MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drngnidl Structured version   Visualization version   GIF version

Theorem drngnidl 19930
Description: A division ring has only the two trivial ideals. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Wolf Lammen, 6-Sep-2020.)
Hypotheses
Ref Expression
drngnidl.b 𝐵 = (Base‘𝑅)
drngnidl.z 0 = (0g𝑅)
drngnidl.u 𝑈 = (LIdeal‘𝑅)
Assertion
Ref Expression
drngnidl (𝑅 ∈ DivRing → 𝑈 = {{ 0 }, 𝐵})

Proof of Theorem drngnidl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 animorrl 974 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 = { 0 }) → (𝑎 = { 0 } ∨ 𝑎 = 𝐵))
2 drngring 19438 . . . . . . . . . . 11 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
32ad2antrr 722 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → 𝑅 ∈ Ring)
4 simplr 765 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → 𝑎𝑈)
5 simpr 485 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → 𝑎 ≠ { 0 })
6 drngnidl.u . . . . . . . . . . 11 𝑈 = (LIdeal‘𝑅)
7 drngnidl.z . . . . . . . . . . 11 0 = (0g𝑅)
86, 7lidlnz 19929 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑎𝑈𝑎 ≠ { 0 }) → ∃𝑏𝑎 𝑏0 )
93, 4, 5, 8syl3anc 1363 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → ∃𝑏𝑎 𝑏0 )
10 simpll 763 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → 𝑅 ∈ DivRing)
11 drngnidl.b . . . . . . . . . . . . . . . . 17 𝐵 = (Base‘𝑅)
1211, 6lidlss 19911 . . . . . . . . . . . . . . . 16 (𝑎𝑈𝑎𝐵)
1312adantl 482 . . . . . . . . . . . . . . 15 ((𝑅 ∈ DivRing ∧ 𝑎𝑈) → 𝑎𝐵)
1413sselda 3964 . . . . . . . . . . . . . 14 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑏𝑎) → 𝑏𝐵)
1514adantrr 713 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → 𝑏𝐵)
16 simprr 769 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → 𝑏0 )
17 eqid 2818 . . . . . . . . . . . . . 14 (.r𝑅) = (.r𝑅)
18 eqid 2818 . . . . . . . . . . . . . 14 (1r𝑅) = (1r𝑅)
19 eqid 2818 . . . . . . . . . . . . . 14 (invr𝑅) = (invr𝑅)
2011, 7, 17, 18, 19drnginvrl 19450 . . . . . . . . . . . . 13 ((𝑅 ∈ DivRing ∧ 𝑏𝐵𝑏0 ) → (((invr𝑅)‘𝑏)(.r𝑅)𝑏) = (1r𝑅))
2110, 15, 16, 20syl3anc 1363 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → (((invr𝑅)‘𝑏)(.r𝑅)𝑏) = (1r𝑅))
222ad2antrr 722 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → 𝑅 ∈ Ring)
23 simplr 765 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → 𝑎𝑈)
2411, 7, 19drnginvrcl 19448 . . . . . . . . . . . . . 14 ((𝑅 ∈ DivRing ∧ 𝑏𝐵𝑏0 ) → ((invr𝑅)‘𝑏) ∈ 𝐵)
2510, 15, 16, 24syl3anc 1363 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → ((invr𝑅)‘𝑏) ∈ 𝐵)
26 simprl 767 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → 𝑏𝑎)
276, 11, 17lidlmcl 19918 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝑎𝑈) ∧ (((invr𝑅)‘𝑏) ∈ 𝐵𝑏𝑎)) → (((invr𝑅)‘𝑏)(.r𝑅)𝑏) ∈ 𝑎)
2822, 23, 25, 26, 27syl22anc 834 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → (((invr𝑅)‘𝑏)(.r𝑅)𝑏) ∈ 𝑎)
2921, 28eqeltrrd 2911 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → (1r𝑅) ∈ 𝑎)
3029rexlimdvaa 3282 . . . . . . . . . 10 ((𝑅 ∈ DivRing ∧ 𝑎𝑈) → (∃𝑏𝑎 𝑏0 → (1r𝑅) ∈ 𝑎))
3130imp 407 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ ∃𝑏𝑎 𝑏0 ) → (1r𝑅) ∈ 𝑎)
329, 31syldan 591 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → (1r𝑅) ∈ 𝑎)
336, 11, 18lidl1el 19919 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑎𝑈) → ((1r𝑅) ∈ 𝑎𝑎 = 𝐵))
342, 33sylan 580 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝑎𝑈) → ((1r𝑅) ∈ 𝑎𝑎 = 𝐵))
3534adantr 481 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → ((1r𝑅) ∈ 𝑎𝑎 = 𝐵))
3632, 35mpbid 233 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → 𝑎 = 𝐵)
3736olcd 870 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → (𝑎 = { 0 } ∨ 𝑎 = 𝐵))
381, 37pm2.61dane 3101 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑎𝑈) → (𝑎 = { 0 } ∨ 𝑎 = 𝐵))
39 vex 3495 . . . . . 6 𝑎 ∈ V
4039elpr 4580 . . . . 5 (𝑎 ∈ {{ 0 }, 𝐵} ↔ (𝑎 = { 0 } ∨ 𝑎 = 𝐵))
4138, 40sylibr 235 . . . 4 ((𝑅 ∈ DivRing ∧ 𝑎𝑈) → 𝑎 ∈ {{ 0 }, 𝐵})
4241ex 413 . . 3 (𝑅 ∈ DivRing → (𝑎𝑈𝑎 ∈ {{ 0 }, 𝐵}))
4342ssrdv 3970 . 2 (𝑅 ∈ DivRing → 𝑈 ⊆ {{ 0 }, 𝐵})
446, 7lidl0 19920 . . . 4 (𝑅 ∈ Ring → { 0 } ∈ 𝑈)
456, 11lidl1 19921 . . . 4 (𝑅 ∈ Ring → 𝐵𝑈)
4644, 45prssd 4747 . . 3 (𝑅 ∈ Ring → {{ 0 }, 𝐵} ⊆ 𝑈)
472, 46syl 17 . 2 (𝑅 ∈ DivRing → {{ 0 }, 𝐵} ⊆ 𝑈)
4843, 47eqssd 3981 1 (𝑅 ∈ DivRing → 𝑈 = {{ 0 }, 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 841   = wceq 1528  wcel 2105  wne 3013  wrex 3136  wss 3933  {csn 4557  {cpr 4559  cfv 6348  (class class class)co 7145  Basecbs 16471  .rcmulr 16554  0gc0g 16701  1rcur 19180  Ringcrg 19226  invrcinvr 19350  DivRingcdr 19431  LIdealclidl 19871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-tpos 7881  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-sca 16569  df-vsca 16570  df-ip 16571  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-sbg 18046  df-subg 18214  df-mgp 19169  df-ur 19181  df-ring 19228  df-oppr 19302  df-dvdsr 19320  df-unit 19321  df-invr 19351  df-drng 19433  df-subrg 19462  df-lmod 19565  df-lss 19633  df-sra 19873  df-rgmod 19874  df-lidl 19875
This theorem is referenced by:  drnglpir  19954
  Copyright terms: Public domain W3C validator