MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsqnreup Structured version   Visualization version   GIF version

Theorem addsqnreup 27352
Description: There is no unique decomposition of a complex number as a sum of a complex number and a square of a complex number.

Remark: This theorem, together with addsq2reu 27349, is a real life example (about a numerical property) showing that the pattern ∃!𝑎𝐴∃!𝑏𝐵𝜑 does not necessarily mean "There are unique sets 𝑎 and 𝑏 fulfilling 𝜑"). See also comments for df-eu 2562 and 2eu4 2648.

In the case of decompositions of complex numbers as a sum of a complex number and a square of a complex number, the only/unique complex number to which the square of a unique complex number is added yields in the given complex number is the given number itself, and the unique complex number to be squared is 0 (see comment for addsq2reu 27349). There are, however, complex numbers to which the square of more than one other complex numbers can be added to yield the given complex number (see addsqrexnreu 27351). For example, ⟨1, (√‘(𝐶 − 1))⟩ and ⟨1, -(√‘(𝐶 − 1))⟩ are two different decompositions of 𝐶 (if 𝐶 ≠ 1). Therefore, there is no unique decomposition of any complex number as a sum of a complex number and a square of a complex number, as generally proved by this theorem.

As a consequence, a theorem must claim the existence of a unique pair of sets to express "There are unique 𝑎 and 𝑏 so that .." (more formally ∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 with 𝑝 = ⟨𝑎, 𝑏), or by showing (∃!𝑥𝐴𝑦𝐵𝜑 ∧ ∃!𝑦𝐵𝑥𝐴𝜑) (see 2reu4 4474 resp. 2eu4 2648). These two representations are equivalent (see opreu2reurex 6242). An analogon of this theorem using the latter variant is given in addsqn2reurex2 27354. In some cases, however, the variant with (ordered!) pairs may be possible only for ordered sets (like or ) and claiming that the first component is less than or equal to the second component (see, for example, 2sqreunnltb 27370 and 2sqreuopb 27377). Alternatively, (proper) unordered pairs can be used: ∃!𝑝𝑒𝒫 𝐴((♯‘𝑝) = 2 ∧ 𝜑), or, using the definition of proper pairs: ∃!𝑝 ∈ (Pairsproper𝐴)𝜑 (see, for example, inlinecirc02preu 48777). (Contributed by AV, 21-Jun-2023.)

Assertion
Ref Expression
addsqnreup (𝐶 ∈ ℂ → ¬ ∃!𝑝 ∈ (ℂ × ℂ)((1st𝑝) + ((2nd𝑝)↑2)) = 𝐶)
Distinct variable group:   𝐶,𝑝

Proof of Theorem addsqnreup
StepHypRef Expression
1 ax-1cn 11067 . . . . . . 7 1 ∈ ℂ
2 0cn 11107 . . . . . . 7 0 ∈ ℂ
3 opelxpi 5656 . . . . . . 7 ((1 ∈ ℂ ∧ 0 ∈ ℂ) → ⟨1, 0⟩ ∈ (ℂ × ℂ))
41, 2, 3mp2an 692 . . . . . 6 ⟨1, 0⟩ ∈ (ℂ × ℂ)
5 3cn 12209 . . . . . . . 8 3 ∈ ℂ
65negcli 11432 . . . . . . 7 -3 ∈ ℂ
7 2cn 12203 . . . . . . 7 2 ∈ ℂ
8 opelxpi 5656 . . . . . . 7 ((-3 ∈ ℂ ∧ 2 ∈ ℂ) → ⟨-3, 2⟩ ∈ (ℂ × ℂ))
96, 7, 8mp2an 692 . . . . . 6 ⟨-3, 2⟩ ∈ (ℂ × ℂ)
10 0ne2 12330 . . . . . . . 8 0 ≠ 2
1110olci 866 . . . . . . 7 (1 ≠ -3 ∨ 0 ≠ 2)
12 1ex 11111 . . . . . . . 8 1 ∈ V
13 c0ex 11109 . . . . . . . 8 0 ∈ V
1412, 13opthne 5425 . . . . . . 7 (⟨1, 0⟩ ≠ ⟨-3, 2⟩ ↔ (1 ≠ -3 ∨ 0 ≠ 2))
1511, 14mpbir 231 . . . . . 6 ⟨1, 0⟩ ≠ ⟨-3, 2⟩
164, 9, 153pm3.2i 1340 . . . . 5 (⟨1, 0⟩ ∈ (ℂ × ℂ) ∧ ⟨-3, 2⟩ ∈ (ℂ × ℂ) ∧ ⟨1, 0⟩ ≠ ⟨-3, 2⟩)
1712, 13op1st 7932 . . . . . . . 8 (1st ‘⟨1, 0⟩) = 1
1812, 13op2nd 7933 . . . . . . . . . 10 (2nd ‘⟨1, 0⟩) = 0
1918oveq1i 7359 . . . . . . . . 9 ((2nd ‘⟨1, 0⟩)↑2) = (0↑2)
20 sq0 14099 . . . . . . . . 9 (0↑2) = 0
2119, 20eqtri 2752 . . . . . . . 8 ((2nd ‘⟨1, 0⟩)↑2) = 0
2217, 21oveq12i 7361 . . . . . . 7 ((1st ‘⟨1, 0⟩) + ((2nd ‘⟨1, 0⟩)↑2)) = (1 + 0)
23 1p0e1 12247 . . . . . . 7 (1 + 0) = 1
2422, 23eqtri 2752 . . . . . 6 ((1st ‘⟨1, 0⟩) + ((2nd ‘⟨1, 0⟩)↑2)) = 1
25 negex 11361 . . . . . . . . 9 -3 ∈ V
26 2ex 12205 . . . . . . . . 9 2 ∈ V
2725, 26op1st 7932 . . . . . . . 8 (1st ‘⟨-3, 2⟩) = -3
2825, 26op2nd 7933 . . . . . . . . . 10 (2nd ‘⟨-3, 2⟩) = 2
2928oveq1i 7359 . . . . . . . . 9 ((2nd ‘⟨-3, 2⟩)↑2) = (2↑2)
30 sq2 14104 . . . . . . . . 9 (2↑2) = 4
3129, 30eqtri 2752 . . . . . . . 8 ((2nd ‘⟨-3, 2⟩)↑2) = 4
3227, 31oveq12i 7361 . . . . . . 7 ((1st ‘⟨-3, 2⟩) + ((2nd ‘⟨-3, 2⟩)↑2)) = (-3 + 4)
33 4cn 12213 . . . . . . . 8 4 ∈ ℂ
3433, 5negsubi 11442 . . . . . . . . 9 (4 + -3) = (4 − 3)
35 3p1e4 12268 . . . . . . . . . 10 (3 + 1) = 4
3633, 5, 1, 35subaddrii 11453 . . . . . . . . 9 (4 − 3) = 1
3734, 36eqtri 2752 . . . . . . . 8 (4 + -3) = 1
3833, 6, 37addcomli 11308 . . . . . . 7 (-3 + 4) = 1
3932, 38eqtri 2752 . . . . . 6 ((1st ‘⟨-3, 2⟩) + ((2nd ‘⟨-3, 2⟩)↑2)) = 1
4024, 39pm3.2i 470 . . . . 5 (((1st ‘⟨1, 0⟩) + ((2nd ‘⟨1, 0⟩)↑2)) = 1 ∧ ((1st ‘⟨-3, 2⟩) + ((2nd ‘⟨-3, 2⟩)↑2)) = 1)
41 fveq2 6822 . . . . . . . 8 (𝑝 = ⟨1, 0⟩ → (1st𝑝) = (1st ‘⟨1, 0⟩))
42 fveq2 6822 . . . . . . . . 9 (𝑝 = ⟨1, 0⟩ → (2nd𝑝) = (2nd ‘⟨1, 0⟩))
4342oveq1d 7364 . . . . . . . 8 (𝑝 = ⟨1, 0⟩ → ((2nd𝑝)↑2) = ((2nd ‘⟨1, 0⟩)↑2))
4441, 43oveq12d 7367 . . . . . . 7 (𝑝 = ⟨1, 0⟩ → ((1st𝑝) + ((2nd𝑝)↑2)) = ((1st ‘⟨1, 0⟩) + ((2nd ‘⟨1, 0⟩)↑2)))
4544eqeq1d 2731 . . . . . 6 (𝑝 = ⟨1, 0⟩ → (((1st𝑝) + ((2nd𝑝)↑2)) = 1 ↔ ((1st ‘⟨1, 0⟩) + ((2nd ‘⟨1, 0⟩)↑2)) = 1))
46 fveq2 6822 . . . . . . . 8 (𝑝 = ⟨-3, 2⟩ → (1st𝑝) = (1st ‘⟨-3, 2⟩))
47 fveq2 6822 . . . . . . . . 9 (𝑝 = ⟨-3, 2⟩ → (2nd𝑝) = (2nd ‘⟨-3, 2⟩))
4847oveq1d 7364 . . . . . . . 8 (𝑝 = ⟨-3, 2⟩ → ((2nd𝑝)↑2) = ((2nd ‘⟨-3, 2⟩)↑2))
4946, 48oveq12d 7367 . . . . . . 7 (𝑝 = ⟨-3, 2⟩ → ((1st𝑝) + ((2nd𝑝)↑2)) = ((1st ‘⟨-3, 2⟩) + ((2nd ‘⟨-3, 2⟩)↑2)))
5049eqeq1d 2731 . . . . . 6 (𝑝 = ⟨-3, 2⟩ → (((1st𝑝) + ((2nd𝑝)↑2)) = 1 ↔ ((1st ‘⟨-3, 2⟩) + ((2nd ‘⟨-3, 2⟩)↑2)) = 1))
5145, 502nreu 4395 . . . . 5 ((⟨1, 0⟩ ∈ (ℂ × ℂ) ∧ ⟨-3, 2⟩ ∈ (ℂ × ℂ) ∧ ⟨1, 0⟩ ≠ ⟨-3, 2⟩) → ((((1st ‘⟨1, 0⟩) + ((2nd ‘⟨1, 0⟩)↑2)) = 1 ∧ ((1st ‘⟨-3, 2⟩) + ((2nd ‘⟨-3, 2⟩)↑2)) = 1) → ¬ ∃!𝑝 ∈ (ℂ × ℂ)((1st𝑝) + ((2nd𝑝)↑2)) = 1))
5216, 40, 51mp2 9 . . . 4 ¬ ∃!𝑝 ∈ (ℂ × ℂ)((1st𝑝) + ((2nd𝑝)↑2)) = 1
53 eqeq2 2741 . . . . 5 (𝐶 = 1 → (((1st𝑝) + ((2nd𝑝)↑2)) = 𝐶 ↔ ((1st𝑝) + ((2nd𝑝)↑2)) = 1))
5453reubidv 3361 . . . 4 (𝐶 = 1 → (∃!𝑝 ∈ (ℂ × ℂ)((1st𝑝) + ((2nd𝑝)↑2)) = 𝐶 ↔ ∃!𝑝 ∈ (ℂ × ℂ)((1st𝑝) + ((2nd𝑝)↑2)) = 1))
5552, 54mtbiri 327 . . 3 (𝐶 = 1 → ¬ ∃!𝑝 ∈ (ℂ × ℂ)((1st𝑝) + ((2nd𝑝)↑2)) = 𝐶)
5655a1d 25 . 2 (𝐶 = 1 → (𝐶 ∈ ℂ → ¬ ∃!𝑝 ∈ (ℂ × ℂ)((1st𝑝) + ((2nd𝑝)↑2)) = 𝐶))
57 id 22 . . . . . . 7 (𝐶 ∈ ℂ → 𝐶 ∈ ℂ)
58 0cnd 11108 . . . . . . 7 (𝐶 ∈ ℂ → 0 ∈ ℂ)
5957, 58opelxpd 5658 . . . . . 6 (𝐶 ∈ ℂ → ⟨𝐶, 0⟩ ∈ (ℂ × ℂ))
6059adantr 480 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 1) → ⟨𝐶, 0⟩ ∈ (ℂ × ℂ))
61 1cnd 11110 . . . . . . 7 (𝐶 ∈ ℂ → 1 ∈ ℂ)
62 peano2cnm 11430 . . . . . . . 8 (𝐶 ∈ ℂ → (𝐶 − 1) ∈ ℂ)
6362sqrtcld 15347 . . . . . . 7 (𝐶 ∈ ℂ → (√‘(𝐶 − 1)) ∈ ℂ)
6461, 63opelxpd 5658 . . . . . 6 (𝐶 ∈ ℂ → ⟨1, (√‘(𝐶 − 1))⟩ ∈ (ℂ × ℂ))
6564adantr 480 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 1) → ⟨1, (√‘(𝐶 − 1))⟩ ∈ (ℂ × ℂ))
66 animorrl 982 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 1) → (𝐶 ≠ 1 ∨ 0 ≠ (√‘(𝐶 − 1))))
67 0cnd 11108 . . . . . . 7 (𝐶 ≠ 1 → 0 ∈ ℂ)
68 opthneg 5424 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 0 ∈ ℂ) → (⟨𝐶, 0⟩ ≠ ⟨1, (√‘(𝐶 − 1))⟩ ↔ (𝐶 ≠ 1 ∨ 0 ≠ (√‘(𝐶 − 1)))))
6967, 68sylan2 593 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 1) → (⟨𝐶, 0⟩ ≠ ⟨1, (√‘(𝐶 − 1))⟩ ↔ (𝐶 ≠ 1 ∨ 0 ≠ (√‘(𝐶 − 1)))))
7066, 69mpbird 257 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 1) → ⟨𝐶, 0⟩ ≠ ⟨1, (√‘(𝐶 − 1))⟩)
7160, 65, 703jca 1128 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 1) → (⟨𝐶, 0⟩ ∈ (ℂ × ℂ) ∧ ⟨1, (√‘(𝐶 − 1))⟩ ∈ (ℂ × ℂ) ∧ ⟨𝐶, 0⟩ ≠ ⟨1, (√‘(𝐶 − 1))⟩))
72 op1stg 7936 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 0 ∈ ℂ) → (1st ‘⟨𝐶, 0⟩) = 𝐶)
7358, 72mpdan 687 . . . . . . . 8 (𝐶 ∈ ℂ → (1st ‘⟨𝐶, 0⟩) = 𝐶)
74 op2ndg 7937 . . . . . . . . . 10 ((𝐶 ∈ ℂ ∧ 0 ∈ ℂ) → (2nd ‘⟨𝐶, 0⟩) = 0)
7558, 74mpdan 687 . . . . . . . . 9 (𝐶 ∈ ℂ → (2nd ‘⟨𝐶, 0⟩) = 0)
7675sq0id 14101 . . . . . . . 8 (𝐶 ∈ ℂ → ((2nd ‘⟨𝐶, 0⟩)↑2) = 0)
7773, 76oveq12d 7367 . . . . . . 7 (𝐶 ∈ ℂ → ((1st ‘⟨𝐶, 0⟩) + ((2nd ‘⟨𝐶, 0⟩)↑2)) = (𝐶 + 0))
78 addrid 11296 . . . . . . 7 (𝐶 ∈ ℂ → (𝐶 + 0) = 𝐶)
7977, 78eqtrd 2764 . . . . . 6 (𝐶 ∈ ℂ → ((1st ‘⟨𝐶, 0⟩) + ((2nd ‘⟨𝐶, 0⟩)↑2)) = 𝐶)
80 op1stg 7936 . . . . . . . . 9 ((1 ∈ ℂ ∧ (√‘(𝐶 − 1)) ∈ ℂ) → (1st ‘⟨1, (√‘(𝐶 − 1))⟩) = 1)
8161, 63, 80syl2anc 584 . . . . . . . 8 (𝐶 ∈ ℂ → (1st ‘⟨1, (√‘(𝐶 − 1))⟩) = 1)
82 op2ndg 7937 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (√‘(𝐶 − 1)) ∈ ℂ) → (2nd ‘⟨1, (√‘(𝐶 − 1))⟩) = (√‘(𝐶 − 1)))
8361, 63, 82syl2anc 584 . . . . . . . . . 10 (𝐶 ∈ ℂ → (2nd ‘⟨1, (√‘(𝐶 − 1))⟩) = (√‘(𝐶 − 1)))
8483oveq1d 7364 . . . . . . . . 9 (𝐶 ∈ ℂ → ((2nd ‘⟨1, (√‘(𝐶 − 1))⟩)↑2) = ((√‘(𝐶 − 1))↑2))
8562sqsqrtd 15349 . . . . . . . . 9 (𝐶 ∈ ℂ → ((√‘(𝐶 − 1))↑2) = (𝐶 − 1))
8684, 85eqtrd 2764 . . . . . . . 8 (𝐶 ∈ ℂ → ((2nd ‘⟨1, (√‘(𝐶 − 1))⟩)↑2) = (𝐶 − 1))
8781, 86oveq12d 7367 . . . . . . 7 (𝐶 ∈ ℂ → ((1st ‘⟨1, (√‘(𝐶 − 1))⟩) + ((2nd ‘⟨1, (√‘(𝐶 − 1))⟩)↑2)) = (1 + (𝐶 − 1)))
8861, 57pncan3d 11478 . . . . . . 7 (𝐶 ∈ ℂ → (1 + (𝐶 − 1)) = 𝐶)
8987, 88eqtrd 2764 . . . . . 6 (𝐶 ∈ ℂ → ((1st ‘⟨1, (√‘(𝐶 − 1))⟩) + ((2nd ‘⟨1, (√‘(𝐶 − 1))⟩)↑2)) = 𝐶)
9079, 89jca 511 . . . . 5 (𝐶 ∈ ℂ → (((1st ‘⟨𝐶, 0⟩) + ((2nd ‘⟨𝐶, 0⟩)↑2)) = 𝐶 ∧ ((1st ‘⟨1, (√‘(𝐶 − 1))⟩) + ((2nd ‘⟨1, (√‘(𝐶 − 1))⟩)↑2)) = 𝐶))
9190adantr 480 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 1) → (((1st ‘⟨𝐶, 0⟩) + ((2nd ‘⟨𝐶, 0⟩)↑2)) = 𝐶 ∧ ((1st ‘⟨1, (√‘(𝐶 − 1))⟩) + ((2nd ‘⟨1, (√‘(𝐶 − 1))⟩)↑2)) = 𝐶))
92 fveq2 6822 . . . . . . 7 (𝑝 = ⟨𝐶, 0⟩ → (1st𝑝) = (1st ‘⟨𝐶, 0⟩))
93 fveq2 6822 . . . . . . . 8 (𝑝 = ⟨𝐶, 0⟩ → (2nd𝑝) = (2nd ‘⟨𝐶, 0⟩))
9493oveq1d 7364 . . . . . . 7 (𝑝 = ⟨𝐶, 0⟩ → ((2nd𝑝)↑2) = ((2nd ‘⟨𝐶, 0⟩)↑2))
9592, 94oveq12d 7367 . . . . . 6 (𝑝 = ⟨𝐶, 0⟩ → ((1st𝑝) + ((2nd𝑝)↑2)) = ((1st ‘⟨𝐶, 0⟩) + ((2nd ‘⟨𝐶, 0⟩)↑2)))
9695eqeq1d 2731 . . . . 5 (𝑝 = ⟨𝐶, 0⟩ → (((1st𝑝) + ((2nd𝑝)↑2)) = 𝐶 ↔ ((1st ‘⟨𝐶, 0⟩) + ((2nd ‘⟨𝐶, 0⟩)↑2)) = 𝐶))
97 fveq2 6822 . . . . . . 7 (𝑝 = ⟨1, (√‘(𝐶 − 1))⟩ → (1st𝑝) = (1st ‘⟨1, (√‘(𝐶 − 1))⟩))
98 fveq2 6822 . . . . . . . 8 (𝑝 = ⟨1, (√‘(𝐶 − 1))⟩ → (2nd𝑝) = (2nd ‘⟨1, (√‘(𝐶 − 1))⟩))
9998oveq1d 7364 . . . . . . 7 (𝑝 = ⟨1, (√‘(𝐶 − 1))⟩ → ((2nd𝑝)↑2) = ((2nd ‘⟨1, (√‘(𝐶 − 1))⟩)↑2))
10097, 99oveq12d 7367 . . . . . 6 (𝑝 = ⟨1, (√‘(𝐶 − 1))⟩ → ((1st𝑝) + ((2nd𝑝)↑2)) = ((1st ‘⟨1, (√‘(𝐶 − 1))⟩) + ((2nd ‘⟨1, (√‘(𝐶 − 1))⟩)↑2)))
101100eqeq1d 2731 . . . . 5 (𝑝 = ⟨1, (√‘(𝐶 − 1))⟩ → (((1st𝑝) + ((2nd𝑝)↑2)) = 𝐶 ↔ ((1st ‘⟨1, (√‘(𝐶 − 1))⟩) + ((2nd ‘⟨1, (√‘(𝐶 − 1))⟩)↑2)) = 𝐶))
10296, 1012nreu 4395 . . . 4 ((⟨𝐶, 0⟩ ∈ (ℂ × ℂ) ∧ ⟨1, (√‘(𝐶 − 1))⟩ ∈ (ℂ × ℂ) ∧ ⟨𝐶, 0⟩ ≠ ⟨1, (√‘(𝐶 − 1))⟩) → ((((1st ‘⟨𝐶, 0⟩) + ((2nd ‘⟨𝐶, 0⟩)↑2)) = 𝐶 ∧ ((1st ‘⟨1, (√‘(𝐶 − 1))⟩) + ((2nd ‘⟨1, (√‘(𝐶 − 1))⟩)↑2)) = 𝐶) → ¬ ∃!𝑝 ∈ (ℂ × ℂ)((1st𝑝) + ((2nd𝑝)↑2)) = 𝐶))
10371, 91, 102sylc 65 . . 3 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 1) → ¬ ∃!𝑝 ∈ (ℂ × ℂ)((1st𝑝) + ((2nd𝑝)↑2)) = 𝐶)
104103expcom 413 . 2 (𝐶 ≠ 1 → (𝐶 ∈ ℂ → ¬ ∃!𝑝 ∈ (ℂ × ℂ)((1st𝑝) + ((2nd𝑝)↑2)) = 𝐶))
10556, 104pm2.61ine 3008 1 (𝐶 ∈ ℂ → ¬ ∃!𝑝 ∈ (ℂ × ℂ)((1st𝑝) + ((2nd𝑝)↑2)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  ∃!wreu 3341  cop 4583   × cxp 5617  cfv 6482  (class class class)co 7349  1st c1st 7922  2nd c2nd 7923  cc 11007  0cc0 11009  1c1 11010   + caddc 11012  cmin 11347  -cneg 11348  2c2 12183  3c3 12184  4c4 12185  cexp 13968  csqrt 15140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator