((𝜑𝑋 = 𝑌) → 𝐾𝐹)
15 linds2eq.10 . . . . . 6 (𝜑𝐿𝐹)
1615adantr 480 . . . . 5 ((𝜑𝑋 = 𝑌) → 𝐿𝐹)
17 linds2eq.6 . . . . . . . 8 (𝜑𝐵 ∈ (LIndS‘𝑊))
186linds1 21853 . . . . . . . 8 (𝐵 ∈ (LIndS‘𝑊) → 𝐵 ⊆ (Base‘𝑊))
1917, 18syl 17 . . . . . . 7 (𝜑𝐵 ⊆ (Base‘𝑊))
20 linds2eq.7 . . . . . . 7 (𝜑𝑋𝐵)
2119, 20sseldd 4009 . . . . . 6 (𝜑𝑋 ∈ (Base‘𝑊))
2221adantr 480 . . . . 5 ((𝜑𝑋 = 𝑌) → 𝑋 ∈ (Base‘𝑊))
23100nellinds 33363 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝐵 ∈ (LIndS‘𝑊)) → ¬ (0g𝑊) ∈ 𝐵)
2411, 17, 23syl2anc 583 . . . . . . 7 (𝜑 → ¬ (0g𝑊) ∈ 𝐵)
25 nelne2 3046 . . . . . . 7 ((𝑋𝐵 ∧ ¬ (0g𝑊) ∈ 𝐵) → 𝑋 ≠ (0g𝑊))
2620, 24, 25syl2anc 583 . . . . . 6 (𝜑𝑋 ≠ (0g𝑊))
2726adantr 480 . . . . 5 ((𝜑𝑋 = 𝑌) → 𝑋 ≠ (0g𝑊))
286, 7, 8, 9, 10, 12, 14, 16, 22, 27lvecvscan2 21137 . . . 4 ((𝜑𝑋 = 𝑌) → ((𝐾 · 𝑋) = (𝐿 · 𝑋) ↔ 𝐾 = 𝐿))
295, 28mpbid 232 . . 3 ((𝜑𝑋 = 𝑌) → 𝐾 = 𝐿)
301, 29jca 511 . 2 ((𝜑𝑋 = 𝑌) → (𝑋 = 𝑌𝐾 = 𝐿))
3120adantr 480 . . . 4 ((𝜑𝑋𝑌) → 𝑋𝐵)
3213adantr 480 . . . 4 ((𝜑𝑋𝑌) → 𝐾𝐹)
33 opex 5484 . . . . . . 7 𝑋, 𝐾⟩ ∈ V
3433a1i 11 . . . . . 6 ((𝜑𝑋𝑌) → ⟨𝑋, 𝐾⟩ ∈ V)
35 opex 5484 . . . . . . 7 𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ∈ V
3635a1i 11 . . . . . 6 ((𝜑𝑋𝑌) → ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ∈ V)
37 animorrl 981 . . . . . . . 8 ((𝜑𝑋𝑌) → (𝑋𝑌𝐾 ≠ ((invg‘(Scalar‘𝑊))‘𝐿)))
38 opthneg 5501 . . . . . . . . 9 ((𝑋𝐵𝐾𝐹) → (⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ↔ (𝑋𝑌𝐾 ≠ ((invg‘(Scalar‘𝑊))‘𝐿))))
3938biimpar 477 . . . . . . . 8 (((𝑋𝐵𝐾𝐹) ∧ (𝑋𝑌𝐾 ≠ ((invg‘(Scalar‘𝑊))‘𝐿))) → ⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩)
4031, 32, 37, 39syl21anc 837 . . . . . . 7 ((𝜑𝑋𝑌) → ⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩)
41 animorrl 981 . . . . . . . 8 ((𝜑𝑋𝑌) → (𝑋𝑌𝐾0 ))
42 opthneg 5501 . . . . . . . . 9 ((𝑋𝐵𝐾𝐹) → (⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, 0 ⟩ ↔ (𝑋𝑌𝐾0 )))
4342biimpar 477 . . . . . . . 8 (((𝑋𝐵𝐾𝐹) ∧ (𝑋𝑌𝐾0 )) → ⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, 0 ⟩)
4431, 32, 41, 43syl21anc 837 . . . . . . 7 ((𝜑𝑋𝑌) → ⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, 0 ⟩)
4540, 44jca 511 . . . . . 6 ((𝜑𝑋𝑌) → (⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ∧ ⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, 0 ⟩))
46 linds2eq.8 . . . . . . . . . . 11 (𝜑𝑌𝐵)
4746adantr 480 . . . . . . . . . 10 ((𝜑𝑋𝑌) → 𝑌𝐵)
48 fvexd 6935 . . . . . . . . . 10 ((𝜑𝑋𝑌) → ((invg‘(Scalar‘𝑊))‘𝐿) ∈ V)
49 simpr 484 . . . . . . . . . 10 ((𝜑𝑋𝑌) → 𝑋𝑌)
50 fprg 7189 . . . . . . . . . 10 (((𝑋𝐵𝑌𝐵) ∧ (𝐾𝐹 ∧ ((invg‘(Scalar‘𝑊))‘𝐿) ∈ V) ∧ 𝑋𝑌) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}:{𝑋, 𝑌}⟶{𝐾, ((invg‘(Scalar‘𝑊))‘𝐿)})
5131, 47, 32, 48, 49, 50syl221anc 1381 . . . . . . . . 9 ((𝜑𝑋𝑌) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}:{𝑋, 𝑌}⟶{𝐾, ((invg‘(Scalar‘𝑊))‘𝐿)})
52 prfi 9391 . . . . . . . . . 10 {𝑋, 𝑌} ∈ Fin
5352a1i 11 . . . . . . . . 9 ((𝜑𝑋𝑌) → {𝑋, 𝑌} ∈ Fin)
54 linds2eq.4 . . . . . . . . . . 11 0 = (0g‘(Scalar‘𝑊))
5554fvexi 6934 . . . . . . . . . 10 0 ∈ V
5655a1i 11 . . . . . . . . 9 ((𝜑𝑋𝑌) → 0 ∈ V)
5751, 53, 56fdmfifsupp 9444 . . . . . . . 8 ((𝜑𝑋𝑌) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} finSupp 0 )
58 lveclmod 21128 . . . . . . . . . . . . 13 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
5911, 58syl 17 . . . . . . . . . . . 12 (𝜑𝑊 ∈ LMod)
60 lmodcmn 20930 . . . . . . . . . . . 12 (𝑊 ∈ LMod → 𝑊 ∈ CMnd)
6159, 60syl 17 . . . . . . . . . . 11 (𝜑𝑊 ∈ CMnd)
6261adantr 480 . . . . . . . . . 10 ((𝜑𝑋𝑌) → 𝑊 ∈ CMnd)
6359adantr 480 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → 𝑊 ∈ LMod)
648lmodring 20888 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
65 ringgrp 20265 . . . . . . . . . . . . . . . . 17 ((Scalar‘𝑊) ∈ Ring → (Scalar‘𝑊) ∈ Grp)
6659, 64, 653syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (Scalar‘𝑊) ∈ Grp)
67 eqid 2740 . . . . . . . . . . . . . . . . 17 (invg‘(Scalar‘𝑊)) = (invg‘(Scalar‘𝑊))
689, 67grpinvcl 19027 . . . . . . . . . . . . . . . 16 (((Scalar‘𝑊) ∈ Grp ∧ 𝐿𝐹) → ((invg‘(Scalar‘𝑊))‘𝐿) ∈ 𝐹)
6966, 15, 68syl2anc 583 . . . . . . . . . . . . . . 15 (𝜑 → ((invg‘(Scalar‘𝑊))‘𝐿) ∈ 𝐹)
7013, 69prssd 4847 . . . . . . . . . . . . . 14 (𝜑 → {𝐾, ((invg‘(Scalar‘𝑊))‘𝐿)} ⊆ 𝐹)
7170adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑋𝑌) → {𝐾, ((invg‘(Scalar‘𝑊))‘𝐿)} ⊆ 𝐹)
7251, 71fssd 6764 . . . . . . . . . . . 12 ((𝜑𝑋𝑌) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}:{𝑋, 𝑌}⟶𝐹)
73 eqidd 2741 . . . . . . . . . . . . . 14 ((𝜑𝑋𝑌) → 𝑋 = 𝑋)
7473orcd 872 . . . . . . . . . . . . 13 ((𝜑𝑋𝑌) → (𝑋 = 𝑋𝑋 = 𝑌))
75 elprg 4670 . . . . . . . . . . . . . 14 (𝑋𝐵 → (𝑋 ∈ {𝑋, 𝑌} ↔ (𝑋 = 𝑋𝑋 = 𝑌)))
7675biimpar 477 . . . . . . . . . . . . 13 ((𝑋𝐵 ∧ (𝑋 = 𝑋𝑋 = 𝑌)) → 𝑋 ∈ {𝑋, 𝑌})
7731, 74, 76syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑋𝑌) → 𝑋 ∈ {𝑋, 𝑌})
7872, 77ffvelcdmd 7119 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) ∈ 𝐹)
7921adantr 480 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → 𝑋 ∈ (Base‘𝑊))
806, 8, 7, 9lmodvscl 20898 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) ∈ 𝐹𝑋 ∈ (Base‘𝑊)) → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋) ∈ (Base‘𝑊))
8163, 78, 79, 80syl3anc 1371 . . . . . . . . . 10 ((𝜑𝑋𝑌) → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋) ∈ (Base‘𝑊))
82 eqidd 2741 . . . . . . . . . . . . . 14 ((𝜑𝑋𝑌) → 𝑌 = 𝑌)
8382olcd 873 . . . . . . . . . . . . 13 ((𝜑𝑋𝑌) → (𝑌 = 𝑋𝑌 = 𝑌))
84 elprg 4670 . . . . . . . . . . . . . 14 (𝑌𝐵 → (𝑌 ∈ {𝑋, 𝑌} ↔ (𝑌 = 𝑋𝑌 = 𝑌)))
8584biimpar 477 . . . . . . . . . . . . 13 ((𝑌𝐵 ∧ (𝑌 = 𝑋𝑌 = 𝑌)) → 𝑌 ∈ {𝑋, 𝑌})
8647, 83, 85syl2anc 583 . . . . . . . . . . . 12 ((𝜑𝑋𝑌) → 𝑌 ∈ {𝑋, 𝑌})
8772, 86ffvelcdmd 7119 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) ∈ 𝐹)
8819, 46sseldd 4009 . . . . . . . . . . . 12 (𝜑𝑌 ∈ (Base‘𝑊))
8988adantr 480 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → 𝑌 ∈ (Base‘𝑊))
906, 8, 7, 9lmodvscl 20898 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) ∈ 𝐹𝑌 ∈ (Base‘𝑊)) → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌) ∈ (Base‘𝑊))
9163, 87, 89, 90syl3anc 1371 . . . . . . . . . 10 ((𝜑𝑋𝑌) → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌) ∈ (Base‘𝑊))
92 linds2eq.3 . . . . . . . . . . 11 + = (+g𝑊)
93 fveq2 6920 . . . . . . . . . . . 12 (𝑏 = 𝑋 → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) = ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋))
94 id 22 . . . . . . . . . . . 12 (𝑏 = 𝑋𝑏 = 𝑋)
9593, 94oveq12d 7466 . . . . . . . . . . 11 (𝑏 = 𝑋 → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏) = (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋))
96 fveq2 6920 . . . . . . . . . . . 12 (𝑏 = 𝑌 → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) = ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌))
97 id 22 . . . . . . . . . . . 12 (𝑏 = 𝑌𝑏 = 𝑌)
9896, 97oveq12d 7466 . . . . . . . . . . 11 (𝑏 = 𝑌 → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏) = (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌))
996, 92, 95, 98gsumpr 19997 . . . . . . . . . 10 ((𝑊 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵𝑋𝑌) ∧ ((({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋) ∈ (Base‘𝑊) ∧ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌) ∈ (Base‘𝑊))) → (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))) = ((({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋) + (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌)))
10062, 31, 47, 49, 81, 91, 99syl132anc 1388 . . . . . . . . 9 ((𝜑𝑋𝑌) → (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))) = ((({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋) + (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌)))
101 fvpr1g 7224 . . . . . . . . . . . 12 ((𝑋𝐵𝐾𝐹𝑋𝑌) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) = 𝐾)
10231, 32, 49, 101syl3anc 1371 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) = 𝐾)
103102oveq1d 7463 . . . . . . . . . 10 ((𝜑𝑋𝑌) → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋) = (𝐾 · 𝑋))
10469adantr 480 . . . . . . . . . . . 12 ((𝜑𝑋𝑌) → ((invg‘(Scalar‘𝑊))‘𝐿) ∈ 𝐹)
105 fvpr2g 7225 . . . . . . . . . . . 12 ((𝑌𝐵 ∧ ((invg‘(Scalar‘𝑊))‘𝐿) ∈ 𝐹𝑋𝑌) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) = ((invg‘(Scalar‘𝑊))‘𝐿))
10647, 104, 49, 105syl3anc 1371 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) = ((invg‘(Scalar‘𝑊))‘𝐿))
107106oveq1d 7463 . . . . . . . . . 10 ((𝜑𝑋𝑌) → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌) = (((invg‘(Scalar‘𝑊))‘𝐿) · 𝑌))
108103, 107oveq12d 7466 . . . . . . . . 9 ((𝜑𝑋𝑌) → ((({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋) + (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌)) = ((𝐾 · 𝑋) + (((invg‘(Scalar‘𝑊))‘𝐿) · 𝑌)))
1096, 8, 7, 9lmodvscl 20898 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝐾𝐹𝑋 ∈ (Base‘𝑊)) → (𝐾 · 𝑋) ∈ (Base‘𝑊))
11059, 13, 21, 109syl3anc 1371 . . . . . . . . . . . 12 (𝜑 → (𝐾 · 𝑋) ∈ (Base‘𝑊))
1112, 110eqeltrrd 2845 . . . . . . . . . . . 12 (𝜑 → (𝐿 · 𝑌) ∈ (Base‘𝑊))
112 eqid 2740 . . . . . . . . . . . . 13 (invg𝑊) = (invg𝑊)
113 eqid 2740 . . . . . . . . . . . . 13 (-g𝑊) = (-g𝑊)
1146, 92, 112, 113grpsubval 19025 . . . . . . . . . . . 12 (((𝐾 · 𝑋) ∈ (Base‘𝑊) ∧ (𝐿 · 𝑌) ∈ (Base‘𝑊)) → ((𝐾 · 𝑋)(-g𝑊)(𝐿 · 𝑌)) = ((𝐾 · 𝑋) + ((invg𝑊)‘(𝐿 · 𝑌))))
115110, 111, 114syl2anc 583 . . . . . . . . . . 11 (𝜑 → ((𝐾 · 𝑋)(-g𝑊)(𝐿 · 𝑌)) = ((𝐾 · 𝑋) + ((invg𝑊)‘(𝐿 · 𝑌))))
116 lmodgrp 20887 . . . . . . . . . . . . . 14 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
11759, 116syl 17 . . . . . . . . . . . . 13 (𝜑𝑊 ∈ Grp)
1186, 10, 113grpsubeq0 19066 . . . . . . . . . . . . 13 ((𝑊 ∈ Grp ∧ (𝐾 · 𝑋) ∈ (Base‘𝑊) ∧ (𝐿 · 𝑌) ∈ (Base‘𝑊)) → (((𝐾 · 𝑋)(-g𝑊)(𝐿 · 𝑌)) = (0g𝑊) ↔ (𝐾 · 𝑋) = (𝐿 · 𝑌)))
119117, 110, 111, 118syl3anc 1371 . . . . . . . . . . . 12 (𝜑 → (((𝐾 · 𝑋)(-g𝑊)(𝐿 · 𝑌)) = (0g𝑊) ↔ (𝐾 · 𝑋) = (𝐿 · 𝑌)))
1202, 119mpbird 257 . . . . . . . . . . 11 (𝜑 → ((𝐾 · 𝑋)(-g𝑊)(𝐿 · 𝑌)) = (0g𝑊))
1216, 8, 7, 112, 9, 67, 59, 88, 15lmodvsneg 20926 . . . . . . . . . . . 12 (𝜑 → ((invg𝑊)‘(𝐿 · 𝑌)) = (((invg‘(Scalar‘𝑊))‘𝐿) · 𝑌))
122121oveq2d 7464 . . . . . . . . . . 11 (𝜑 → ((𝐾 · 𝑋) + ((invg𝑊)‘(𝐿 · 𝑌))) = ((𝐾 · 𝑋) + (((invg‘(Scalar‘𝑊))‘𝐿) · 𝑌)))
123115, 120, 1223eqtr3rd 2789 . . . . . . . . . 10 (𝜑 → ((𝐾 · 𝑋) + (((invg‘(Scalar‘𝑊))‘𝐿) · 𝑌)) = (0g𝑊))
124123adantr 480 . . . . . . . . 9 ((𝜑𝑋𝑌) → ((𝐾 · 𝑋) + (((invg‘(Scalar‘𝑊))‘𝐿) · 𝑌)) = (0g𝑊))
125100, 108, 1243eqtrd 2784 . . . . . . . 8 ((𝜑𝑋𝑌) → (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))) = (0g𝑊))
126 breq1 5169 . . . . . . . . . . 11 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → (𝑎 finSupp 0 ↔ {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} finSupp 0 ))
127 fveq1 6919 . . . . . . . . . . . . . . 15 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → (𝑎𝑏) = ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏))
128127oveq1d 7463 . . . . . . . . . . . . . 14 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → ((𝑎𝑏) · 𝑏) = (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))
129128mpteq2dv 5268 . . . . . . . . . . . . 13 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏)) = (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏)))
130129oveq2d 7464 . . . . . . . . . . . 12 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))))
131130eqeq1d 2742 . . . . . . . . . . 11 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → ((𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (0g𝑊) ↔ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))) = (0g𝑊)))
132126, 131anbi12d 631 . . . . . . . . . 10 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → ((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (0g𝑊)) ↔ ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))) = (0g𝑊))))
133 eqeq1 2744 . . . . . . . . . 10 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → (𝑎 = ({𝑋, 𝑌} × { 0 }) ↔ {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} = ({𝑋, 𝑌} × { 0 })))
134132, 133imbi12d 344 . . . . . . . . 9 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → (((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (0g𝑊)) → 𝑎 = ({𝑋, 𝑌} × { 0 })) ↔ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))) = (0g𝑊)) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} = ({𝑋, 𝑌} × { 0 }))))
13520, 46prssd 4847 . . . . . . . . . . . 12 (𝜑 → {𝑋, 𝑌} ⊆ 𝐵)
136135, 19sstrd 4019 . . . . . . . . . . 11 (𝜑 → {𝑋, 𝑌} ⊆ (Base‘𝑊))
137 lindsss 21867 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝐵 ∈ (LIndS‘𝑊) ∧ {𝑋, 𝑌} ⊆ 𝐵) → {𝑋, 𝑌} ∈ (LIndS‘𝑊))
13859, 17, 135, 137syl3anc 1371 . . . . . . . . . . 11 (𝜑 → {𝑋, 𝑌} ∈ (LIndS‘𝑊))
1396, 9, 8, 7, 10, 54islinds5 33360 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ {𝑋, 𝑌} ⊆ (Base‘𝑊)) → ({𝑋, 𝑌} ∈ (LIndS‘𝑊) ↔ ∀𝑎 ∈ (𝐹m {𝑋, 𝑌})((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (0g𝑊)) → 𝑎 = ({𝑋, 𝑌} × { 0 }))))
140139biimpa 476 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ {𝑋, 𝑌} ⊆ (Base‘𝑊)) ∧ {𝑋, 𝑌} ∈ (LIndS‘𝑊)) → ∀𝑎 ∈ (𝐹m {𝑋, 𝑌})((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (0g𝑊)) → 𝑎 = ({𝑋, 𝑌} × { 0 })))
14159, 136, 138, 140syl21anc 837 . . . . . . . . . 10 (𝜑 → ∀𝑎 ∈ (𝐹m {𝑋, 𝑌})((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (0g𝑊)) → 𝑎 = ({𝑋, 𝑌} × { 0 })))
142141adantr 480 . . . . . . . . 9 ((𝜑𝑋𝑌) → ∀𝑎 ∈ (𝐹m {𝑋, 𝑌})((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (0g𝑊)) → 𝑎 = ({𝑋, 𝑌} × { 0 })))
1439fvexi 6934 . . . . . . . . . . . 12 𝐹 ∈ V
144143a1i 11 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → 𝐹 ∈ V)
145138elexd 3512 . . . . . . . . . . . 12 (𝜑 → {𝑋, 𝑌} ∈ V)
146145adantr 480 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → {𝑋, 𝑌} ∈ V)
147144, 146elmapd 8898 . . . . . . . . . 10 ((𝜑𝑋𝑌) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} ∈ (𝐹m {𝑋, 𝑌}) ↔ {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}:{𝑋, 𝑌}⟶𝐹))
14872, 147mpbird 257 . . . . . . . . 9 ((𝜑𝑋𝑌) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} ∈ (𝐹m {𝑋, 𝑌}))
149134, 142, 148rspcdva 3636 . . . . . . . 8 ((𝜑𝑋𝑌) → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))) = (0g𝑊)) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} = ({𝑋, 𝑌} × { 0 })))
15057, 125, 149mp2and 698 . . . . . . 7 ((𝜑𝑋𝑌) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} = ({𝑋, 𝑌} × { 0 }))
151 xpprsng 7174 . . . . . . . 8 ((𝑋𝐵𝑌𝐵0 ∈ V) → ({𝑋, 𝑌} × { 0 }) = {⟨𝑋, 0 ⟩, ⟨𝑌, 0 ⟩})
15231, 47, 56, 151syl3anc 1371 . . . . . . 7 ((𝜑𝑋𝑌) → ({𝑋, 𝑌} × { 0 }) = {⟨𝑋, 0 ⟩, ⟨𝑌, 0 ⟩})
153150, 152eqtrd 2780 . . . . . 6 ((𝜑𝑋𝑌) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} = {⟨𝑋, 0 ⟩, ⟨𝑌, 0 ⟩})
154 opthprneg 4889 . . . . . . 7 (((⟨𝑋, 𝐾⟩ ∈ V ∧ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ∈ V) ∧ (⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ∧ ⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, 0 ⟩)) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} = {⟨𝑋, 0 ⟩, ⟨𝑌, 0 ⟩} ↔ (⟨𝑋, 𝐾⟩ = ⟨𝑋, 0 ⟩ ∧ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ = ⟨𝑌, 0 ⟩)))
155154biimpa 476 . . . . . 6 ((((⟨𝑋, 𝐾⟩ ∈ V ∧ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ∈ V) ∧ (⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ∧ ⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, 0 ⟩)) ∧ {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} = {⟨𝑋, 0 ⟩, ⟨𝑌, 0 ⟩}) → (⟨𝑋, 𝐾⟩ = ⟨𝑋, 0 ⟩ ∧ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ = ⟨𝑌, 0 ⟩))
15634, 36, 45, 153, 155syl1111anc 839 . . . . 5 ((𝜑𝑋𝑌) → (⟨𝑋, 𝐾⟩ = ⟨𝑋, 0 ⟩ ∧ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ = ⟨𝑌, 0 ⟩))
157156simpld 494 . . . 4 ((𝜑𝑋𝑌) → ⟨𝑋, 𝐾⟩ = ⟨𝑋, 0 ⟩)
158 opthg 5497 . . . . 5 ((𝑋𝐵𝐾𝐹) → (⟨𝑋, 𝐾⟩ = ⟨𝑋, 0 ⟩ ↔ (𝑋 = 𝑋𝐾 = 0 )))
159158simplbda 499 . . . 4 (((𝑋𝐵𝐾𝐹) ∧ ⟨𝑋, 𝐾⟩ = ⟨𝑋, 0 ⟩) → 𝐾 = 0 )
16031, 32, 157, 159syl21anc 837 . . 3 ((𝜑𝑋𝑌) → 𝐾 = 0 )
161 linds2eq.11 . . . 4 (𝜑𝐾0 )
162161adantr 480 . . 3 ((𝜑𝑋𝑌) → 𝐾0 )
163160, 162pm2.21ddne 3032 . 2 ((𝜑𝑋𝑌) → (𝑋 = 𝑌𝐾 = 𝐿))
16430, 163pm2.61dane 3035 1 (𝜑 → (𝑋 = 𝑌𝐾 = 𝐿))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  wral 3067  Vcvv 3488  wss 3976  {csn 4648  {cpr 4650  cop 4654   class class class wbr 5166  cmpt 5249   × cxp 5698  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  Fincfn 9003   finSupp cfsupp 9431  Basecbs 17258  +gcplusg 17311  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499   Σg cgsu 17500  Grpcgrp 18973  invgcminusg 18974  -gcsg 18975  CMndccmn 19822  Ringcrg 20260  LModclmod 20880  LVecclvec 21124  LIndSclinds 21848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-tpos 8267  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-0g 17501  df-gsum 17502  df-prds 17507  df-pws 17509  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-mhm 18818  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-mulg 19108  df-subg 19163  df-ghm 19253  df-cntz 19357  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-nzr 20539  df-subrg 20597  df-drng 20753  df-lmod 20882  df-lss 20953  df-lsp 20993  df-lmhm 21044  df-lbs 21097  df-lvec 21125  df-sra 21195  df-rgmod 21196  df-dsmm 21775  df-frlm 21790  df-uvc 21826  df-lindf 21849  df-linds 21850
This theorem is referenced by:  fedgmul  33644
  Copyright terms: Public domain W3C validator