MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  drngnidl Structured version   Visualization version   GIF version

Theorem drngnidl 19626
Description: A division ring has only the two trivial ideals. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Wolf Lammen, 6-Sep-2020.)
Hypotheses
Ref Expression
drngnidl.b 𝐵 = (Base‘𝑅)
drngnidl.z 0 = (0g𝑅)
drngnidl.u 𝑈 = (LIdeal‘𝑅)
Assertion
Ref Expression
drngnidl (𝑅 ∈ DivRing → 𝑈 = {{ 0 }, 𝐵})

Proof of Theorem drngnidl
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 479 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 = { 0 }) → 𝑎 = { 0 })
21orcd 862 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 = { 0 }) → (𝑎 = { 0 } ∨ 𝑎 = 𝐵))
3 drngring 19146 . . . . . . . . . . 11 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
43ad2antrr 716 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → 𝑅 ∈ Ring)
5 simplr 759 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → 𝑎𝑈)
6 simpr 479 . . . . . . . . . 10 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → 𝑎 ≠ { 0 })
7 drngnidl.u . . . . . . . . . . 11 𝑈 = (LIdeal‘𝑅)
8 drngnidl.z . . . . . . . . . . 11 0 = (0g𝑅)
97, 8lidlnz 19625 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑎𝑈𝑎 ≠ { 0 }) → ∃𝑏𝑎 𝑏0 )
104, 5, 6, 9syl3anc 1439 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → ∃𝑏𝑎 𝑏0 )
11 simpll 757 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → 𝑅 ∈ DivRing)
12 drngnidl.b . . . . . . . . . . . . . . . . 17 𝐵 = (Base‘𝑅)
1312, 7lidlss 19607 . . . . . . . . . . . . . . . 16 (𝑎𝑈𝑎𝐵)
1413adantl 475 . . . . . . . . . . . . . . 15 ((𝑅 ∈ DivRing ∧ 𝑎𝑈) → 𝑎𝐵)
1514sselda 3821 . . . . . . . . . . . . . 14 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑏𝑎) → 𝑏𝐵)
1615adantrr 707 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → 𝑏𝐵)
17 simprr 763 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → 𝑏0 )
18 eqid 2778 . . . . . . . . . . . . . 14 (.r𝑅) = (.r𝑅)
19 eqid 2778 . . . . . . . . . . . . . 14 (1r𝑅) = (1r𝑅)
20 eqid 2778 . . . . . . . . . . . . . 14 (invr𝑅) = (invr𝑅)
2112, 8, 18, 19, 20drnginvrl 19158 . . . . . . . . . . . . 13 ((𝑅 ∈ DivRing ∧ 𝑏𝐵𝑏0 ) → (((invr𝑅)‘𝑏)(.r𝑅)𝑏) = (1r𝑅))
2211, 16, 17, 21syl3anc 1439 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → (((invr𝑅)‘𝑏)(.r𝑅)𝑏) = (1r𝑅))
233ad2antrr 716 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → 𝑅 ∈ Ring)
24 simplr 759 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → 𝑎𝑈)
2512, 8, 20drnginvrcl 19156 . . . . . . . . . . . . . 14 ((𝑅 ∈ DivRing ∧ 𝑏𝐵𝑏0 ) → ((invr𝑅)‘𝑏) ∈ 𝐵)
2611, 16, 17, 25syl3anc 1439 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → ((invr𝑅)‘𝑏) ∈ 𝐵)
27 simprl 761 . . . . . . . . . . . . 13 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → 𝑏𝑎)
287, 12, 18lidlmcl 19614 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝑎𝑈) ∧ (((invr𝑅)‘𝑏) ∈ 𝐵𝑏𝑎)) → (((invr𝑅)‘𝑏)(.r𝑅)𝑏) ∈ 𝑎)
2923, 24, 26, 27, 28syl22anc 829 . . . . . . . . . . . 12 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → (((invr𝑅)‘𝑏)(.r𝑅)𝑏) ∈ 𝑎)
3022, 29eqeltrrd 2860 . . . . . . . . . . 11 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ (𝑏𝑎𝑏0 )) → (1r𝑅) ∈ 𝑎)
3130rexlimdvaa 3214 . . . . . . . . . 10 ((𝑅 ∈ DivRing ∧ 𝑎𝑈) → (∃𝑏𝑎 𝑏0 → (1r𝑅) ∈ 𝑎))
3231imp 397 . . . . . . . . 9 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ ∃𝑏𝑎 𝑏0 ) → (1r𝑅) ∈ 𝑎)
3310, 32syldan 585 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → (1r𝑅) ∈ 𝑎)
347, 12, 19lidl1el 19615 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑎𝑈) → ((1r𝑅) ∈ 𝑎𝑎 = 𝐵))
353, 34sylan 575 . . . . . . . . 9 ((𝑅 ∈ DivRing ∧ 𝑎𝑈) → ((1r𝑅) ∈ 𝑎𝑎 = 𝐵))
3635adantr 474 . . . . . . . 8 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → ((1r𝑅) ∈ 𝑎𝑎 = 𝐵))
3733, 36mpbid 224 . . . . . . 7 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → 𝑎 = 𝐵)
3837olcd 863 . . . . . 6 (((𝑅 ∈ DivRing ∧ 𝑎𝑈) ∧ 𝑎 ≠ { 0 }) → (𝑎 = { 0 } ∨ 𝑎 = 𝐵))
392, 38pm2.61dane 3057 . . . . 5 ((𝑅 ∈ DivRing ∧ 𝑎𝑈) → (𝑎 = { 0 } ∨ 𝑎 = 𝐵))
40 vex 3401 . . . . . 6 𝑎 ∈ V
4140elpr 4421 . . . . 5 (𝑎 ∈ {{ 0 }, 𝐵} ↔ (𝑎 = { 0 } ∨ 𝑎 = 𝐵))
4239, 41sylibr 226 . . . 4 ((𝑅 ∈ DivRing ∧ 𝑎𝑈) → 𝑎 ∈ {{ 0 }, 𝐵})
4342ex 403 . . 3 (𝑅 ∈ DivRing → (𝑎𝑈𝑎 ∈ {{ 0 }, 𝐵}))
4443ssrdv 3827 . 2 (𝑅 ∈ DivRing → 𝑈 ⊆ {{ 0 }, 𝐵})
457, 8lidl0 19616 . . . 4 (𝑅 ∈ Ring → { 0 } ∈ 𝑈)
467, 12lidl1 19617 . . . 4 (𝑅 ∈ Ring → 𝐵𝑈)
47 snex 5140 . . . . . 6 { 0 } ∈ V
4812fvexi 6460 . . . . . 6 𝐵 ∈ V
4947, 48prss 4582 . . . . 5 (({ 0 } ∈ 𝑈𝐵𝑈) ↔ {{ 0 }, 𝐵} ⊆ 𝑈)
5049bicomi 216 . . . 4 ({{ 0 }, 𝐵} ⊆ 𝑈 ↔ ({ 0 } ∈ 𝑈𝐵𝑈))
5145, 46, 50sylanbrc 578 . . 3 (𝑅 ∈ Ring → {{ 0 }, 𝐵} ⊆ 𝑈)
523, 51syl 17 . 2 (𝑅 ∈ DivRing → {{ 0 }, 𝐵} ⊆ 𝑈)
5344, 52eqssd 3838 1 (𝑅 ∈ DivRing → 𝑈 = {{ 0 }, 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wo 836   = wceq 1601  wcel 2107  wne 2969  wrex 3091  wss 3792  {csn 4398  {cpr 4400  cfv 6135  (class class class)co 6922  Basecbs 16255  .rcmulr 16339  0gc0g 16486  1rcur 18888  Ringcrg 18934  invrcinvr 19058  DivRingcdr 19139  LIdealclidl 19567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-tpos 7634  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-sca 16354  df-vsca 16355  df-ip 16356  df-0g 16488  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-grp 17812  df-minusg 17813  df-sbg 17814  df-subg 17975  df-mgp 18877  df-ur 18889  df-ring 18936  df-oppr 19010  df-dvdsr 19028  df-unit 19029  df-invr 19059  df-drng 19141  df-subrg 19170  df-lmod 19257  df-lss 19325  df-sra 19569  df-rgmod 19570  df-lidl 19571
This theorem is referenced by:  drnglpir  19650
  Copyright terms: Public domain W3C validator