MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsqnreup Structured version   Visualization version   GIF version

Theorem addsqnreup 25706
Description: There is no unique decomposition of a complex number as a sum of a complex number and a square of a complex number.

Remark: This theorem, together with addsq2reu 25703, is a real life example (about a numerical property) showing that the pattern ∃!𝑎𝐴∃!𝑏𝐵𝜑 does not necessarily mean "There are unique sets 𝑎 and 𝑏 fulfilling 𝜑"). See also comments for df-eu 2612 and 2eu4 2711.

In the case of decompositions of complex numbers as a sum of a complex number and a square of a complex number, the only/unique complex number to which the square of a unique complex number is added yields in the given complex number is the given number itself, and the unique complex number to be squared is 0 (see comment for addsq2reu 25703). There are, however, complex numbers to which the square of more than one other complex numbers can be added to yield the given complex number (see addsqrexnreu 25705). For example, ⟨1, (√‘(𝐶 − 1))⟩ and ⟨1, -(√‘(𝐶 − 1))⟩ are two different decompositions of 𝐶 (if 𝐶 ≠ 1). Therefore, there is no unique decomposition of any complex number as a sum of a complex number and a square of a complex number, as generally proved by this theorem.

As a consequence, a theorem must claim the existence of a unique pair of sets to express "There are unique 𝑎 and 𝑏 so that .." (more formally ∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 with 𝑝 = ⟨𝑎, 𝑏), or by showing (∃!𝑥𝐴𝑦𝐵𝜑 ∧ ∃!𝑦𝐵𝑥𝐴𝜑) (see 2reu4 4384 resp. 2eu4 2711). These two representations are equivalent (see opreu2reurex 6025). An analogon of this theorem using the latter variant is given in addsqn2reurex2 25708. In some cases, however, the variant with (ordered!) pairs may be possible only for ordered sets (like or ) and claiming that the first component is less than or equal to the second component (see, for example, 2sqreunnltb 25724 and 2sqreuopb 25731). Alternatively, (proper) unordered pairs can be used: ∃!𝑝𝑒𝒫 𝐴((♯‘𝑝) = 2 ∧ 𝜑), or, using the definition of proper pairs: ∃!𝑝 ∈ (Pairsproper𝐴)𝜑 (see, for example, inlinecirc02preu 44283). (Contributed by AV, 21-Jun-2023.)

Assertion
Ref Expression
addsqnreup (𝐶 ∈ ℂ → ¬ ∃!𝑝 ∈ (ℂ × ℂ)((1st𝑝) + ((2nd𝑝)↑2)) = 𝐶)
Distinct variable group:   𝐶,𝑝

Proof of Theorem addsqnreup
StepHypRef Expression
1 ax-1cn 10446 . . . . . . 7 1 ∈ ℂ
2 0cn 10484 . . . . . . 7 0 ∈ ℂ
3 opelxpi 5485 . . . . . . 7 ((1 ∈ ℂ ∧ 0 ∈ ℂ) → ⟨1, 0⟩ ∈ (ℂ × ℂ))
41, 2, 3mp2an 688 . . . . . 6 ⟨1, 0⟩ ∈ (ℂ × ℂ)
5 3cn 11571 . . . . . . . 8 3 ∈ ℂ
65negcli 10807 . . . . . . 7 -3 ∈ ℂ
7 2cn 11565 . . . . . . 7 2 ∈ ℂ
8 opelxpi 5485 . . . . . . 7 ((-3 ∈ ℂ ∧ 2 ∈ ℂ) → ⟨-3, 2⟩ ∈ (ℂ × ℂ))
96, 7, 8mp2an 688 . . . . . 6 ⟨-3, 2⟩ ∈ (ℂ × ℂ)
10 0ne2 11697 . . . . . . . 8 0 ≠ 2
1110olci 861 . . . . . . 7 (1 ≠ -3 ∨ 0 ≠ 2)
12 1ex 10488 . . . . . . . 8 1 ∈ V
13 c0ex 10486 . . . . . . . 8 0 ∈ V
1412, 13opthne 5271 . . . . . . 7 (⟨1, 0⟩ ≠ ⟨-3, 2⟩ ↔ (1 ≠ -3 ∨ 0 ≠ 2))
1511, 14mpbir 232 . . . . . 6 ⟨1, 0⟩ ≠ ⟨-3, 2⟩
164, 9, 153pm3.2i 1332 . . . . 5 (⟨1, 0⟩ ∈ (ℂ × ℂ) ∧ ⟨-3, 2⟩ ∈ (ℂ × ℂ) ∧ ⟨1, 0⟩ ≠ ⟨-3, 2⟩)
1712, 13op1st 7558 . . . . . . . 8 (1st ‘⟨1, 0⟩) = 1
1812, 13op2nd 7559 . . . . . . . . . 10 (2nd ‘⟨1, 0⟩) = 0
1918oveq1i 7031 . . . . . . . . 9 ((2nd ‘⟨1, 0⟩)↑2) = (0↑2)
20 sq0 13410 . . . . . . . . 9 (0↑2) = 0
2119, 20eqtri 2819 . . . . . . . 8 ((2nd ‘⟨1, 0⟩)↑2) = 0
2217, 21oveq12i 7033 . . . . . . 7 ((1st ‘⟨1, 0⟩) + ((2nd ‘⟨1, 0⟩)↑2)) = (1 + 0)
23 1p0e1 11614 . . . . . . 7 (1 + 0) = 1
2422, 23eqtri 2819 . . . . . 6 ((1st ‘⟨1, 0⟩) + ((2nd ‘⟨1, 0⟩)↑2)) = 1
25 negex 10736 . . . . . . . . 9 -3 ∈ V
26 2ex 11567 . . . . . . . . 9 2 ∈ V
2725, 26op1st 7558 . . . . . . . 8 (1st ‘⟨-3, 2⟩) = -3
2825, 26op2nd 7559 . . . . . . . . . 10 (2nd ‘⟨-3, 2⟩) = 2
2928oveq1i 7031 . . . . . . . . 9 ((2nd ‘⟨-3, 2⟩)↑2) = (2↑2)
30 sq2 13415 . . . . . . . . 9 (2↑2) = 4
3129, 30eqtri 2819 . . . . . . . 8 ((2nd ‘⟨-3, 2⟩)↑2) = 4
3227, 31oveq12i 7033 . . . . . . 7 ((1st ‘⟨-3, 2⟩) + ((2nd ‘⟨-3, 2⟩)↑2)) = (-3 + 4)
33 4cn 11575 . . . . . . . 8 4 ∈ ℂ
3433, 5negsubi 10817 . . . . . . . . 9 (4 + -3) = (4 − 3)
35 3p1e4 11635 . . . . . . . . . 10 (3 + 1) = 4
3633, 5, 1, 35subaddrii 10828 . . . . . . . . 9 (4 − 3) = 1
3734, 36eqtri 2819 . . . . . . . 8 (4 + -3) = 1
3833, 6, 37addcomli 10684 . . . . . . 7 (-3 + 4) = 1
3932, 38eqtri 2819 . . . . . 6 ((1st ‘⟨-3, 2⟩) + ((2nd ‘⟨-3, 2⟩)↑2)) = 1
4024, 39pm3.2i 471 . . . . 5 (((1st ‘⟨1, 0⟩) + ((2nd ‘⟨1, 0⟩)↑2)) = 1 ∧ ((1st ‘⟨-3, 2⟩) + ((2nd ‘⟨-3, 2⟩)↑2)) = 1)
41 fveq2 6543 . . . . . . . 8 (𝑝 = ⟨1, 0⟩ → (1st𝑝) = (1st ‘⟨1, 0⟩))
42 fveq2 6543 . . . . . . . . 9 (𝑝 = ⟨1, 0⟩ → (2nd𝑝) = (2nd ‘⟨1, 0⟩))
4342oveq1d 7036 . . . . . . . 8 (𝑝 = ⟨1, 0⟩ → ((2nd𝑝)↑2) = ((2nd ‘⟨1, 0⟩)↑2))
4441, 43oveq12d 7039 . . . . . . 7 (𝑝 = ⟨1, 0⟩ → ((1st𝑝) + ((2nd𝑝)↑2)) = ((1st ‘⟨1, 0⟩) + ((2nd ‘⟨1, 0⟩)↑2)))
4544eqeq1d 2797 . . . . . 6 (𝑝 = ⟨1, 0⟩ → (((1st𝑝) + ((2nd𝑝)↑2)) = 1 ↔ ((1st ‘⟨1, 0⟩) + ((2nd ‘⟨1, 0⟩)↑2)) = 1))
46 fveq2 6543 . . . . . . . 8 (𝑝 = ⟨-3, 2⟩ → (1st𝑝) = (1st ‘⟨-3, 2⟩))
47 fveq2 6543 . . . . . . . . 9 (𝑝 = ⟨-3, 2⟩ → (2nd𝑝) = (2nd ‘⟨-3, 2⟩))
4847oveq1d 7036 . . . . . . . 8 (𝑝 = ⟨-3, 2⟩ → ((2nd𝑝)↑2) = ((2nd ‘⟨-3, 2⟩)↑2))
4946, 48oveq12d 7039 . . . . . . 7 (𝑝 = ⟨-3, 2⟩ → ((1st𝑝) + ((2nd𝑝)↑2)) = ((1st ‘⟨-3, 2⟩) + ((2nd ‘⟨-3, 2⟩)↑2)))
5049eqeq1d 2797 . . . . . 6 (𝑝 = ⟨-3, 2⟩ → (((1st𝑝) + ((2nd𝑝)↑2)) = 1 ↔ ((1st ‘⟨-3, 2⟩) + ((2nd ‘⟨-3, 2⟩)↑2)) = 1))
5145, 502nreu 4311 . . . . 5 ((⟨1, 0⟩ ∈ (ℂ × ℂ) ∧ ⟨-3, 2⟩ ∈ (ℂ × ℂ) ∧ ⟨1, 0⟩ ≠ ⟨-3, 2⟩) → ((((1st ‘⟨1, 0⟩) + ((2nd ‘⟨1, 0⟩)↑2)) = 1 ∧ ((1st ‘⟨-3, 2⟩) + ((2nd ‘⟨-3, 2⟩)↑2)) = 1) → ¬ ∃!𝑝 ∈ (ℂ × ℂ)((1st𝑝) + ((2nd𝑝)↑2)) = 1))
5216, 40, 51mp2 9 . . . 4 ¬ ∃!𝑝 ∈ (ℂ × ℂ)((1st𝑝) + ((2nd𝑝)↑2)) = 1
53 eqeq2 2806 . . . . 5 (𝐶 = 1 → (((1st𝑝) + ((2nd𝑝)↑2)) = 𝐶 ↔ ((1st𝑝) + ((2nd𝑝)↑2)) = 1))
5453reubidv 3349 . . . 4 (𝐶 = 1 → (∃!𝑝 ∈ (ℂ × ℂ)((1st𝑝) + ((2nd𝑝)↑2)) = 𝐶 ↔ ∃!𝑝 ∈ (ℂ × ℂ)((1st𝑝) + ((2nd𝑝)↑2)) = 1))
5552, 54mtbiri 328 . . 3 (𝐶 = 1 → ¬ ∃!𝑝 ∈ (ℂ × ℂ)((1st𝑝) + ((2nd𝑝)↑2)) = 𝐶)
5655a1d 25 . 2 (𝐶 = 1 → (𝐶 ∈ ℂ → ¬ ∃!𝑝 ∈ (ℂ × ℂ)((1st𝑝) + ((2nd𝑝)↑2)) = 𝐶))
57 id 22 . . . . . . 7 (𝐶 ∈ ℂ → 𝐶 ∈ ℂ)
58 0cnd 10485 . . . . . . 7 (𝐶 ∈ ℂ → 0 ∈ ℂ)
5957, 58opelxpd 5486 . . . . . 6 (𝐶 ∈ ℂ → ⟨𝐶, 0⟩ ∈ (ℂ × ℂ))
6059adantr 481 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 1) → ⟨𝐶, 0⟩ ∈ (ℂ × ℂ))
61 1cnd 10487 . . . . . . 7 (𝐶 ∈ ℂ → 1 ∈ ℂ)
62 peano2cnm 10805 . . . . . . . 8 (𝐶 ∈ ℂ → (𝐶 − 1) ∈ ℂ)
6362sqrtcld 14636 . . . . . . 7 (𝐶 ∈ ℂ → (√‘(𝐶 − 1)) ∈ ℂ)
6461, 63opelxpd 5486 . . . . . 6 (𝐶 ∈ ℂ → ⟨1, (√‘(𝐶 − 1))⟩ ∈ (ℂ × ℂ))
6564adantr 481 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 1) → ⟨1, (√‘(𝐶 − 1))⟩ ∈ (ℂ × ℂ))
66 animorrl 975 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 1) → (𝐶 ≠ 1 ∨ 0 ≠ (√‘(𝐶 − 1))))
67 0cnd 10485 . . . . . . 7 (𝐶 ≠ 1 → 0 ∈ ℂ)
68 opthneg 5270 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 0 ∈ ℂ) → (⟨𝐶, 0⟩ ≠ ⟨1, (√‘(𝐶 − 1))⟩ ↔ (𝐶 ≠ 1 ∨ 0 ≠ (√‘(𝐶 − 1)))))
6967, 68sylan2 592 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 1) → (⟨𝐶, 0⟩ ≠ ⟨1, (√‘(𝐶 − 1))⟩ ↔ (𝐶 ≠ 1 ∨ 0 ≠ (√‘(𝐶 − 1)))))
7066, 69mpbird 258 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 1) → ⟨𝐶, 0⟩ ≠ ⟨1, (√‘(𝐶 − 1))⟩)
7160, 65, 703jca 1121 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 1) → (⟨𝐶, 0⟩ ∈ (ℂ × ℂ) ∧ ⟨1, (√‘(𝐶 − 1))⟩ ∈ (ℂ × ℂ) ∧ ⟨𝐶, 0⟩ ≠ ⟨1, (√‘(𝐶 − 1))⟩))
72 op1stg 7562 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 0 ∈ ℂ) → (1st ‘⟨𝐶, 0⟩) = 𝐶)
7358, 72mpdan 683 . . . . . . . 8 (𝐶 ∈ ℂ → (1st ‘⟨𝐶, 0⟩) = 𝐶)
74 op2ndg 7563 . . . . . . . . . 10 ((𝐶 ∈ ℂ ∧ 0 ∈ ℂ) → (2nd ‘⟨𝐶, 0⟩) = 0)
7558, 74mpdan 683 . . . . . . . . 9 (𝐶 ∈ ℂ → (2nd ‘⟨𝐶, 0⟩) = 0)
7675sq0id 13412 . . . . . . . 8 (𝐶 ∈ ℂ → ((2nd ‘⟨𝐶, 0⟩)↑2) = 0)
7773, 76oveq12d 7039 . . . . . . 7 (𝐶 ∈ ℂ → ((1st ‘⟨𝐶, 0⟩) + ((2nd ‘⟨𝐶, 0⟩)↑2)) = (𝐶 + 0))
78 addid1 10672 . . . . . . 7 (𝐶 ∈ ℂ → (𝐶 + 0) = 𝐶)
7977, 78eqtrd 2831 . . . . . 6 (𝐶 ∈ ℂ → ((1st ‘⟨𝐶, 0⟩) + ((2nd ‘⟨𝐶, 0⟩)↑2)) = 𝐶)
80 op1stg 7562 . . . . . . . . 9 ((1 ∈ ℂ ∧ (√‘(𝐶 − 1)) ∈ ℂ) → (1st ‘⟨1, (√‘(𝐶 − 1))⟩) = 1)
8161, 63, 80syl2anc 584 . . . . . . . 8 (𝐶 ∈ ℂ → (1st ‘⟨1, (√‘(𝐶 − 1))⟩) = 1)
82 op2ndg 7563 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (√‘(𝐶 − 1)) ∈ ℂ) → (2nd ‘⟨1, (√‘(𝐶 − 1))⟩) = (√‘(𝐶 − 1)))
8361, 63, 82syl2anc 584 . . . . . . . . . 10 (𝐶 ∈ ℂ → (2nd ‘⟨1, (√‘(𝐶 − 1))⟩) = (√‘(𝐶 − 1)))
8483oveq1d 7036 . . . . . . . . 9 (𝐶 ∈ ℂ → ((2nd ‘⟨1, (√‘(𝐶 − 1))⟩)↑2) = ((√‘(𝐶 − 1))↑2))
8562sqsqrtd 14638 . . . . . . . . 9 (𝐶 ∈ ℂ → ((√‘(𝐶 − 1))↑2) = (𝐶 − 1))
8684, 85eqtrd 2831 . . . . . . . 8 (𝐶 ∈ ℂ → ((2nd ‘⟨1, (√‘(𝐶 − 1))⟩)↑2) = (𝐶 − 1))
8781, 86oveq12d 7039 . . . . . . 7 (𝐶 ∈ ℂ → ((1st ‘⟨1, (√‘(𝐶 − 1))⟩) + ((2nd ‘⟨1, (√‘(𝐶 − 1))⟩)↑2)) = (1 + (𝐶 − 1)))
8861, 57pncan3d 10853 . . . . . . 7 (𝐶 ∈ ℂ → (1 + (𝐶 − 1)) = 𝐶)
8987, 88eqtrd 2831 . . . . . 6 (𝐶 ∈ ℂ → ((1st ‘⟨1, (√‘(𝐶 − 1))⟩) + ((2nd ‘⟨1, (√‘(𝐶 − 1))⟩)↑2)) = 𝐶)
9079, 89jca 512 . . . . 5 (𝐶 ∈ ℂ → (((1st ‘⟨𝐶, 0⟩) + ((2nd ‘⟨𝐶, 0⟩)↑2)) = 𝐶 ∧ ((1st ‘⟨1, (√‘(𝐶 − 1))⟩) + ((2nd ‘⟨1, (√‘(𝐶 − 1))⟩)↑2)) = 𝐶))
9190adantr 481 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 1) → (((1st ‘⟨𝐶, 0⟩) + ((2nd ‘⟨𝐶, 0⟩)↑2)) = 𝐶 ∧ ((1st ‘⟨1, (√‘(𝐶 − 1))⟩) + ((2nd ‘⟨1, (√‘(𝐶 − 1))⟩)↑2)) = 𝐶))
92 fveq2 6543 . . . . . . 7 (𝑝 = ⟨𝐶, 0⟩ → (1st𝑝) = (1st ‘⟨𝐶, 0⟩))
93 fveq2 6543 . . . . . . . 8 (𝑝 = ⟨𝐶, 0⟩ → (2nd𝑝) = (2nd ‘⟨𝐶, 0⟩))
9493oveq1d 7036 . . . . . . 7 (𝑝 = ⟨𝐶, 0⟩ → ((2nd𝑝)↑2) = ((2nd ‘⟨𝐶, 0⟩)↑2))
9592, 94oveq12d 7039 . . . . . 6 (𝑝 = ⟨𝐶, 0⟩ → ((1st𝑝) + ((2nd𝑝)↑2)) = ((1st ‘⟨𝐶, 0⟩) + ((2nd ‘⟨𝐶, 0⟩)↑2)))
9695eqeq1d 2797 . . . . 5 (𝑝 = ⟨𝐶, 0⟩ → (((1st𝑝) + ((2nd𝑝)↑2)) = 𝐶 ↔ ((1st ‘⟨𝐶, 0⟩) + ((2nd ‘⟨𝐶, 0⟩)↑2)) = 𝐶))
97 fveq2 6543 . . . . . . 7 (𝑝 = ⟨1, (√‘(𝐶 − 1))⟩ → (1st𝑝) = (1st ‘⟨1, (√‘(𝐶 − 1))⟩))
98 fveq2 6543 . . . . . . . 8 (𝑝 = ⟨1, (√‘(𝐶 − 1))⟩ → (2nd𝑝) = (2nd ‘⟨1, (√‘(𝐶 − 1))⟩))
9998oveq1d 7036 . . . . . . 7 (𝑝 = ⟨1, (√‘(𝐶 − 1))⟩ → ((2nd𝑝)↑2) = ((2nd ‘⟨1, (√‘(𝐶 − 1))⟩)↑2))
10097, 99oveq12d 7039 . . . . . 6 (𝑝 = ⟨1, (√‘(𝐶 − 1))⟩ → ((1st𝑝) + ((2nd𝑝)↑2)) = ((1st ‘⟨1, (√‘(𝐶 − 1))⟩) + ((2nd ‘⟨1, (√‘(𝐶 − 1))⟩)↑2)))
101100eqeq1d 2797 . . . . 5 (𝑝 = ⟨1, (√‘(𝐶 − 1))⟩ → (((1st𝑝) + ((2nd𝑝)↑2)) = 𝐶 ↔ ((1st ‘⟨1, (√‘(𝐶 − 1))⟩) + ((2nd ‘⟨1, (√‘(𝐶 − 1))⟩)↑2)) = 𝐶))
10296, 1012nreu 4311 . . . 4 ((⟨𝐶, 0⟩ ∈ (ℂ × ℂ) ∧ ⟨1, (√‘(𝐶 − 1))⟩ ∈ (ℂ × ℂ) ∧ ⟨𝐶, 0⟩ ≠ ⟨1, (√‘(𝐶 − 1))⟩) → ((((1st ‘⟨𝐶, 0⟩) + ((2nd ‘⟨𝐶, 0⟩)↑2)) = 𝐶 ∧ ((1st ‘⟨1, (√‘(𝐶 − 1))⟩) + ((2nd ‘⟨1, (√‘(𝐶 − 1))⟩)↑2)) = 𝐶) → ¬ ∃!𝑝 ∈ (ℂ × ℂ)((1st𝑝) + ((2nd𝑝)↑2)) = 𝐶))
10371, 91, 102sylc 65 . . 3 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 1) → ¬ ∃!𝑝 ∈ (ℂ × ℂ)((1st𝑝) + ((2nd𝑝)↑2)) = 𝐶)
104103expcom 414 . 2 (𝐶 ≠ 1 → (𝐶 ∈ ℂ → ¬ ∃!𝑝 ∈ (ℂ × ℂ)((1st𝑝) + ((2nd𝑝)↑2)) = 𝐶))
10556, 104pm2.61ine 3068 1 (𝐶 ∈ ℂ → ¬ ∃!𝑝 ∈ (ℂ × ℂ)((1st𝑝) + ((2nd𝑝)↑2)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 842  w3a 1080   = wceq 1522  wcel 2081  wne 2984  ∃!wreu 3107  cop 4482   × cxp 5446  cfv 6230  (class class class)co 7021  1st c1st 7548  2nd c2nd 7549  cc 10386  0cc0 10388  1c1 10389   + caddc 10391  cmin 10722  -cneg 10723  2c2 11545  3c3 11546  4c4 11547  cexp 13284  csqrt 14431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-cnex 10444  ax-resscn 10445  ax-1cn 10446  ax-icn 10447  ax-addcl 10448  ax-addrcl 10449  ax-mulcl 10450  ax-mulrcl 10451  ax-mulcom 10452  ax-addass 10453  ax-mulass 10454  ax-distr 10455  ax-i2m1 10456  ax-1ne0 10457  ax-1rid 10458  ax-rnegex 10459  ax-rrecex 10460  ax-cnre 10461  ax-pre-lttri 10462  ax-pre-lttrn 10463  ax-pre-ltadd 10464  ax-pre-mulgt0 10465  ax-pre-sup 10466
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-iun 4831  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-riota 6982  df-ov 7024  df-oprab 7025  df-mpo 7026  df-om 7442  df-1st 7550  df-2nd 7551  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-er 8144  df-en 8363  df-dom 8364  df-sdom 8365  df-sup 8757  df-pnf 10528  df-mnf 10529  df-xr 10530  df-ltxr 10531  df-le 10532  df-sub 10724  df-neg 10725  df-div 11151  df-nn 11492  df-2 11553  df-3 11554  df-4 11555  df-n0 11751  df-z 11835  df-uz 12099  df-rp 12245  df-seq 13225  df-exp 13285  df-cj 14297  df-re 14298  df-im 14299  df-sqrt 14433  df-abs 14434
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator