Proof of Theorem addsqnreup
Step | Hyp | Ref
| Expression |
1 | | ax-1cn 10860 |
. . . . . . 7
⊢ 1 ∈
ℂ |
2 | | 0cn 10898 |
. . . . . . 7
⊢ 0 ∈
ℂ |
3 | | opelxpi 5617 |
. . . . . . 7
⊢ ((1
∈ ℂ ∧ 0 ∈ ℂ) → 〈1, 0〉 ∈ (ℂ
× ℂ)) |
4 | 1, 2, 3 | mp2an 688 |
. . . . . 6
⊢ 〈1,
0〉 ∈ (ℂ × ℂ) |
5 | | 3cn 11984 |
. . . . . . . 8
⊢ 3 ∈
ℂ |
6 | 5 | negcli 11219 |
. . . . . . 7
⊢ -3 ∈
ℂ |
7 | | 2cn 11978 |
. . . . . . 7
⊢ 2 ∈
ℂ |
8 | | opelxpi 5617 |
. . . . . . 7
⊢ ((-3
∈ ℂ ∧ 2 ∈ ℂ) → 〈-3, 2〉 ∈ (ℂ
× ℂ)) |
9 | 6, 7, 8 | mp2an 688 |
. . . . . 6
⊢ 〈-3,
2〉 ∈ (ℂ × ℂ) |
10 | | 0ne2 12110 |
. . . . . . . 8
⊢ 0 ≠
2 |
11 | 10 | olci 862 |
. . . . . . 7
⊢ (1 ≠
-3 ∨ 0 ≠ 2) |
12 | | 1ex 10902 |
. . . . . . . 8
⊢ 1 ∈
V |
13 | | c0ex 10900 |
. . . . . . . 8
⊢ 0 ∈
V |
14 | 12, 13 | opthne 5391 |
. . . . . . 7
⊢ (〈1,
0〉 ≠ 〈-3, 2〉 ↔ (1 ≠ -3 ∨ 0 ≠
2)) |
15 | 11, 14 | mpbir 230 |
. . . . . 6
⊢ 〈1,
0〉 ≠ 〈-3, 2〉 |
16 | 4, 9, 15 | 3pm3.2i 1337 |
. . . . 5
⊢ (〈1,
0〉 ∈ (ℂ × ℂ) ∧ 〈-3, 2〉 ∈
(ℂ × ℂ) ∧ 〈1, 0〉 ≠ 〈-3,
2〉) |
17 | 12, 13 | op1st 7812 |
. . . . . . . 8
⊢
(1st ‘〈1, 0〉) = 1 |
18 | 12, 13 | op2nd 7813 |
. . . . . . . . . 10
⊢
(2nd ‘〈1, 0〉) = 0 |
19 | 18 | oveq1i 7265 |
. . . . . . . . 9
⊢
((2nd ‘〈1, 0〉)↑2) =
(0↑2) |
20 | | sq0 13837 |
. . . . . . . . 9
⊢
(0↑2) = 0 |
21 | 19, 20 | eqtri 2766 |
. . . . . . . 8
⊢
((2nd ‘〈1, 0〉)↑2) = 0 |
22 | 17, 21 | oveq12i 7267 |
. . . . . . 7
⊢
((1st ‘〈1, 0〉) + ((2nd
‘〈1, 0〉)↑2)) = (1 + 0) |
23 | | 1p0e1 12027 |
. . . . . . 7
⊢ (1 + 0) =
1 |
24 | 22, 23 | eqtri 2766 |
. . . . . 6
⊢
((1st ‘〈1, 0〉) + ((2nd
‘〈1, 0〉)↑2)) = 1 |
25 | | negex 11149 |
. . . . . . . . 9
⊢ -3 ∈
V |
26 | | 2ex 11980 |
. . . . . . . . 9
⊢ 2 ∈
V |
27 | 25, 26 | op1st 7812 |
. . . . . . . 8
⊢
(1st ‘〈-3, 2〉) = -3 |
28 | 25, 26 | op2nd 7813 |
. . . . . . . . . 10
⊢
(2nd ‘〈-3, 2〉) = 2 |
29 | 28 | oveq1i 7265 |
. . . . . . . . 9
⊢
((2nd ‘〈-3, 2〉)↑2) =
(2↑2) |
30 | | sq2 13842 |
. . . . . . . . 9
⊢
(2↑2) = 4 |
31 | 29, 30 | eqtri 2766 |
. . . . . . . 8
⊢
((2nd ‘〈-3, 2〉)↑2) = 4 |
32 | 27, 31 | oveq12i 7267 |
. . . . . . 7
⊢
((1st ‘〈-3, 2〉) + ((2nd
‘〈-3, 2〉)↑2)) = (-3 + 4) |
33 | | 4cn 11988 |
. . . . . . . 8
⊢ 4 ∈
ℂ |
34 | 33, 5 | negsubi 11229 |
. . . . . . . . 9
⊢ (4 + -3)
= (4 − 3) |
35 | | 3p1e4 12048 |
. . . . . . . . . 10
⊢ (3 + 1) =
4 |
36 | 33, 5, 1, 35 | subaddrii 11240 |
. . . . . . . . 9
⊢ (4
− 3) = 1 |
37 | 34, 36 | eqtri 2766 |
. . . . . . . 8
⊢ (4 + -3)
= 1 |
38 | 33, 6, 37 | addcomli 11097 |
. . . . . . 7
⊢ (-3 + 4)
= 1 |
39 | 32, 38 | eqtri 2766 |
. . . . . 6
⊢
((1st ‘〈-3, 2〉) + ((2nd
‘〈-3, 2〉)↑2)) = 1 |
40 | 24, 39 | pm3.2i 470 |
. . . . 5
⊢
(((1st ‘〈1, 0〉) + ((2nd
‘〈1, 0〉)↑2)) = 1 ∧ ((1st ‘〈-3,
2〉) + ((2nd ‘〈-3, 2〉)↑2)) =
1) |
41 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑝 = 〈1, 0〉 →
(1st ‘𝑝) =
(1st ‘〈1, 0〉)) |
42 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑝 = 〈1, 0〉 →
(2nd ‘𝑝) =
(2nd ‘〈1, 0〉)) |
43 | 42 | oveq1d 7270 |
. . . . . . . 8
⊢ (𝑝 = 〈1, 0〉 →
((2nd ‘𝑝)↑2) = ((2nd ‘〈1,
0〉)↑2)) |
44 | 41, 43 | oveq12d 7273 |
. . . . . . 7
⊢ (𝑝 = 〈1, 0〉 →
((1st ‘𝑝)
+ ((2nd ‘𝑝)↑2)) = ((1st ‘〈1,
0〉) + ((2nd ‘〈1, 0〉)↑2))) |
45 | 44 | eqeq1d 2740 |
. . . . . 6
⊢ (𝑝 = 〈1, 0〉 →
(((1st ‘𝑝)
+ ((2nd ‘𝑝)↑2)) = 1 ↔ ((1st
‘〈1, 0〉) + ((2nd ‘〈1, 0〉)↑2)) =
1)) |
46 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑝 = 〈-3, 2〉 →
(1st ‘𝑝) =
(1st ‘〈-3, 2〉)) |
47 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑝 = 〈-3, 2〉 →
(2nd ‘𝑝) =
(2nd ‘〈-3, 2〉)) |
48 | 47 | oveq1d 7270 |
. . . . . . . 8
⊢ (𝑝 = 〈-3, 2〉 →
((2nd ‘𝑝)↑2) = ((2nd ‘〈-3,
2〉)↑2)) |
49 | 46, 48 | oveq12d 7273 |
. . . . . . 7
⊢ (𝑝 = 〈-3, 2〉 →
((1st ‘𝑝)
+ ((2nd ‘𝑝)↑2)) = ((1st
‘〈-3, 2〉) + ((2nd ‘〈-3,
2〉)↑2))) |
50 | 49 | eqeq1d 2740 |
. . . . . 6
⊢ (𝑝 = 〈-3, 2〉 →
(((1st ‘𝑝)
+ ((2nd ‘𝑝)↑2)) = 1 ↔ ((1st
‘〈-3, 2〉) + ((2nd ‘〈-3, 2〉)↑2))
= 1)) |
51 | 45, 50 | 2nreu 4372 |
. . . . 5
⊢
((〈1, 0〉 ∈ (ℂ × ℂ) ∧ 〈-3,
2〉 ∈ (ℂ × ℂ) ∧ 〈1, 0〉 ≠ 〈-3,
2〉) → ((((1st ‘〈1, 0〉) + ((2nd
‘〈1, 0〉)↑2)) = 1 ∧ ((1st ‘〈-3,
2〉) + ((2nd ‘〈-3, 2〉)↑2)) = 1) →
¬ ∃!𝑝 ∈
(ℂ × ℂ)((1st ‘𝑝) + ((2nd ‘𝑝)↑2)) =
1)) |
52 | 16, 40, 51 | mp2 9 |
. . . 4
⊢ ¬
∃!𝑝 ∈ (ℂ
× ℂ)((1st ‘𝑝) + ((2nd ‘𝑝)↑2)) = 1 |
53 | | eqeq2 2750 |
. . . . 5
⊢ (𝐶 = 1 → (((1st
‘𝑝) +
((2nd ‘𝑝)↑2)) = 𝐶 ↔ ((1st ‘𝑝) + ((2nd
‘𝑝)↑2)) =
1)) |
54 | 53 | reubidv 3315 |
. . . 4
⊢ (𝐶 = 1 → (∃!𝑝 ∈ (ℂ ×
ℂ)((1st ‘𝑝) + ((2nd ‘𝑝)↑2)) = 𝐶 ↔ ∃!𝑝 ∈ (ℂ ×
ℂ)((1st ‘𝑝) + ((2nd ‘𝑝)↑2)) =
1)) |
55 | 52, 54 | mtbiri 326 |
. . 3
⊢ (𝐶 = 1 → ¬ ∃!𝑝 ∈ (ℂ ×
ℂ)((1st ‘𝑝) + ((2nd ‘𝑝)↑2)) = 𝐶) |
56 | 55 | a1d 25 |
. 2
⊢ (𝐶 = 1 → (𝐶 ∈ ℂ → ¬ ∃!𝑝 ∈ (ℂ ×
ℂ)((1st ‘𝑝) + ((2nd ‘𝑝)↑2)) = 𝐶)) |
57 | | id 22 |
. . . . . . 7
⊢ (𝐶 ∈ ℂ → 𝐶 ∈
ℂ) |
58 | | 0cnd 10899 |
. . . . . . 7
⊢ (𝐶 ∈ ℂ → 0 ∈
ℂ) |
59 | 57, 58 | opelxpd 5618 |
. . . . . 6
⊢ (𝐶 ∈ ℂ →
〈𝐶, 0〉 ∈
(ℂ × ℂ)) |
60 | 59 | adantr 480 |
. . . . 5
⊢ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 1) → 〈𝐶, 0〉 ∈ (ℂ
× ℂ)) |
61 | | 1cnd 10901 |
. . . . . . 7
⊢ (𝐶 ∈ ℂ → 1 ∈
ℂ) |
62 | | peano2cnm 11217 |
. . . . . . . 8
⊢ (𝐶 ∈ ℂ → (𝐶 − 1) ∈
ℂ) |
63 | 62 | sqrtcld 15077 |
. . . . . . 7
⊢ (𝐶 ∈ ℂ →
(√‘(𝐶 −
1)) ∈ ℂ) |
64 | 61, 63 | opelxpd 5618 |
. . . . . 6
⊢ (𝐶 ∈ ℂ → 〈1,
(√‘(𝐶 −
1))〉 ∈ (ℂ × ℂ)) |
65 | 64 | adantr 480 |
. . . . 5
⊢ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 1) → 〈1,
(√‘(𝐶 −
1))〉 ∈ (ℂ × ℂ)) |
66 | | animorrl 977 |
. . . . . 6
⊢ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 1) → (𝐶 ≠ 1 ∨ 0 ≠
(√‘(𝐶 −
1)))) |
67 | | 0cnd 10899 |
. . . . . . 7
⊢ (𝐶 ≠ 1 → 0 ∈
ℂ) |
68 | | opthneg 5390 |
. . . . . . 7
⊢ ((𝐶 ∈ ℂ ∧ 0 ∈
ℂ) → (〈𝐶,
0〉 ≠ 〈1, (√‘(𝐶 − 1))〉 ↔ (𝐶 ≠ 1 ∨ 0 ≠ (√‘(𝐶 − 1))))) |
69 | 67, 68 | sylan2 592 |
. . . . . 6
⊢ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 1) → (〈𝐶, 0〉 ≠ 〈1,
(√‘(𝐶 −
1))〉 ↔ (𝐶 ≠ 1
∨ 0 ≠ (√‘(𝐶 − 1))))) |
70 | 66, 69 | mpbird 256 |
. . . . 5
⊢ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 1) → 〈𝐶, 0〉 ≠ 〈1,
(√‘(𝐶 −
1))〉) |
71 | 60, 65, 70 | 3jca 1126 |
. . . 4
⊢ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 1) → (〈𝐶, 0〉 ∈ (ℂ
× ℂ) ∧ 〈1, (√‘(𝐶 − 1))〉 ∈ (ℂ ×
ℂ) ∧ 〈𝐶,
0〉 ≠ 〈1, (√‘(𝐶 − 1))〉)) |
72 | | op1stg 7816 |
. . . . . . . . 9
⊢ ((𝐶 ∈ ℂ ∧ 0 ∈
ℂ) → (1st ‘〈𝐶, 0〉) = 𝐶) |
73 | 58, 72 | mpdan 683 |
. . . . . . . 8
⊢ (𝐶 ∈ ℂ →
(1st ‘〈𝐶, 0〉) = 𝐶) |
74 | | op2ndg 7817 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ ℂ ∧ 0 ∈
ℂ) → (2nd ‘〈𝐶, 0〉) = 0) |
75 | 58, 74 | mpdan 683 |
. . . . . . . . 9
⊢ (𝐶 ∈ ℂ →
(2nd ‘〈𝐶, 0〉) = 0) |
76 | 75 | sq0id 13839 |
. . . . . . . 8
⊢ (𝐶 ∈ ℂ →
((2nd ‘〈𝐶, 0〉)↑2) = 0) |
77 | 73, 76 | oveq12d 7273 |
. . . . . . 7
⊢ (𝐶 ∈ ℂ →
((1st ‘〈𝐶, 0〉) + ((2nd
‘〈𝐶,
0〉)↑2)) = (𝐶 +
0)) |
78 | | addid1 11085 |
. . . . . . 7
⊢ (𝐶 ∈ ℂ → (𝐶 + 0) = 𝐶) |
79 | 77, 78 | eqtrd 2778 |
. . . . . 6
⊢ (𝐶 ∈ ℂ →
((1st ‘〈𝐶, 0〉) + ((2nd
‘〈𝐶,
0〉)↑2)) = 𝐶) |
80 | | op1stg 7816 |
. . . . . . . . 9
⊢ ((1
∈ ℂ ∧ (√‘(𝐶 − 1)) ∈ ℂ) →
(1st ‘〈1, (√‘(𝐶 − 1))〉) = 1) |
81 | 61, 63, 80 | syl2anc 583 |
. . . . . . . 8
⊢ (𝐶 ∈ ℂ →
(1st ‘〈1, (√‘(𝐶 − 1))〉) = 1) |
82 | | op2ndg 7817 |
. . . . . . . . . . 11
⊢ ((1
∈ ℂ ∧ (√‘(𝐶 − 1)) ∈ ℂ) →
(2nd ‘〈1, (√‘(𝐶 − 1))〉) = (√‘(𝐶 − 1))) |
83 | 61, 63, 82 | syl2anc 583 |
. . . . . . . . . 10
⊢ (𝐶 ∈ ℂ →
(2nd ‘〈1, (√‘(𝐶 − 1))〉) = (√‘(𝐶 − 1))) |
84 | 83 | oveq1d 7270 |
. . . . . . . . 9
⊢ (𝐶 ∈ ℂ →
((2nd ‘〈1, (√‘(𝐶 − 1))〉)↑2) =
((√‘(𝐶 −
1))↑2)) |
85 | 62 | sqsqrtd 15079 |
. . . . . . . . 9
⊢ (𝐶 ∈ ℂ →
((√‘(𝐶 −
1))↑2) = (𝐶 −
1)) |
86 | 84, 85 | eqtrd 2778 |
. . . . . . . 8
⊢ (𝐶 ∈ ℂ →
((2nd ‘〈1, (√‘(𝐶 − 1))〉)↑2) = (𝐶 − 1)) |
87 | 81, 86 | oveq12d 7273 |
. . . . . . 7
⊢ (𝐶 ∈ ℂ →
((1st ‘〈1, (√‘(𝐶 − 1))〉) + ((2nd
‘〈1, (√‘(𝐶 − 1))〉)↑2)) = (1 + (𝐶 − 1))) |
88 | 61, 57 | pncan3d 11265 |
. . . . . . 7
⊢ (𝐶 ∈ ℂ → (1 +
(𝐶 − 1)) = 𝐶) |
89 | 87, 88 | eqtrd 2778 |
. . . . . 6
⊢ (𝐶 ∈ ℂ →
((1st ‘〈1, (√‘(𝐶 − 1))〉) + ((2nd
‘〈1, (√‘(𝐶 − 1))〉)↑2)) = 𝐶) |
90 | 79, 89 | jca 511 |
. . . . 5
⊢ (𝐶 ∈ ℂ →
(((1st ‘〈𝐶, 0〉) + ((2nd
‘〈𝐶,
0〉)↑2)) = 𝐶 ∧
((1st ‘〈1, (√‘(𝐶 − 1))〉) + ((2nd
‘〈1, (√‘(𝐶 − 1))〉)↑2)) = 𝐶)) |
91 | 90 | adantr 480 |
. . . 4
⊢ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 1) →
(((1st ‘〈𝐶, 0〉) + ((2nd
‘〈𝐶,
0〉)↑2)) = 𝐶 ∧
((1st ‘〈1, (√‘(𝐶 − 1))〉) + ((2nd
‘〈1, (√‘(𝐶 − 1))〉)↑2)) = 𝐶)) |
92 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑝 = 〈𝐶, 0〉 → (1st
‘𝑝) = (1st
‘〈𝐶,
0〉)) |
93 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑝 = 〈𝐶, 0〉 → (2nd
‘𝑝) = (2nd
‘〈𝐶,
0〉)) |
94 | 93 | oveq1d 7270 |
. . . . . . 7
⊢ (𝑝 = 〈𝐶, 0〉 → ((2nd
‘𝑝)↑2) =
((2nd ‘〈𝐶, 0〉)↑2)) |
95 | 92, 94 | oveq12d 7273 |
. . . . . 6
⊢ (𝑝 = 〈𝐶, 0〉 → ((1st
‘𝑝) +
((2nd ‘𝑝)↑2)) = ((1st
‘〈𝐶, 0〉) +
((2nd ‘〈𝐶, 0〉)↑2))) |
96 | 95 | eqeq1d 2740 |
. . . . 5
⊢ (𝑝 = 〈𝐶, 0〉 → (((1st
‘𝑝) +
((2nd ‘𝑝)↑2)) = 𝐶 ↔ ((1st ‘〈𝐶, 0〉) + ((2nd
‘〈𝐶,
0〉)↑2)) = 𝐶)) |
97 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑝 = 〈1,
(√‘(𝐶 −
1))〉 → (1st ‘𝑝) = (1st ‘〈1,
(√‘(𝐶 −
1))〉)) |
98 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑝 = 〈1,
(√‘(𝐶 −
1))〉 → (2nd ‘𝑝) = (2nd ‘〈1,
(√‘(𝐶 −
1))〉)) |
99 | 98 | oveq1d 7270 |
. . . . . . 7
⊢ (𝑝 = 〈1,
(√‘(𝐶 −
1))〉 → ((2nd ‘𝑝)↑2) = ((2nd ‘〈1,
(√‘(𝐶 −
1))〉)↑2)) |
100 | 97, 99 | oveq12d 7273 |
. . . . . 6
⊢ (𝑝 = 〈1,
(√‘(𝐶 −
1))〉 → ((1st ‘𝑝) + ((2nd ‘𝑝)↑2)) = ((1st
‘〈1, (√‘(𝐶 − 1))〉) + ((2nd
‘〈1, (√‘(𝐶 −
1))〉)↑2))) |
101 | 100 | eqeq1d 2740 |
. . . . 5
⊢ (𝑝 = 〈1,
(√‘(𝐶 −
1))〉 → (((1st ‘𝑝) + ((2nd ‘𝑝)↑2)) = 𝐶 ↔ ((1st ‘〈1,
(√‘(𝐶 −
1))〉) + ((2nd ‘〈1, (√‘(𝐶 − 1))〉)↑2)) = 𝐶)) |
102 | 96, 101 | 2nreu 4372 |
. . . 4
⊢
((〈𝐶, 0〉
∈ (ℂ × ℂ) ∧ 〈1, (√‘(𝐶 − 1))〉 ∈
(ℂ × ℂ) ∧ 〈𝐶, 0〉 ≠ 〈1,
(√‘(𝐶 −
1))〉) → ((((1st ‘〈𝐶, 0〉) + ((2nd
‘〈𝐶,
0〉)↑2)) = 𝐶 ∧
((1st ‘〈1, (√‘(𝐶 − 1))〉) + ((2nd
‘〈1, (√‘(𝐶 − 1))〉)↑2)) = 𝐶) → ¬ ∃!𝑝 ∈ (ℂ ×
ℂ)((1st ‘𝑝) + ((2nd ‘𝑝)↑2)) = 𝐶)) |
103 | 71, 91, 102 | sylc 65 |
. . 3
⊢ ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 1) → ¬
∃!𝑝 ∈ (ℂ
× ℂ)((1st ‘𝑝) + ((2nd ‘𝑝)↑2)) = 𝐶) |
104 | 103 | expcom 413 |
. 2
⊢ (𝐶 ≠ 1 → (𝐶 ∈ ℂ → ¬
∃!𝑝 ∈ (ℂ
× ℂ)((1st ‘𝑝) + ((2nd ‘𝑝)↑2)) = 𝐶)) |
105 | 56, 104 | pm2.61ine 3027 |
1
⊢ (𝐶 ∈ ℂ → ¬
∃!𝑝 ∈ (ℂ
× ℂ)((1st ‘𝑝) + ((2nd ‘𝑝)↑2)) = 𝐶) |