MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drngnidl Structured version   Visualization version   GIF version

Theorem drngnidl 20800
Description: A division ring has only the two trivial ideals. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Wolf Lammen, 6-Sep-2020.)
Hypotheses
Ref Expression
drngnidl.b 𝐵 = (Base‘𝑅)
drngnidl.z 0 = (0g𝑅)
drngnidl.u 𝑈 = (LIdeal‘𝑅)
Assertion
Ref Expression
drngnidl (𝑅 ∈ DivRing → 𝑈 = {{ 0 }, 𝐵})

Proof of Theorem drngnidl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 animorrl 979 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 = { 0 }) → (𝑎 = { 0 } ∨ 𝑎 = 𝐵))
2 drngring 20272 . . . . . . . . . . 11 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
32ad2antrr 724 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → 𝑅 ∈ Ring)
4 simplr 767 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → 𝑎𝑈)
5 simpr 485 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → 𝑎 ≠ { 0 })
6 drngnidl.u . . . . . . . . . . 11 𝑈 = (LIdeal‘𝑅)
7 drngnidl.z . . . . . . . . . . 11 0 = (0g𝑅)
86, 7lidlnz 20799 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑎𝑈𝑎 ≠ { 0 }) → ∃𝑏𝑎 𝑏0 )
93, 4, 5, 8syl3anc 1371 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → ∃𝑏𝑎 𝑏0 )
10 simpll 765 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → 𝑅 ∈ DivRing)
11 drngnidl.b . . . . . . . . . . . . . . . . 17 𝐵 = (Base‘𝑅)
1211, 6lidlss 20781 . . . . . . . . . . . . . . . 16 (𝑎𝑈𝑎𝐵)
1312adantl 482 . . . . . . . . . . . . . . 15 ((𝑅 ∈ DivRing ∧ 𝑎𝑈) → 𝑎𝐵)
1413sselda 3978 . . . . . . . . . . . . . 14 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑏𝑎) → 𝑏𝐵)
1514adantrr 715 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → 𝑏𝐵)
16 simprr 771 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → 𝑏0 )
17 eqid 2731 . . . . . . . . . . . . . 14 (.r𝑅) = (.r𝑅)
18 eqid 2731 . . . . . . . . . . . . . 14 (1r𝑅) = (1r𝑅)
19 eqid 2731 . . . . . . . . . . . . . 14 (invr𝑅) = (invr𝑅)
2011, 7, 17, 18, 19drnginvrl 20289 . . . . . . . . . . . . 13 ((𝑅 ∈ DivRing ∧ 𝑏𝐵𝑏0 ) → (((invr𝑅)‘𝑏)(.r𝑅)𝑏) = (1r𝑅))
2110, 15, 16, 20syl3anc 1371 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → (((invr𝑅)‘𝑏)(.r𝑅)𝑏) = (1r𝑅))
222ad2antrr 724 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → 𝑅 ∈ Ring)
23 simplr 767 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → 𝑎𝑈)
2411, 7, 19drnginvrcl 20286 . . . . . . . . . . . . . 14 ((𝑅 ∈ DivRing ∧ 𝑏𝐵𝑏0 ) → ((invr𝑅)‘𝑏) ∈ 𝐵)
2510, 15, 16, 24syl3anc 1371 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → ((invr𝑅)‘𝑏) ∈ 𝐵)
26 simprl 769 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → 𝑏𝑎)
276, 11, 17lidlmcl 20788 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝑎𝑈) ∧ (((invr𝑅)‘𝑏) ∈ 𝐵𝑏𝑎)) → (((invr𝑅)‘𝑏)(.r𝑅)𝑏) ∈ 𝑎)
2822, 23, 25, 26, 27syl22anc 837 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → (((invr𝑅)‘𝑏)(.r𝑅)𝑏) ∈ 𝑎)
2921, 28eqeltrrd 2833 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → (1r𝑅) ∈ 𝑎)
3029rexlimdvaa 3155 . . . . . . . . . 10 ((𝑅 ∈ DivRing ∧ 𝑎𝑈) → (∃𝑏𝑎 𝑏0 → (1r𝑅) ∈ 𝑎))
3130imp 407 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ ∃𝑏𝑎 𝑏0 ) → (1r𝑅) ∈ 𝑎)
329, 31syldan 591 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → (1r𝑅) ∈ 𝑎)
336, 11, 18lidl1el 20789 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑎𝑈) → ((1r𝑅) ∈ 𝑎𝑎 = 𝐵))
342, 33sylan 580 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝑎𝑈) → ((1r𝑅) ∈ 𝑎𝑎 = 𝐵))
3534adantr 481 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → ((1r𝑅) ∈ 𝑎𝑎 = 𝐵))
3632, 35mpbid 231 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → 𝑎 = 𝐵)
3736olcd 872 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → (𝑎 = { 0 } ∨ 𝑎 = 𝐵))
381, 37pm2.61dane 3028 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑎𝑈) → (𝑎 = { 0 } ∨ 𝑎 = 𝐵))
39 vex 3477 . . . . . 6 𝑎 ∈ V
4039elpr 4645 . . . . 5 (𝑎 ∈ {{ 0 }, 𝐵} ↔ (𝑎 = { 0 } ∨ 𝑎 = 𝐵))
4138, 40sylibr 233 . . . 4 ((𝑅 ∈ DivRing ∧ 𝑎𝑈) → 𝑎 ∈ {{ 0 }, 𝐵})
4241ex 413 . . 3 (𝑅 ∈ DivRing → (𝑎𝑈𝑎 ∈ {{ 0 }, 𝐵}))
4342ssrdv 3984 . 2 (𝑅 ∈ DivRing → 𝑈 ⊆ {{ 0 }, 𝐵})
446, 7lidl0 20790 . . . 4 (𝑅 ∈ Ring → { 0 } ∈ 𝑈)
456, 11lidl1 20791 . . . 4 (𝑅 ∈ Ring → 𝐵𝑈)
4644, 45prssd 4818 . . 3 (𝑅 ∈ Ring → {{ 0 }, 𝐵} ⊆ 𝑈)
472, 46syl 17 . 2 (𝑅 ∈ DivRing → {{ 0 }, 𝐵} ⊆ 𝑈)
4843, 47eqssd 3995 1 (𝑅 ∈ DivRing → 𝑈 = {{ 0 }, 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2939  wrex 3069  wss 3944  {csn 4622  {cpr 4624  cfv 6532  (class class class)co 7393  Basecbs 17126  .rcmulr 17180  0gc0g 17367  1rcur 19963  Ringcrg 20014  invrcinvr 20153  DivRingcdr 20265  LIdealclidl 20732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-tpos 8193  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-7 12262  df-8 12263  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17127  df-ress 17156  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-0g 17369  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-grp 18797  df-minusg 18798  df-sbg 18799  df-subg 18975  df-mgp 19947  df-ur 19964  df-ring 20016  df-oppr 20102  df-dvdsr 20123  df-unit 20124  df-invr 20154  df-drng 20267  df-subrg 20310  df-lmod 20422  df-lss 20492  df-sra 20734  df-rgmod 20735  df-lidl 20736
This theorem is referenced by:  drnglpir  20827  drngidl  32402  drngidlhash  32403
  Copyright terms: Public domain W3C validator