Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linds2eq Structured version   Visualization version   GIF version

Theorem linds2eq 33409
Description: Deduce equality of elements in an independent set. (Contributed by Thierry Arnoux, 18-Jul-2023.)
Hypotheses
Ref Expression
linds2eq.1 𝐹 = (Base‘(Scalar‘𝑊))
linds2eq.2 · = ( ·𝑠𝑊)
linds2eq.3 + = (+g𝑊)
linds2eq.4 0 = (0g‘(Scalar‘𝑊))
linds2eq.5 (𝜑𝑊 ∈ LVec)
linds2eq.6 (𝜑𝐵 ∈ (LIndS‘𝑊))
linds2eq.7 (𝜑𝑋𝐵)
linds2eq.8 (𝜑𝑌𝐵)
linds2eq.9 (𝜑𝐾𝐹)
linds2eq.10 (𝜑𝐿𝐹)
linds2eq.11 (𝜑𝐾0 )
linds2eq.12 (𝜑 → (𝐾 · 𝑋) = (𝐿 · 𝑌))
Assertion
Ref Expression
linds2eq (𝜑 → (𝑋 = 𝑌𝐾 = 𝐿))

Proof of Theorem linds2eq
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . 3 ((𝜑𝑋 = 𝑌) → 𝑋 = 𝑌)
2 linds2eq.12 . . . . . 6 (𝜑 → (𝐾 · 𝑋) = (𝐿 · 𝑌))
32adantr 480 . . . . 5 ((𝜑𝑋 = 𝑌) → (𝐾 · 𝑋) = (𝐿 · 𝑌))
41oveq2d 7447 . . . . 5 ((𝜑𝑋 = 𝑌) → (𝐿 · 𝑋) = (𝐿 · 𝑌))
53, 4eqtr4d 2780 . . . 4 ((𝜑𝑋 = 𝑌) → (𝐾 · 𝑋) = (𝐿 · 𝑋))
6 eqid 2737 . . . . 5 (Base‘𝑊) = (Base‘𝑊)
7 linds2eq.2 . . . . 5 · = ( ·𝑠𝑊)
8 eqid 2737 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
9 linds2eq.1 . . . . 5 𝐹 = (Base‘(Scalar‘𝑊))
10 eqid 2737 . . . . 5 (0g𝑊) = (0g𝑊)
11 linds2eq.5 . . . . . 6 (𝜑𝑊 ∈ LVec)
1211adantr 480 . . . . 5 ((𝜑𝑋 = 𝑌) → 𝑊 ∈ LVec)
13 linds2eq.9 . . . . . 6 (𝜑𝐾𝐹)
1413adantr 480 . . . . 5 ((𝜑𝑋 = 𝑌) → 𝐾𝐹)
15 linds2eq.10 . . . . . 6 (𝜑𝐿𝐹)
1615adantr 480 . . . . 5 ((𝜑𝑋 = 𝑌) → 𝐿𝐹)
17 linds2eq.6 . . . . . . . 8 (𝜑𝐵 ∈ (LIndS‘𝑊))
186linds1 21830 . . . . . . . 8 (𝐵 ∈ (LIndS‘𝑊) → 𝐵 ⊆ (Base‘𝑊))
1917, 18syl 17 . . . . . . 7 (𝜑𝐵 ⊆ (Base‘𝑊))
20 linds2eq.7 . . . . . . 7 (𝜑𝑋𝐵)
2119, 20sseldd 3984 . . . . . 6 (𝜑𝑋 ∈ (Base‘𝑊))
2221adantr 480 . . . . 5 ((𝜑𝑋 = 𝑌) → 𝑋 ∈ (Base‘𝑊))
23100nellinds 33398 . . . . . . . 8 ((𝑊 ∈ LVec ∧ 𝐵 ∈ (LIndS‘𝑊)) → ¬ (0g𝑊) ∈ 𝐵)
2411, 17, 23syl2anc 584 . . . . . . 7 (𝜑 → ¬ (0g𝑊) ∈ 𝐵)
25 nelne2 3040 . . . . . . 7 ((𝑋𝐵 ∧ ¬ (0g𝑊) ∈ 𝐵) → 𝑋 ≠ (0g𝑊))
2620, 24, 25syl2anc 584 . . . . . 6 (𝜑𝑋 ≠ (0g𝑊))
2726adantr 480 . . . . 5 ((𝜑𝑋 = 𝑌) → 𝑋 ≠ (0g𝑊))
286, 7, 8, 9, 10, 12, 14, 16, 22, 27lvecvscan2 21114 . . . 4 ((𝜑𝑋 = 𝑌) → ((𝐾 · 𝑋) = (𝐿 · 𝑋) ↔ 𝐾 = 𝐿))
295, 28mpbid 232 . . 3 ((𝜑𝑋 = 𝑌) → 𝐾 = 𝐿)
301, 29jca 511 . 2 ((𝜑𝑋 = 𝑌) → (𝑋 = 𝑌𝐾 = 𝐿))
3120adantr 480 . . . 4 ((𝜑𝑋𝑌) → 𝑋𝐵)
3213adantr 480 . . . 4 ((𝜑𝑋𝑌) → 𝐾𝐹)
33 opex 5469 . . . . . . 7 𝑋, 𝐾⟩ ∈ V
3433a1i 11 . . . . . 6 ((𝜑𝑋𝑌) → ⟨𝑋, 𝐾⟩ ∈ V)
35 opex 5469 . . . . . . 7 𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ∈ V
3635a1i 11 . . . . . 6 ((𝜑𝑋𝑌) → ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ∈ V)
37 animorrl 983 . . . . . . . 8 ((𝜑𝑋𝑌) → (𝑋𝑌𝐾 ≠ ((invg‘(Scalar‘𝑊))‘𝐿)))
38 opthneg 5486 . . . . . . . . 9 ((𝑋𝐵𝐾𝐹) → (⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ↔ (𝑋𝑌𝐾 ≠ ((invg‘(Scalar‘𝑊))‘𝐿))))
3938biimpar 477 . . . . . . . 8 (((𝑋𝐵𝐾𝐹) ∧ (𝑋𝑌𝐾 ≠ ((invg‘(Scalar‘𝑊))‘𝐿))) → ⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩)
4031, 32, 37, 39syl21anc 838 . . . . . . 7 ((𝜑𝑋𝑌) → ⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩)
41 animorrl 983 . . . . . . . 8 ((𝜑𝑋𝑌) → (𝑋𝑌𝐾0 ))
42 opthneg 5486 . . . . . . . . 9 ((𝑋𝐵𝐾𝐹) → (⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, 0 ⟩ ↔ (𝑋𝑌𝐾0 )))
4342biimpar 477 . . . . . . . 8 (((𝑋𝐵𝐾𝐹) ∧ (𝑋𝑌𝐾0 )) → ⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, 0 ⟩)
4431, 32, 41, 43syl21anc 838 . . . . . . 7 ((𝜑𝑋𝑌) → ⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, 0 ⟩)
4540, 44jca 511 . . . . . 6 ((𝜑𝑋𝑌) → (⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ∧ ⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, 0 ⟩))
46 linds2eq.8 . . . . . . . . . . 11 (𝜑𝑌𝐵)
4746adantr 480 . . . . . . . . . 10 ((𝜑𝑋𝑌) → 𝑌𝐵)
48 fvexd 6921 . . . . . . . . . 10 ((𝜑𝑋𝑌) → ((invg‘(Scalar‘𝑊))‘𝐿) ∈ V)
49 simpr 484 . . . . . . . . . 10 ((𝜑𝑋𝑌) → 𝑋𝑌)
50 fprg 7175 . . . . . . . . . 10 (((𝑋𝐵𝑌𝐵) ∧ (𝐾𝐹 ∧ ((invg‘(Scalar‘𝑊))‘𝐿) ∈ V) ∧ 𝑋𝑌) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}:{𝑋, 𝑌}⟶{𝐾, ((invg‘(Scalar‘𝑊))‘𝐿)})
5131, 47, 32, 48, 49, 50syl221anc 1383 . . . . . . . . 9 ((𝜑𝑋𝑌) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}:{𝑋, 𝑌}⟶{𝐾, ((invg‘(Scalar‘𝑊))‘𝐿)})
52 prfi 9363 . . . . . . . . . 10 {𝑋, 𝑌} ∈ Fin
5352a1i 11 . . . . . . . . 9 ((𝜑𝑋𝑌) → {𝑋, 𝑌} ∈ Fin)
54 linds2eq.4 . . . . . . . . . . 11 0 = (0g‘(Scalar‘𝑊))
5554fvexi 6920 . . . . . . . . . 10 0 ∈ V
5655a1i 11 . . . . . . . . 9 ((𝜑𝑋𝑌) → 0 ∈ V)
5751, 53, 56fdmfifsupp 9415 . . . . . . . 8 ((𝜑𝑋𝑌) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} finSupp 0 )
58 lveclmod 21105 . . . . . . . . . . . . 13 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
5911, 58syl 17 . . . . . . . . . . . 12 (𝜑𝑊 ∈ LMod)
60 lmodcmn 20908 . . . . . . . . . . . 12 (𝑊 ∈ LMod → 𝑊 ∈ CMnd)
6159, 60syl 17 . . . . . . . . . . 11 (𝜑𝑊 ∈ CMnd)
6261adantr 480 . . . . . . . . . 10 ((𝜑𝑋𝑌) → 𝑊 ∈ CMnd)
6359adantr 480 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → 𝑊 ∈ LMod)
648lmodring 20866 . . . . . . . . . . . . . . . . 17 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
65 ringgrp 20235 . . . . . . . . . . . . . . . . 17 ((Scalar‘𝑊) ∈ Ring → (Scalar‘𝑊) ∈ Grp)
6659, 64, 653syl 18 . . . . . . . . . . . . . . . 16 (𝜑 → (Scalar‘𝑊) ∈ Grp)
67 eqid 2737 . . . . . . . . . . . . . . . . 17 (invg‘(Scalar‘𝑊)) = (invg‘(Scalar‘𝑊))
689, 67grpinvcl 19005 . . . . . . . . . . . . . . . 16 (((Scalar‘𝑊) ∈ Grp ∧ 𝐿𝐹) → ((invg‘(Scalar‘𝑊))‘𝐿) ∈ 𝐹)
6966, 15, 68syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → ((invg‘(Scalar‘𝑊))‘𝐿) ∈ 𝐹)
7013, 69prssd 4822 . . . . . . . . . . . . . 14 (𝜑 → {𝐾, ((invg‘(Scalar‘𝑊))‘𝐿)} ⊆ 𝐹)
7170adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑋𝑌) → {𝐾, ((invg‘(Scalar‘𝑊))‘𝐿)} ⊆ 𝐹)
7251, 71fssd 6753 . . . . . . . . . . . 12 ((𝜑𝑋𝑌) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}:{𝑋, 𝑌}⟶𝐹)
73 eqidd 2738 . . . . . . . . . . . . . 14 ((𝜑𝑋𝑌) → 𝑋 = 𝑋)
7473orcd 874 . . . . . . . . . . . . 13 ((𝜑𝑋𝑌) → (𝑋 = 𝑋𝑋 = 𝑌))
75 elprg 4648 . . . . . . . . . . . . . 14 (𝑋𝐵 → (𝑋 ∈ {𝑋, 𝑌} ↔ (𝑋 = 𝑋𝑋 = 𝑌)))
7675biimpar 477 . . . . . . . . . . . . 13 ((𝑋𝐵 ∧ (𝑋 = 𝑋𝑋 = 𝑌)) → 𝑋 ∈ {𝑋, 𝑌})
7731, 74, 76syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑋𝑌) → 𝑋 ∈ {𝑋, 𝑌})
7872, 77ffvelcdmd 7105 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) ∈ 𝐹)
7921adantr 480 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → 𝑋 ∈ (Base‘𝑊))
806, 8, 7, 9lmodvscl 20876 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) ∈ 𝐹𝑋 ∈ (Base‘𝑊)) → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋) ∈ (Base‘𝑊))
8163, 78, 79, 80syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑋𝑌) → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋) ∈ (Base‘𝑊))
82 eqidd 2738 . . . . . . . . . . . . . 14 ((𝜑𝑋𝑌) → 𝑌 = 𝑌)
8382olcd 875 . . . . . . . . . . . . 13 ((𝜑𝑋𝑌) → (𝑌 = 𝑋𝑌 = 𝑌))
84 elprg 4648 . . . . . . . . . . . . . 14 (𝑌𝐵 → (𝑌 ∈ {𝑋, 𝑌} ↔ (𝑌 = 𝑋𝑌 = 𝑌)))
8584biimpar 477 . . . . . . . . . . . . 13 ((𝑌𝐵 ∧ (𝑌 = 𝑋𝑌 = 𝑌)) → 𝑌 ∈ {𝑋, 𝑌})
8647, 83, 85syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑋𝑌) → 𝑌 ∈ {𝑋, 𝑌})
8772, 86ffvelcdmd 7105 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) ∈ 𝐹)
8819, 46sseldd 3984 . . . . . . . . . . . 12 (𝜑𝑌 ∈ (Base‘𝑊))
8988adantr 480 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → 𝑌 ∈ (Base‘𝑊))
906, 8, 7, 9lmodvscl 20876 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) ∈ 𝐹𝑌 ∈ (Base‘𝑊)) → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌) ∈ (Base‘𝑊))
9163, 87, 89, 90syl3anc 1373 . . . . . . . . . 10 ((𝜑𝑋𝑌) → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌) ∈ (Base‘𝑊))
92 linds2eq.3 . . . . . . . . . . 11 + = (+g𝑊)
93 fveq2 6906 . . . . . . . . . . . 12 (𝑏 = 𝑋 → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) = ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋))
94 id 22 . . . . . . . . . . . 12 (𝑏 = 𝑋𝑏 = 𝑋)
9593, 94oveq12d 7449 . . . . . . . . . . 11 (𝑏 = 𝑋 → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏) = (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋))
96 fveq2 6906 . . . . . . . . . . . 12 (𝑏 = 𝑌 → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) = ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌))
97 id 22 . . . . . . . . . . . 12 (𝑏 = 𝑌𝑏 = 𝑌)
9896, 97oveq12d 7449 . . . . . . . . . . 11 (𝑏 = 𝑌 → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏) = (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌))
996, 92, 95, 98gsumpr 19973 . . . . . . . . . 10 ((𝑊 ∈ CMnd ∧ (𝑋𝐵𝑌𝐵𝑋𝑌) ∧ ((({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋) ∈ (Base‘𝑊) ∧ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌) ∈ (Base‘𝑊))) → (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))) = ((({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋) + (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌)))
10062, 31, 47, 49, 81, 91, 99syl132anc 1390 . . . . . . . . 9 ((𝜑𝑋𝑌) → (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))) = ((({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋) + (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌)))
101 fvpr1g 7210 . . . . . . . . . . . 12 ((𝑋𝐵𝐾𝐹𝑋𝑌) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) = 𝐾)
10231, 32, 49, 101syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) = 𝐾)
103102oveq1d 7446 . . . . . . . . . 10 ((𝜑𝑋𝑌) → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋) = (𝐾 · 𝑋))
10469adantr 480 . . . . . . . . . . . 12 ((𝜑𝑋𝑌) → ((invg‘(Scalar‘𝑊))‘𝐿) ∈ 𝐹)
105 fvpr2g 7211 . . . . . . . . . . . 12 ((𝑌𝐵 ∧ ((invg‘(Scalar‘𝑊))‘𝐿) ∈ 𝐹𝑋𝑌) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) = ((invg‘(Scalar‘𝑊))‘𝐿))
10647, 104, 49, 105syl3anc 1373 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) = ((invg‘(Scalar‘𝑊))‘𝐿))
107106oveq1d 7446 . . . . . . . . . 10 ((𝜑𝑋𝑌) → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌) = (((invg‘(Scalar‘𝑊))‘𝐿) · 𝑌))
108103, 107oveq12d 7449 . . . . . . . . 9 ((𝜑𝑋𝑌) → ((({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑋) · 𝑋) + (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑌) · 𝑌)) = ((𝐾 · 𝑋) + (((invg‘(Scalar‘𝑊))‘𝐿) · 𝑌)))
1096, 8, 7, 9lmodvscl 20876 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝐾𝐹𝑋 ∈ (Base‘𝑊)) → (𝐾 · 𝑋) ∈ (Base‘𝑊))
11059, 13, 21, 109syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (𝐾 · 𝑋) ∈ (Base‘𝑊))
1112, 110eqeltrrd 2842 . . . . . . . . . . . 12 (𝜑 → (𝐿 · 𝑌) ∈ (Base‘𝑊))
112 eqid 2737 . . . . . . . . . . . . 13 (invg𝑊) = (invg𝑊)
113 eqid 2737 . . . . . . . . . . . . 13 (-g𝑊) = (-g𝑊)
1146, 92, 112, 113grpsubval 19003 . . . . . . . . . . . 12 (((𝐾 · 𝑋) ∈ (Base‘𝑊) ∧ (𝐿 · 𝑌) ∈ (Base‘𝑊)) → ((𝐾 · 𝑋)(-g𝑊)(𝐿 · 𝑌)) = ((𝐾 · 𝑋) + ((invg𝑊)‘(𝐿 · 𝑌))))
115110, 111, 114syl2anc 584 . . . . . . . . . . 11 (𝜑 → ((𝐾 · 𝑋)(-g𝑊)(𝐿 · 𝑌)) = ((𝐾 · 𝑋) + ((invg𝑊)‘(𝐿 · 𝑌))))
116 lmodgrp 20865 . . . . . . . . . . . . . 14 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
11759, 116syl 17 . . . . . . . . . . . . 13 (𝜑𝑊 ∈ Grp)
1186, 10, 113grpsubeq0 19044 . . . . . . . . . . . . 13 ((𝑊 ∈ Grp ∧ (𝐾 · 𝑋) ∈ (Base‘𝑊) ∧ (𝐿 · 𝑌) ∈ (Base‘𝑊)) → (((𝐾 · 𝑋)(-g𝑊)(𝐿 · 𝑌)) = (0g𝑊) ↔ (𝐾 · 𝑋) = (𝐿 · 𝑌)))
119117, 110, 111, 118syl3anc 1373 . . . . . . . . . . . 12 (𝜑 → (((𝐾 · 𝑋)(-g𝑊)(𝐿 · 𝑌)) = (0g𝑊) ↔ (𝐾 · 𝑋) = (𝐿 · 𝑌)))
1202, 119mpbird 257 . . . . . . . . . . 11 (𝜑 → ((𝐾 · 𝑋)(-g𝑊)(𝐿 · 𝑌)) = (0g𝑊))
1216, 8, 7, 112, 9, 67, 59, 88, 15lmodvsneg 20904 . . . . . . . . . . . 12 (𝜑 → ((invg𝑊)‘(𝐿 · 𝑌)) = (((invg‘(Scalar‘𝑊))‘𝐿) · 𝑌))
122121oveq2d 7447 . . . . . . . . . . 11 (𝜑 → ((𝐾 · 𝑋) + ((invg𝑊)‘(𝐿 · 𝑌))) = ((𝐾 · 𝑋) + (((invg‘(Scalar‘𝑊))‘𝐿) · 𝑌)))
123115, 120, 1223eqtr3rd 2786 . . . . . . . . . 10 (𝜑 → ((𝐾 · 𝑋) + (((invg‘(Scalar‘𝑊))‘𝐿) · 𝑌)) = (0g𝑊))
124123adantr 480 . . . . . . . . 9 ((𝜑𝑋𝑌) → ((𝐾 · 𝑋) + (((invg‘(Scalar‘𝑊))‘𝐿) · 𝑌)) = (0g𝑊))
125100, 108, 1243eqtrd 2781 . . . . . . . 8 ((𝜑𝑋𝑌) → (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))) = (0g𝑊))
126 breq1 5146 . . . . . . . . . . 11 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → (𝑎 finSupp 0 ↔ {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} finSupp 0 ))
127 fveq1 6905 . . . . . . . . . . . . . . 15 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → (𝑎𝑏) = ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏))
128127oveq1d 7446 . . . . . . . . . . . . . 14 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → ((𝑎𝑏) · 𝑏) = (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))
129128mpteq2dv 5244 . . . . . . . . . . . . 13 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏)) = (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏)))
130129oveq2d 7447 . . . . . . . . . . . 12 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))))
131130eqeq1d 2739 . . . . . . . . . . 11 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → ((𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (0g𝑊) ↔ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))) = (0g𝑊)))
132126, 131anbi12d 632 . . . . . . . . . 10 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → ((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (0g𝑊)) ↔ ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))) = (0g𝑊))))
133 eqeq1 2741 . . . . . . . . . 10 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → (𝑎 = ({𝑋, 𝑌} × { 0 }) ↔ {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} = ({𝑋, 𝑌} × { 0 })))
134132, 133imbi12d 344 . . . . . . . . 9 (𝑎 = {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} → (((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (0g𝑊)) → 𝑎 = ({𝑋, 𝑌} × { 0 })) ↔ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))) = (0g𝑊)) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} = ({𝑋, 𝑌} × { 0 }))))
13520, 46prssd 4822 . . . . . . . . . . . 12 (𝜑 → {𝑋, 𝑌} ⊆ 𝐵)
136135, 19sstrd 3994 . . . . . . . . . . 11 (𝜑 → {𝑋, 𝑌} ⊆ (Base‘𝑊))
137 lindsss 21844 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ 𝐵 ∈ (LIndS‘𝑊) ∧ {𝑋, 𝑌} ⊆ 𝐵) → {𝑋, 𝑌} ∈ (LIndS‘𝑊))
13859, 17, 135, 137syl3anc 1373 . . . . . . . . . . 11 (𝜑 → {𝑋, 𝑌} ∈ (LIndS‘𝑊))
1396, 9, 8, 7, 10, 54islinds5 33395 . . . . . . . . . . . 12 ((𝑊 ∈ LMod ∧ {𝑋, 𝑌} ⊆ (Base‘𝑊)) → ({𝑋, 𝑌} ∈ (LIndS‘𝑊) ↔ ∀𝑎 ∈ (𝐹m {𝑋, 𝑌})((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (0g𝑊)) → 𝑎 = ({𝑋, 𝑌} × { 0 }))))
140139biimpa 476 . . . . . . . . . . 11 (((𝑊 ∈ LMod ∧ {𝑋, 𝑌} ⊆ (Base‘𝑊)) ∧ {𝑋, 𝑌} ∈ (LIndS‘𝑊)) → ∀𝑎 ∈ (𝐹m {𝑋, 𝑌})((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (0g𝑊)) → 𝑎 = ({𝑋, 𝑌} × { 0 })))
14159, 136, 138, 140syl21anc 838 . . . . . . . . . 10 (𝜑 → ∀𝑎 ∈ (𝐹m {𝑋, 𝑌})((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (0g𝑊)) → 𝑎 = ({𝑋, 𝑌} × { 0 })))
142141adantr 480 . . . . . . . . 9 ((𝜑𝑋𝑌) → ∀𝑎 ∈ (𝐹m {𝑋, 𝑌})((𝑎 finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ ((𝑎𝑏) · 𝑏))) = (0g𝑊)) → 𝑎 = ({𝑋, 𝑌} × { 0 })))
1439fvexi 6920 . . . . . . . . . . . 12 𝐹 ∈ V
144143a1i 11 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → 𝐹 ∈ V)
145138elexd 3504 . . . . . . . . . . . 12 (𝜑 → {𝑋, 𝑌} ∈ V)
146145adantr 480 . . . . . . . . . . 11 ((𝜑𝑋𝑌) → {𝑋, 𝑌} ∈ V)
147144, 146elmapd 8880 . . . . . . . . . 10 ((𝜑𝑋𝑌) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} ∈ (𝐹m {𝑋, 𝑌}) ↔ {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}:{𝑋, 𝑌}⟶𝐹))
14872, 147mpbird 257 . . . . . . . . 9 ((𝜑𝑋𝑌) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} ∈ (𝐹m {𝑋, 𝑌}))
149134, 142, 148rspcdva 3623 . . . . . . . 8 ((𝜑𝑋𝑌) → (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} finSupp 0 ∧ (𝑊 Σg (𝑏 ∈ {𝑋, 𝑌} ↦ (({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩}‘𝑏) · 𝑏))) = (0g𝑊)) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} = ({𝑋, 𝑌} × { 0 })))
15057, 125, 149mp2and 699 . . . . . . 7 ((𝜑𝑋𝑌) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} = ({𝑋, 𝑌} × { 0 }))
151 xpprsng 7160 . . . . . . . 8 ((𝑋𝐵𝑌𝐵0 ∈ V) → ({𝑋, 𝑌} × { 0 }) = {⟨𝑋, 0 ⟩, ⟨𝑌, 0 ⟩})
15231, 47, 56, 151syl3anc 1373 . . . . . . 7 ((𝜑𝑋𝑌) → ({𝑋, 𝑌} × { 0 }) = {⟨𝑋, 0 ⟩, ⟨𝑌, 0 ⟩})
153150, 152eqtrd 2777 . . . . . 6 ((𝜑𝑋𝑌) → {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} = {⟨𝑋, 0 ⟩, ⟨𝑌, 0 ⟩})
154 opthprneg 4865 . . . . . . 7 (((⟨𝑋, 𝐾⟩ ∈ V ∧ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ∈ V) ∧ (⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ∧ ⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, 0 ⟩)) → ({⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} = {⟨𝑋, 0 ⟩, ⟨𝑌, 0 ⟩} ↔ (⟨𝑋, 𝐾⟩ = ⟨𝑋, 0 ⟩ ∧ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ = ⟨𝑌, 0 ⟩)))
155154biimpa 476 . . . . . 6 ((((⟨𝑋, 𝐾⟩ ∈ V ∧ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ∈ V) ∧ (⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ ∧ ⟨𝑋, 𝐾⟩ ≠ ⟨𝑌, 0 ⟩)) ∧ {⟨𝑋, 𝐾⟩, ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩} = {⟨𝑋, 0 ⟩, ⟨𝑌, 0 ⟩}) → (⟨𝑋, 𝐾⟩ = ⟨𝑋, 0 ⟩ ∧ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ = ⟨𝑌, 0 ⟩))
15634, 36, 45, 153, 155syl1111anc 841 . . . . 5 ((𝜑𝑋𝑌) → (⟨𝑋, 𝐾⟩ = ⟨𝑋, 0 ⟩ ∧ ⟨𝑌, ((invg‘(Scalar‘𝑊))‘𝐿)⟩ = ⟨𝑌, 0 ⟩))
157156simpld 494 . . . 4 ((𝜑𝑋𝑌) → ⟨𝑋, 𝐾⟩ = ⟨𝑋, 0 ⟩)
158 opthg 5482 . . . . 5 ((𝑋𝐵𝐾𝐹) → (⟨𝑋, 𝐾⟩ = ⟨𝑋, 0 ⟩ ↔ (𝑋 = 𝑋𝐾 = 0 )))
159158simplbda 499 . . . 4 (((𝑋𝐵𝐾𝐹) ∧ ⟨𝑋, 𝐾⟩ = ⟨𝑋, 0 ⟩) → 𝐾 = 0 )
16031, 32, 157, 159syl21anc 838 . . 3 ((𝜑𝑋𝑌) → 𝐾 = 0 )
161 linds2eq.11 . . . 4 (𝜑𝐾0 )
162161adantr 480 . . 3 ((𝜑𝑋𝑌) → 𝐾0 )
163160, 162pm2.21ddne 3026 . 2 ((𝜑𝑋𝑌) → (𝑋 = 𝑌𝐾 = 𝐿))
16430, 163pm2.61dane 3029 1 (𝜑 → (𝑋 = 𝑌𝐾 = 𝐿))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wne 2940  wral 3061  Vcvv 3480  wss 3951  {csn 4626  {cpr 4628  cop 4632   class class class wbr 5143  cmpt 5225   × cxp 5683  wf 6557  cfv 6561  (class class class)co 7431  m cmap 8866  Fincfn 8985   finSupp cfsupp 9401  Basecbs 17247  +gcplusg 17297  Scalarcsca 17300   ·𝑠 cvsca 17301  0gc0g 17484   Σg cgsu 17485  Grpcgrp 18951  invgcminusg 18952  -gcsg 18953  CMndccmn 19798  Ringcrg 20230  LModclmod 20858  LVecclvec 21101  LIndSclinds 21825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-nzr 20513  df-subrg 20570  df-drng 20731  df-lmod 20860  df-lss 20930  df-lsp 20970  df-lmhm 21021  df-lbs 21074  df-lvec 21102  df-sra 21172  df-rgmod 21173  df-dsmm 21752  df-frlm 21767  df-uvc 21803  df-lindf 21826  df-linds 21827
This theorem is referenced by:  fedgmul  33682
  Copyright terms: Public domain W3C validator