Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linds2eq Structured version   Visualization version   GIF version

Theorem linds2eq 30542
Description: Deduce equality of elements in an independent set. (Contributed by Thierry Arnoux, 18-Jul-2023.)
Hypotheses
Ref Expression
linds2eq.1 𝐹 = (Base‘(Scalar‘𝑊))
linds2eq.2 · = ( ·𝑠𝑊)
linds2eq.3 + = (+g𝑊)
linds2eq.4 0 = (0g‘(Scalar‘𝑊))
linds2eq.5 (𝜑𝑊 ∈ LVec)
linds2eq.6 (𝜑𝐵 ∈ (LIndS‘𝑊))
linds2eq.7 (𝜑𝑋𝐵)
linds2eq.8 (𝜑𝑌𝐵)
linds2eq.9 (𝜑𝐾𝐹)
linds2eq.10 (𝜑𝐿𝐹)
linds2eq.11 (𝜑𝐾0 )
linds2eq.12 (𝜑 → (𝐾 · 𝑋) = (𝐿 · 𝑌))
Assertion
Ref Expression
linds2eq (𝜑 → (𝑋 = 𝑌𝐾 = 𝐿))

Proof of Theorem linds2eq
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . 3 ((𝜑𝑋 = 𝑌) → 𝑋 = 𝑌)
2 linds2eq.12 . . . . . 6 (𝜑 → (𝐾 · 𝑋) = (𝐿 · 𝑌))
32adantr 481 . . . . 5 ((𝜑𝑋 = 𝑌) → (𝐾 · 𝑋) = (𝐿 · 𝑌))
41oveq2d 7023 . . . . 5 ((𝜑𝑋 = 𝑌) → (𝐿 · 𝑋) = (𝐿 · 𝑌))
53, 4eqtr4d 2832 . . . 4 ((𝜑𝑋 = 𝑌) → (𝐾 · 𝑋) = (𝐿 · 𝑋))
6 eqid 2793 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
7 linds2eq.2 . . . . 5 · = ( ·𝑠𝑊)
8 eqid 2793 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
9 linds2eq.1 . . . . 5 𝐹 = (Base‘(Scalar‘𝑊))
10 eqid 2793 . . . . 5 (0g𝑊) = (0g𝑊)
11 linds2eq.5 . . . . . 6 (𝜑𝑊 ∈ LVec)
1211adantr 481 . . . . 5 ((𝜑𝑋 = 𝑌) → 𝑊 ∈ LVec)
13 linds2eq.9 . . . . . 6 (𝜑𝐾𝐹)
1413adantr 481 . . . . 5 ((𝜑𝑋 = 𝑌) → 𝐾𝐹)
15 linds2eq.10 . . . . . 6 (𝜑𝐿𝐹)
1615adantr 481 . . . . 5 ((𝜑𝑋 = 𝑌) → 𝐿𝐹)
17 linds2eq.6 . . . . . . . 8 (𝜑𝐵 ∈ (LIndS‘𝑊))
186linds1 20624 . . . . . . . 8 (𝐵 ∈ (LIndS‘𝑊) → 𝐵 ⊆ (Base‘𝑊))
1917, 18syl 17 . . . . . . 7 (𝜑𝐵 ⊆ (Base‘𝑊))
20 linds2eq.7 . . . . . . 7 (𝜑𝑋𝐵)
2119, 20sseldd 3885 . . . . . 6 (𝜑𝑋 ∈ (Base‘𝑊))
2221adantr 481 . . . . 5 ((𝜑𝑋 = 𝑌) → 𝑋 ∈ (Base‘𝑊))
23100nellinds 30538 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝐵 ∈ (LIndS‘𝑊)) → ¬ (0g𝑊) ∈ 𝐵)
2411, 17, 23syl2anc 584 . . . . . . 7 (𝜑 → ¬ (0g𝑊) ∈ 𝐵)
25 nelne2 3081 . . . . . . 7 ((𝑋𝐵 ∧ ¬ (0g𝑊) ∈ 𝐵) → 𝑋 ≠ (0g𝑊))
2620, 24, 25syl2anc 584 . . . . . 6 (𝜑𝑋 ≠ (0g𝑊))
2726adantr 481 . . . . 5 ((𝜑𝑋 = 𝑌) → 𝑋 ≠ (0g𝑊))
286, 7, 8, 9, 10, 12, 14, 16, 22, 27lvecvscan2 19562 . . . 4 ((𝜑𝑋 = 𝑌) → ((𝐾 · 𝑋) = (𝐿 · 𝑋) ↔ 𝐾 = 𝐿))
295, 28mpbid 233 . . 3 ((𝜑𝑋 = 𝑌) → 𝐾 = 𝐿)
301, 29jca 512 . 2 ((𝜑𝑋 = 𝑌) → (𝑋 = 𝑌𝐾 = 𝐿))
3120adantr 481 . . . 4 ((𝜑𝑋𝑌) → 𝑋𝐵)
3213adantr 481 . . . 4 ((𝜑𝑋𝑌) → 𝐾𝐹)
33 opex 5241 . . . . . . 7 𝑋, 𝐾⟩ ∈ V
3433a1i 11 . . . . . 6 ((𝜑𝑋𝑌) → ⟨𝑋, 𝐾⟩ ∈ V)
35 opex 5241 . . . . . . 7 𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ∈ V
3635a1i 11 . . . . . 6 ((𝜑𝑋𝑌) → ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ∈ V)
37 animorrl 973 . . . . . . . 8 ((𝜑𝑋𝑌) → (𝑋𝑌𝐾 ≠ ((invg‘(Scalar‘𝑊))‘𝐿)))
38 opthneg 5258 . . . . . . . . 9 ((𝑋𝐵𝐾𝐹) → (⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ↔ (𝑋𝑌𝐾 ≠ ((invg‘(Scalar‘𝑊))‘𝐿))))
3938biimpar 478 . . . . . . . 8 (((𝑋𝐵𝐾𝐹) ∧ (𝑋𝑌𝐾 ≠ ((invg‘(Scalar‘𝑊))‘𝐿))) → ⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩)
4031, 32, 37, 39syl21anc 834 . . . . . . 7 ((𝜑𝑋𝑌) → ⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩)
41 animorrl 973 . . . . . . . 8 ((𝜑𝑋𝑌) → (𝑋𝑌𝐾0 ))
42 opthneg 5258 . . . . . . . . 9 ((𝑋𝐵𝐾𝐹) → (⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, 0 ⟩ ↔ (𝑋𝑌𝐾0 )))
4342biimpar 478 . . . . . . . 8 (((𝑋𝐵𝐾𝐹) ∧ (𝑋𝑌𝐾0 )) → ⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, 0 ⟩)
4431, 32, 41, 43syl21anc 834 . . . . . . 7 ((𝜑𝑋𝑌) → ⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, 0 ⟩)
4540, 44jca 512 . . . . . 6 ((𝜑𝑋𝑌) → (⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ∧ ⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, 0 ⟩))
46 linds2eq.8 . . . . . . . . . . 11 (𝜑𝑌𝐵)
4746adantr 481 . . . . . . . . . 10 ((𝜑𝑋𝑌) → 𝑌𝐵)
48 fvexd 6545 . . . . . . . . . 10 ((𝜑𝑋𝑌) → ((invg‘(Scalar‘𝑊))‘𝐿) ∈ V)
49 simpr 485 . . . . . . . . . 10 ((𝜑𝑋𝑌) → 𝑋𝑌)
50 fprg 6771 . . . . . . . . . 10 (((𝑋𝐵𝑌𝐵) ∧ (𝐾𝐹 ∧ ((invg‘(Scalar‘𝑊))‘𝐿) ∈ V) ∧ 𝑋𝑌) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}:{𝑋, 𝑌}⟶{𝐾, ((invg‘(Scalar‘𝑊))‘𝐿)})
5131, 47, 32, 48, 49, 50syl221anc 1372 . . . . . . . . 9 ((𝜑𝑋𝑌) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}:{𝑋, 𝑌}⟶{𝐾, ((invg‘(Scalar‘𝑊))‘𝐿)})
52 prfi 8629 . . . . . . . . . 10 {𝑋, 𝑌} ∈ Fin
5352a1i 11 . . . . . . . . 9 ((𝜑𝑋𝑌) → {𝑋, 𝑌} ∈ Fin)
54 linds2eq.4 . . . . . . . . . . 11 0 = (0g‘(Scalar‘𝑊))
5554fvexi 6544 . . . . . . . . . 10 0 ∈ V
5655a1i 11 . . . . . . . . 9 ((𝜑𝑋𝑌) → 0 ∈ V)
5751, 53, 56fdmfifsupp 8679 . . . . . . . 8 ((𝜑𝑋𝑌) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} finSupp 0 )
58 lveclmod 19556 . . . . . . . . . . . . 13 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
5911, 58syl 17 . . . . . . . . . . . 12 (𝜑𝑊 ∈ LMod)
60 lmodcmn 19360 . . . . . . . . . . . 12 (𝑊 ∈ LMod → 𝑊 ∈ CMnd)
6159, 60syl 17 . . . . . . . . . . 11 (𝜑𝑊 ∈ CMnd)
6261adantr 481 . . . . . . . . . 10 ((𝜑𝑋𝑌) → 𝑊 ∈ CMnd)
6359adantr 481 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → 𝑊 ∈ LMod)
648lmodring 19320 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
65 ringgrp 18980 . . . . . . . . . . . . . . . . 17 ((Scalar‘𝑊) ∈ Ring → (Scalar‘𝑊) ∈ Grp)
6659, 64, 653syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (Scalar‘𝑊) ∈ Grp)
67 eqid 2793 . . . . . . . . . . . . . . . . 17 (invg‘(Scalar‘𝑊)) = (invg‘(Scalar‘𝑊))
689, 67grpinvcl 17896 . . . . . . . . . . . . . . . 16 (((Scalar‘𝑊) ∈ Grp ∧ 𝐿𝐹) → ((invg‘(Scalar‘𝑊))‘𝐿) ∈ 𝐹)
6966, 15, 68syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → ((invg‘(Scalar‘𝑊))‘𝐿) ∈ 𝐹)
7013, 69prssd 4656 . . . . . . . . . . . . . 14 (𝜑 → {𝐾, ((invg‘(Scalar‘𝑊))‘𝐿)} ⊆ 𝐹)
7170adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑋𝑌) → {𝐾, ((invg‘(Scalar‘𝑊))‘𝐿)} ⊆ 𝐹)
7251, 71fssd 6388 . . . . . . . . . . . 12 ((𝜑𝑋𝑌) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}:{𝑋, 𝑌}⟶𝐹)
73 eqidd 2794 . . . . . . . . . . . . . 14 ((𝜑𝑋𝑌) → 𝑋 = 𝑋)
7473orcd 868 . . . . . . . . . . . . 13 ((𝜑𝑋𝑌) → (𝑋 = 𝑋𝑋 = 𝑌))
75 elprg 4487 . . . . . . . . . . . . . 14 (𝑋𝐵 → (𝑋 ∈ {𝑋, 𝑌} ↔ (𝑋 = 𝑋𝑋 = 𝑌)))
7675biimpar 478 . . . . . . . . . . . . 13 ((𝑋𝐵 ∧ (𝑋 = 𝑋𝑋 = 𝑌)) → 𝑋 ∈ {𝑋, 𝑌})
7731, 74, 76syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑋𝑌) → 𝑋 ∈ {𝑋, 𝑌})
7872, 77ffvelrnd 6708 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) ∈ 𝐹)
7921adantr 481 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → 𝑋 ∈ (Base‘𝑊))
806, 8, 7, 9lmodvscl 19329 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) ∈ 𝐹𝑋 ∈ (Base‘𝑊)) → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋) ∈ (Base‘𝑊))
8163, 78, 79, 80syl3anc 1362 . . . . . . . . . 10 ((𝜑𝑋𝑌) → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋) ∈ (Base‘𝑊))
82 eqidd 2794 . . . . . . . . . . . . . 14 ((𝜑𝑋𝑌) → 𝑌 = 𝑌)
8382olcd 869 . . . . . . . . . . . . 13 ((𝜑𝑋𝑌) → (𝑌 = 𝑋𝑌 = 𝑌))
84 elprg 4487 . . . . . . . . . . . . . 14 (𝑌𝐵 → (𝑌 ∈ {𝑋, 𝑌} ↔ (𝑌 = 𝑋𝑌 = 𝑌)))
8584biimpar 478 . . . . . . . . . . . . 13 ((𝑌𝐵 ∧ (𝑌 = 𝑋𝑌 = 𝑌)) → 𝑌 ∈ {𝑋, 𝑌})
8647, 83, 85syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑋𝑌) → 𝑌 ∈ {𝑋, 𝑌})
8772, 86ffvelrnd 6708 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) ∈ 𝐹)
8819, 46sseldd 3885 . . . . . . . . . . . 12 (𝜑𝑌 ∈ (Base‘𝑊))
8988adantr 481 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → 𝑌 ∈ (Base‘𝑊))
906, 8, 7, 9lmodvscl 19329 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) ∈ 𝐹𝑌 ∈ (Base‘𝑊)) → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌) ∈ (Base‘𝑊))
9163, 87, 89, 90syl3anc 1362 . . . . . . . . . 10 ((𝜑𝑋𝑌) → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌) ∈ (Base‘𝑊))
92 linds2eq.3 . . . . . . . . . . 11 + = (+g𝑊)
93 fveq2 6530 . . . . . . . . . . . 12 (𝑏 = 𝑋 → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) = ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋))
94 id 22 . . . . . . . . . . . 12 (𝑏 = 𝑋𝑏 = 𝑋)
9593, 94oveq12d 7025 . . . . . . . . . . 11 (𝑏 = 𝑋 → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏) = (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋))
96 fveq2 6530 . . . . . . . . . . . 12 (𝑏 = 𝑌 → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) = ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌))
97 id 22 . . . . . . . . . . . 12 (𝑏 = 𝑌𝑏 = 𝑌)
9896, 97oveq12d 7025 . . . . . . . . . . 11 (𝑏 = 𝑌 → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏) = (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌))
996, 92, 95, 98gsumpr 18783 . . . . . . . . . 10 ((𝑊 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵𝑋𝑌) ∧ ((({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋) ∈ (Base‘𝑊) ∧ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌) ∈ (Base‘𝑊))) → (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))) = ((({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋) + (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌)))
10062, 31, 47, 49, 81, 91, 99syl132anc 1379 . . . . . . . . 9 ((𝜑𝑋𝑌) → (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))) = ((({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋) + (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌)))
101 fvpr1g 6812 . . . . . . . . . . . 12 ((𝑋𝐵𝐾𝐹𝑋𝑌) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) = 𝐾)
10231, 32, 49, 101syl3anc 1362 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) = 𝐾)
103102oveq1d 7022 . . . . . . . . . 10 ((𝜑𝑋𝑌) → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋) = (𝐾 · 𝑋))
10469adantr 481 . . . . . . . . . . . 12 ((𝜑𝑋𝑌) → ((invg‘(Scalar‘𝑊))‘𝐿) ∈ 𝐹)
105 fvpr2g 6813 . . . . . . . . . . . 12 ((𝑌𝐵 ∧ ((invg‘(Scalar‘𝑊))‘𝐿) ∈ 𝐹𝑋𝑌) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) = ((invg‘(Scalar‘𝑊))‘𝐿))
10647, 104, 49, 105syl3anc 1362 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) = ((invg‘(Scalar‘𝑊))‘𝐿))
107106oveq1d 7022 . . . . . . . . . 10 ((𝜑𝑋𝑌) → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌) = (((invg‘(Scalar‘𝑊))‘𝐿) · 𝑌))
108103, 107oveq12d 7025 . . . . . . . . 9 ((𝜑𝑋𝑌) → ((({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋) + (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌)) = ((𝐾 · 𝑋) + (((invg‘(Scalar‘𝑊))‘𝐿) · 𝑌)))
1096, 8, 7, 9lmodvscl 19329 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝐾𝐹𝑋 ∈ (Base‘𝑊)) → (𝐾 · 𝑋) ∈ (Base‘𝑊))
11059, 13, 21, 109syl3anc 1362 . . . . . . . . . . . 12 (𝜑 → (𝐾 · 𝑋) ∈ (Base‘𝑊))
1112, 110eqeltrrd 2882 . . . . . . . . . . . 12 (𝜑 → (𝐿 · 𝑌) ∈ (Base‘𝑊))
112 eqid 2793 . . . . . . . . . . . . 13 (invg𝑊) = (invg𝑊)
113 eqid 2793 . . . . . . . . . . . . 13 (-g𝑊) = (-g𝑊)
1146, 92, 112, 113grpsubval 17894 . . . . . . . . . . . 12 (((𝐾 · 𝑋) ∈ (Base‘𝑊) ∧ (𝐿 · 𝑌) ∈ (Base‘𝑊)) → ((𝐾 · 𝑋)(-g𝑊)(𝐿 · 𝑌)) = ((𝐾 · 𝑋) + ((invg𝑊)‘(𝐿 · 𝑌))))
115110, 111, 114syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((𝐾 · 𝑋)(-g𝑊)(𝐿 · 𝑌)) = ((𝐾 · 𝑋) + ((invg𝑊)‘(𝐿 · 𝑌))))
116 lmodgrp 19319 . . . . . . . . . . . . . 14 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
11759, 116syl 17 . . . . . . . . . . . . 13 (𝜑𝑊 ∈ Grp)
1186, 10, 113grpsubeq0 17930 . . . . . . . . . . . . 13 ((𝑊 ∈ Grp ∧ (𝐾 · 𝑋) ∈ (Base‘𝑊) ∧ (𝐿 · 𝑌) ∈ (Base‘𝑊)) → (((𝐾 · 𝑋)(-g𝑊)(𝐿 · 𝑌)) = (0g𝑊) ↔ (𝐾 · 𝑋) = (𝐿 · 𝑌)))
119117, 110, 111, 118syl3anc 1362 . . . . . . . . . . . 12 (𝜑 → (((𝐾 · 𝑋)(-g𝑊)(𝐿 · 𝑌)) = (0g𝑊) ↔ (𝐾 · 𝑋) = (𝐿 · 𝑌)))
1202, 119mpbird 258 . . . . . . . . . . 11 (𝜑 → ((𝐾 · 𝑋)(-g𝑊)(𝐿 · 𝑌)) = (0g𝑊))
1216, 8, 7, 112, 9, 67, 59, 88, 15lmodvsneg 19356 . . . . . . . . . . . 12 (𝜑 → ((invg𝑊)‘(𝐿 · 𝑌)) = (((invg‘(Scalar‘𝑊))‘𝐿) · 𝑌))
122121oveq2d 7023 . . . . . . . . . . 11 (𝜑 → ((𝐾 · 𝑋) + ((invg𝑊)‘(𝐿 · 𝑌))) = ((𝐾 · 𝑋) + (((invg‘(Scalar‘𝑊))‘𝐿) · 𝑌)))
123115, 120, 1223eqtr3rd 2838 . . . . . . . . . 10 (𝜑 → ((𝐾 · 𝑋) + (((invg‘(Scalar‘𝑊))‘𝐿) · 𝑌)) = (0g𝑊))
124123adantr 481 . . . . . . . . 9 ((𝜑𝑋𝑌) → ((𝐾 · 𝑋) + (((invg‘(Scalar‘𝑊))‘𝐿) · 𝑌)) = (0g𝑊))
125100, 108, 1243eqtrd 2833 . . . . . . . 8 ((𝜑𝑋𝑌) → (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))) = (0g𝑊))
126 breq1 4959 . . . . . . . . . . 11 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → (𝑎 finSupp 0 ↔ {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} finSupp 0 ))
127 fveq1 6529 . . . . . . . . . . . . . . 15 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → (𝑎𝑏) = ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏))
128127oveq1d 7022 . . . . . . . . . . . . . 14 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → ((𝑎𝑏) · 𝑏) = (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))
129128mpteq2dv 5050 . . . . . . . . . . . . 13 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏)) = (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏)))
130129oveq2d 7023 . . . . . . . . . . . 12 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))))
131130eqeq1d 2795 . . . . . . . . . . 11 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → ((𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (0g𝑊) ↔ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))) = (0g𝑊)))
132126, 131anbi12d 630 . . . . . . . . . 10 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → ((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (0g𝑊)) ↔ ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))) = (0g𝑊))))
133 eqeq1 2797 . . . . . . . . . 10 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → (𝑎 = ({𝑋, 𝑌} × { 0 }) ↔ {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} = ({𝑋, 𝑌} × { 0 })))
134132, 133imbi12d 346 . . . . . . . . 9 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → (((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (0g𝑊)) → 𝑎 = ({𝑋, 𝑌} × { 0 })) ↔ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))) = (0g𝑊)) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} = ({𝑋, 𝑌} × { 0 }))))
13520, 46prssd 4656 . . . . . . . . . . . 12 (𝜑 → {𝑋, 𝑌} ⊆ 𝐵)
136135, 19sstrd 3894 . . . . . . . . . . 11 (𝜑 → {𝑋, 𝑌} ⊆ (Base‘𝑊))
137 lindsss 20638 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝐵 ∈ (LIndS‘𝑊) ∧ {𝑋, 𝑌} ⊆ 𝐵) → {𝑋, 𝑌} ∈ (LIndS‘𝑊))
13859, 17, 135, 137syl3anc 1362 . . . . . . . . . . 11 (𝜑 → {𝑋, 𝑌} ∈ (LIndS‘𝑊))
1396, 9, 8, 7, 10, 54islinds5 30535 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ {𝑋, 𝑌} ⊆ (Base‘𝑊)) → ({𝑋, 𝑌} ∈ (LIndS‘𝑊) ↔ ∀𝑎 ∈ (𝐹𝑚 {𝑋, 𝑌})((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (0g𝑊)) → 𝑎 = ({𝑋, 𝑌} × { 0 }))))
140139biimpa 477 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ {𝑋, 𝑌} ⊆ (Base‘𝑊)) ∧ {𝑋, 𝑌} ∈ (LIndS‘𝑊)) → ∀𝑎 ∈ (𝐹𝑚 {𝑋, 𝑌})((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (0g𝑊)) → 𝑎 = ({𝑋, 𝑌} × { 0 })))
14159, 136, 138, 140syl21anc 834 . . . . . . . . . 10 (𝜑 → ∀𝑎 ∈ (𝐹𝑚 {𝑋, 𝑌})((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (0g𝑊)) → 𝑎 = ({𝑋, 𝑌} × { 0 })))
142141adantr 481 . . . . . . . . 9 ((𝜑𝑋𝑌) → ∀𝑎 ∈ (𝐹𝑚 {𝑋, 𝑌})((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (0g𝑊)) → 𝑎 = ({𝑋, 𝑌} × { 0 })))
1439fvexi 6544 . . . . . . . . . . . 12 𝐹 ∈ V
144143a1i 11 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → 𝐹 ∈ V)
145138elexd 3452 . . . . . . . . . . . 12 (𝜑 → {𝑋, 𝑌} ∈ V)
146145adantr 481 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → {𝑋, 𝑌} ∈ V)
147144, 146elmapd 8261 . . . . . . . . . 10 ((𝜑𝑋𝑌) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} ∈ (𝐹𝑚 {𝑋, 𝑌}) ↔ {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}:{𝑋, 𝑌}⟶𝐹))
14872, 147mpbird 258 . . . . . . . . 9 ((𝜑𝑋𝑌) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} ∈ (𝐹𝑚 {𝑋, 𝑌}))
149134, 142, 148rspcdva 3560 . . . . . . . 8 ((𝜑𝑋𝑌) → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))) = (0g𝑊)) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} = ({𝑋, 𝑌} × { 0 })))
15057, 125, 149mp2and 695 . . . . . . 7 ((𝜑𝑋𝑌) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} = ({𝑋, 𝑌} × { 0 }))
151 xpprsng 6756 . . . . . . . 8 ((𝑋𝐵𝑌𝐵0 ∈ V) → ({𝑋, 𝑌} × { 0 }) = {⟨𝑋, 0 ⟩, ⟨𝑌, 0 ⟩})
15231, 47, 56, 151syl3anc 1362 . . . . . . 7 ((𝜑𝑋𝑌) → ({𝑋, 𝑌} × { 0 }) = {⟨𝑋, 0 ⟩, ⟨𝑌, 0 ⟩})
153150, 152eqtrd 2829 . . . . . 6 ((𝜑𝑋𝑌) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} = {⟨𝑋, 0 ⟩, ⟨𝑌, 0 ⟩})
154 opthprneg 4696 . . . . . . 7 (((⟨𝑋, 𝐾⟩ ∈ V ∧ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ∈ V) ∧ (⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ∧ ⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, 0 ⟩)) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} = {⟨𝑋, 0 ⟩, ⟨𝑌, 0 ⟩} ↔ (⟨𝑋, 𝐾⟩ = ⟨𝑋, 0 ⟩ ∧ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ = ⟨𝑌, 0 ⟩)))
155154biimpa 477 . . . . . 6 ((((⟨𝑋, 𝐾⟩ ∈ V ∧ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ∈ V) ∧ (⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ∧ ⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, 0 ⟩)) ∧ {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} = {⟨𝑋, 0 ⟩, ⟨𝑌, 0 ⟩}) → (⟨𝑋, 𝐾⟩ = ⟨𝑋, 0 ⟩ ∧ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ = ⟨𝑌, 0 ⟩))
15634, 36, 45, 153, 155syl1111anc 836 . . . . 5 ((𝜑𝑋𝑌) → (⟨𝑋, 𝐾⟩ = ⟨𝑋, 0 ⟩ ∧ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ = ⟨𝑌, 0 ⟩))
157156simpld 495 . . . 4 ((𝜑𝑋𝑌) → ⟨𝑋, 𝐾⟩ = ⟨𝑋, 0 ⟩)
158 opthg 5254 . . . . 5 ((𝑋𝐵𝐾𝐹) → (⟨𝑋, 𝐾⟩ = ⟨𝑋, 0 ⟩ ↔ (𝑋 = 𝑋𝐾 = 0 )))
159158simplbda 500 . . . 4 (((𝑋𝐵𝐾𝐹) ∧ ⟨𝑋, 𝐾⟩ = ⟨𝑋, 0 ⟩) → 𝐾 = 0 )
16031, 32, 157, 159syl21anc 834 . . 3 ((𝜑𝑋𝑌) → 𝐾 = 0 )
161 linds2eq.11 . . . 4 (𝜑𝐾0 )
162161adantr 481 . . 3 ((𝜑𝑋𝑌) → 𝐾0 )
163160, 162pm2.21ddne 3067 . 2 ((𝜑𝑋𝑌) → (𝑋 = 𝑌𝐾 = 𝐿))
16430, 163pm2.61dane 3070 1 (𝜑 → (𝑋 = 𝑌𝐾 = 𝐿))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 842   = wceq 1520  wcel 2079  wne 2982  wral 3103  Vcvv 3432  wss 3854  {csn 4466  {cpr 4468  cop 4472   class class class wbr 4956  cmpt 5035   × cxp 5433  wf 6213  cfv 6217  (class class class)co 7007  𝑚 cmap 8247  Fincfn 8347   finSupp cfsupp 8669  Basecbs 16300  +gcplusg 16382  Scalarcsca 16385   ·𝑠 cvsca 16386  0gc0g 16530   Σg cgsu 16531  Grpcgrp 17849  invgcminusg 17850  -gcsg 17851  CMndccmn 18621  Ringcrg 18975  LModclmod 19312  LVecclvec 19552  LIndSclinds 20619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-cnex 10428  ax-resscn 10429  ax-1cn 10430  ax-icn 10431  ax-addcl 10432  ax-addrcl 10433  ax-mulcl 10434  ax-mulrcl 10435  ax-mulcom 10436  ax-addass 10437  ax-mulass 10438  ax-distr 10439  ax-i2m1 10440  ax-1ne0 10441  ax-1rid 10442  ax-rnegex 10443  ax-rrecex 10444  ax-cnre 10445  ax-pre-lttri 10446  ax-pre-lttrn 10447  ax-pre-ltadd 10448  ax-pre-mulgt0 10449
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-int 4777  df-iun 4821  df-iin 4822  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-se 5395  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-isom 6226  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-of 7258  df-om 7428  df-1st 7536  df-2nd 7537  df-supp 7673  df-tpos 7734  df-wrecs 7789  df-recs 7851  df-rdg 7889  df-1o 7944  df-oadd 7948  df-er 8130  df-map 8249  df-ixp 8301  df-en 8348  df-dom 8349  df-sdom 8350  df-fin 8351  df-fsupp 8670  df-sup 8742  df-oi 8810  df-card 9203  df-pnf 10512  df-mnf 10513  df-xr 10514  df-ltxr 10515  df-le 10516  df-sub 10708  df-neg 10709  df-nn 11476  df-2 11537  df-3 11538  df-4 11539  df-5 11540  df-6 11541  df-7 11542  df-8 11543  df-9 11544  df-n0 11735  df-z 11819  df-dec 11937  df-uz 12083  df-fz 12732  df-fzo 12873  df-seq 13208  df-hash 13529  df-struct 16302  df-ndx 16303  df-slot 16304  df-base 16306  df-sets 16307  df-ress 16308  df-plusg 16395  df-mulr 16396  df-sca 16398  df-vsca 16399  df-ip 16400  df-tset 16401  df-ple 16402  df-ds 16404  df-hom 16406  df-cco 16407  df-0g 16532  df-gsum 16533  df-prds 16538  df-pws 16540  df-mre 16674  df-mrc 16675  df-acs 16677  df-mgm 17669  df-sgrp 17711  df-mnd 17722  df-mhm 17762  df-submnd 17763  df-grp 17852  df-minusg 17853  df-sbg 17854  df-mulg 17970  df-subg 18018  df-ghm 18085  df-cntz 18176  df-cmn 18623  df-abl 18624  df-mgp 18918  df-ur 18930  df-ring 18977  df-oppr 19051  df-dvdsr 19069  df-unit 19070  df-invr 19100  df-drng 19182  df-subrg 19211  df-lmod 19314  df-lss 19382  df-lsp 19422  df-lmhm 19472  df-lbs 19525  df-lvec 19553  df-sra 19622  df-rgmod 19623  df-nzr 19708  df-dsmm 20546  df-frlm 20561  df-uvc 20597  df-lindf 20620  df-linds 20621
This theorem is referenced by:  fedgmul  30586
  Copyright terms: Public domain W3C validator