MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addsqnreup Structured version   Visualization version   GIF version

Theorem addsqnreup 27487
Description: There is no unique decomposition of a complex number as a sum of a complex number and a square of a complex number.

Remark: This theorem, together with addsq2reu 27484, is a real life example (about a numerical property) showing that the pattern ∃!𝑎𝐴∃!𝑏𝐵𝜑 does not necessarily mean "There are unique sets 𝑎 and 𝑏 fulfilling 𝜑"). See also comments for df-eu 2569 and 2eu4 2655.

In the case of decompositions of complex numbers as a sum of a complex number and a square of a complex number, the only/unique complex number to which the square of a unique complex number is added yields in the given complex number is the given number itself, and the unique complex number to be squared is 0 (see comment for addsq2reu 27484). There are, however, complex numbers to which the square of more than one other complex numbers can be added to yield the given complex number (see addsqrexnreu 27486). For example, ⟨1, (√‘(𝐶 − 1))⟩ and ⟨1, -(√‘(𝐶 − 1))⟩ are two different decompositions of 𝐶 (if 𝐶 ≠ 1). Therefore, there is no unique decomposition of any complex number as a sum of a complex number and a square of a complex number, as generally proved by this theorem.

As a consequence, a theorem must claim the existence of a unique pair of sets to express "There are unique 𝑎 and 𝑏 so that .." (more formally ∃!𝑝 ∈ (𝐴 × 𝐵)𝜑 with 𝑝 = ⟨𝑎, 𝑏), or by showing (∃!𝑥𝐴𝑦𝐵𝜑 ∧ ∃!𝑦𝐵𝑥𝐴𝜑) (see 2reu4 4523 resp. 2eu4 2655). These two representations are equivalent (see opreu2reurex 6314). An analogon of this theorem using the latter variant is given in addsqn2reurex2 27489. In some cases, however, the variant with (ordered!) pairs may be possible only for ordered sets (like or ) and claiming that the first component is less than or equal to the second component (see, for example, 2sqreunnltb 27505 and 2sqreuopb 27512). Alternatively, (proper) unordered pairs can be used: ∃!𝑝𝑒𝒫 𝐴((♯‘𝑝) = 2 ∧ 𝜑), or, using the definition of proper pairs: ∃!𝑝 ∈ (Pairsproper𝐴)𝜑 (see, for example, inlinecirc02preu 48709). (Contributed by AV, 21-Jun-2023.)

Assertion
Ref Expression
addsqnreup (𝐶 ∈ ℂ → ¬ ∃!𝑝 ∈ (ℂ × ℂ)((1st𝑝) + ((2nd𝑝)↑2)) = 𝐶)
Distinct variable group:   𝐶,𝑝

Proof of Theorem addsqnreup
StepHypRef Expression
1 ax-1cn 11213 . . . . . . 7 1 ∈ ℂ
2 0cn 11253 . . . . . . 7 0 ∈ ℂ
3 opelxpi 5722 . . . . . . 7 ((1 ∈ ℂ ∧ 0 ∈ ℂ) → ⟨1, 0⟩ ∈ (ℂ × ℂ))
41, 2, 3mp2an 692 . . . . . 6 ⟨1, 0⟩ ∈ (ℂ × ℂ)
5 3cn 12347 . . . . . . . 8 3 ∈ ℂ
65negcli 11577 . . . . . . 7 -3 ∈ ℂ
7 2cn 12341 . . . . . . 7 2 ∈ ℂ
8 opelxpi 5722 . . . . . . 7 ((-3 ∈ ℂ ∧ 2 ∈ ℂ) → ⟨-3, 2⟩ ∈ (ℂ × ℂ))
96, 7, 8mp2an 692 . . . . . 6 ⟨-3, 2⟩ ∈ (ℂ × ℂ)
10 0ne2 12473 . . . . . . . 8 0 ≠ 2
1110olci 867 . . . . . . 7 (1 ≠ -3 ∨ 0 ≠ 2)
12 1ex 11257 . . . . . . . 8 1 ∈ V
13 c0ex 11255 . . . . . . . 8 0 ∈ V
1412, 13opthne 5487 . . . . . . 7 (⟨1, 0⟩ ≠ ⟨-3, 2⟩ ↔ (1 ≠ -3 ∨ 0 ≠ 2))
1511, 14mpbir 231 . . . . . 6 ⟨1, 0⟩ ≠ ⟨-3, 2⟩
164, 9, 153pm3.2i 1340 . . . . 5 (⟨1, 0⟩ ∈ (ℂ × ℂ) ∧ ⟨-3, 2⟩ ∈ (ℂ × ℂ) ∧ ⟨1, 0⟩ ≠ ⟨-3, 2⟩)
1712, 13op1st 8022 . . . . . . . 8 (1st ‘⟨1, 0⟩) = 1
1812, 13op2nd 8023 . . . . . . . . . 10 (2nd ‘⟨1, 0⟩) = 0
1918oveq1i 7441 . . . . . . . . 9 ((2nd ‘⟨1, 0⟩)↑2) = (0↑2)
20 sq0 14231 . . . . . . . . 9 (0↑2) = 0
2119, 20eqtri 2765 . . . . . . . 8 ((2nd ‘⟨1, 0⟩)↑2) = 0
2217, 21oveq12i 7443 . . . . . . 7 ((1st ‘⟨1, 0⟩) + ((2nd ‘⟨1, 0⟩)↑2)) = (1 + 0)
23 1p0e1 12390 . . . . . . 7 (1 + 0) = 1
2422, 23eqtri 2765 . . . . . 6 ((1st ‘⟨1, 0⟩) + ((2nd ‘⟨1, 0⟩)↑2)) = 1
25 negex 11506 . . . . . . . . 9 -3 ∈ V
26 2ex 12343 . . . . . . . . 9 2 ∈ V
2725, 26op1st 8022 . . . . . . . 8 (1st ‘⟨-3, 2⟩) = -3
2825, 26op2nd 8023 . . . . . . . . . 10 (2nd ‘⟨-3, 2⟩) = 2
2928oveq1i 7441 . . . . . . . . 9 ((2nd ‘⟨-3, 2⟩)↑2) = (2↑2)
30 sq2 14236 . . . . . . . . 9 (2↑2) = 4
3129, 30eqtri 2765 . . . . . . . 8 ((2nd ‘⟨-3, 2⟩)↑2) = 4
3227, 31oveq12i 7443 . . . . . . 7 ((1st ‘⟨-3, 2⟩) + ((2nd ‘⟨-3, 2⟩)↑2)) = (-3 + 4)
33 4cn 12351 . . . . . . . 8 4 ∈ ℂ
3433, 5negsubi 11587 . . . . . . . . 9 (4 + -3) = (4 − 3)
35 3p1e4 12411 . . . . . . . . . 10 (3 + 1) = 4
3633, 5, 1, 35subaddrii 11598 . . . . . . . . 9 (4 − 3) = 1
3734, 36eqtri 2765 . . . . . . . 8 (4 + -3) = 1
3833, 6, 37addcomli 11453 . . . . . . 7 (-3 + 4) = 1
3932, 38eqtri 2765 . . . . . 6 ((1st ‘⟨-3, 2⟩) + ((2nd ‘⟨-3, 2⟩)↑2)) = 1
4024, 39pm3.2i 470 . . . . 5 (((1st ‘⟨1, 0⟩) + ((2nd ‘⟨1, 0⟩)↑2)) = 1 ∧ ((1st ‘⟨-3, 2⟩) + ((2nd ‘⟨-3, 2⟩)↑2)) = 1)
41 fveq2 6906 . . . . . . . 8 (𝑝 = ⟨1, 0⟩ → (1st𝑝) = (1st ‘⟨1, 0⟩))
42 fveq2 6906 . . . . . . . . 9 (𝑝 = ⟨1, 0⟩ → (2nd𝑝) = (2nd ‘⟨1, 0⟩))
4342oveq1d 7446 . . . . . . . 8 (𝑝 = ⟨1, 0⟩ → ((2nd𝑝)↑2) = ((2nd ‘⟨1, 0⟩)↑2))
4441, 43oveq12d 7449 . . . . . . 7 (𝑝 = ⟨1, 0⟩ → ((1st𝑝) + ((2nd𝑝)↑2)) = ((1st ‘⟨1, 0⟩) + ((2nd ‘⟨1, 0⟩)↑2)))
4544eqeq1d 2739 . . . . . 6 (𝑝 = ⟨1, 0⟩ → (((1st𝑝) + ((2nd𝑝)↑2)) = 1 ↔ ((1st ‘⟨1, 0⟩) + ((2nd ‘⟨1, 0⟩)↑2)) = 1))
46 fveq2 6906 . . . . . . . 8 (𝑝 = ⟨-3, 2⟩ → (1st𝑝) = (1st ‘⟨-3, 2⟩))
47 fveq2 6906 . . . . . . . . 9 (𝑝 = ⟨-3, 2⟩ → (2nd𝑝) = (2nd ‘⟨-3, 2⟩))
4847oveq1d 7446 . . . . . . . 8 (𝑝 = ⟨-3, 2⟩ → ((2nd𝑝)↑2) = ((2nd ‘⟨-3, 2⟩)↑2))
4946, 48oveq12d 7449 . . . . . . 7 (𝑝 = ⟨-3, 2⟩ → ((1st𝑝) + ((2nd𝑝)↑2)) = ((1st ‘⟨-3, 2⟩) + ((2nd ‘⟨-3, 2⟩)↑2)))
5049eqeq1d 2739 . . . . . 6 (𝑝 = ⟨-3, 2⟩ → (((1st𝑝) + ((2nd𝑝)↑2)) = 1 ↔ ((1st ‘⟨-3, 2⟩) + ((2nd ‘⟨-3, 2⟩)↑2)) = 1))
5145, 502nreu 4444 . . . . 5 ((⟨1, 0⟩ ∈ (ℂ × ℂ) ∧ ⟨-3, 2⟩ ∈ (ℂ × ℂ) ∧ ⟨1, 0⟩ ≠ ⟨-3, 2⟩) → ((((1st ‘⟨1, 0⟩) + ((2nd ‘⟨1, 0⟩)↑2)) = 1 ∧ ((1st ‘⟨-3, 2⟩) + ((2nd ‘⟨-3, 2⟩)↑2)) = 1) → ¬ ∃!𝑝 ∈ (ℂ × ℂ)((1st𝑝) + ((2nd𝑝)↑2)) = 1))
5216, 40, 51mp2 9 . . . 4 ¬ ∃!𝑝 ∈ (ℂ × ℂ)((1st𝑝) + ((2nd𝑝)↑2)) = 1
53 eqeq2 2749 . . . . 5 (𝐶 = 1 → (((1st𝑝) + ((2nd𝑝)↑2)) = 𝐶 ↔ ((1st𝑝) + ((2nd𝑝)↑2)) = 1))
5453reubidv 3398 . . . 4 (𝐶 = 1 → (∃!𝑝 ∈ (ℂ × ℂ)((1st𝑝) + ((2nd𝑝)↑2)) = 𝐶 ↔ ∃!𝑝 ∈ (ℂ × ℂ)((1st𝑝) + ((2nd𝑝)↑2)) = 1))
5552, 54mtbiri 327 . . 3 (𝐶 = 1 → ¬ ∃!𝑝 ∈ (ℂ × ℂ)((1st𝑝) + ((2nd𝑝)↑2)) = 𝐶)
5655a1d 25 . 2 (𝐶 = 1 → (𝐶 ∈ ℂ → ¬ ∃!𝑝 ∈ (ℂ × ℂ)((1st𝑝) + ((2nd𝑝)↑2)) = 𝐶))
57 id 22 . . . . . . 7 (𝐶 ∈ ℂ → 𝐶 ∈ ℂ)
58 0cnd 11254 . . . . . . 7 (𝐶 ∈ ℂ → 0 ∈ ℂ)
5957, 58opelxpd 5724 . . . . . 6 (𝐶 ∈ ℂ → ⟨𝐶, 0⟩ ∈ (ℂ × ℂ))
6059adantr 480 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 1) → ⟨𝐶, 0⟩ ∈ (ℂ × ℂ))
61 1cnd 11256 . . . . . . 7 (𝐶 ∈ ℂ → 1 ∈ ℂ)
62 peano2cnm 11575 . . . . . . . 8 (𝐶 ∈ ℂ → (𝐶 − 1) ∈ ℂ)
6362sqrtcld 15476 . . . . . . 7 (𝐶 ∈ ℂ → (√‘(𝐶 − 1)) ∈ ℂ)
6461, 63opelxpd 5724 . . . . . 6 (𝐶 ∈ ℂ → ⟨1, (√‘(𝐶 − 1))⟩ ∈ (ℂ × ℂ))
6564adantr 480 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 1) → ⟨1, (√‘(𝐶 − 1))⟩ ∈ (ℂ × ℂ))
66 animorrl 983 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 1) → (𝐶 ≠ 1 ∨ 0 ≠ (√‘(𝐶 − 1))))
67 0cnd 11254 . . . . . . 7 (𝐶 ≠ 1 → 0 ∈ ℂ)
68 opthneg 5486 . . . . . . 7 ((𝐶 ∈ ℂ ∧ 0 ∈ ℂ) → (⟨𝐶, 0⟩ ≠ ⟨1, (√‘(𝐶 − 1))⟩ ↔ (𝐶 ≠ 1 ∨ 0 ≠ (√‘(𝐶 − 1)))))
6967, 68sylan2 593 . . . . . 6 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 1) → (⟨𝐶, 0⟩ ≠ ⟨1, (√‘(𝐶 − 1))⟩ ↔ (𝐶 ≠ 1 ∨ 0 ≠ (√‘(𝐶 − 1)))))
7066, 69mpbird 257 . . . . 5 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 1) → ⟨𝐶, 0⟩ ≠ ⟨1, (√‘(𝐶 − 1))⟩)
7160, 65, 703jca 1129 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 1) → (⟨𝐶, 0⟩ ∈ (ℂ × ℂ) ∧ ⟨1, (√‘(𝐶 − 1))⟩ ∈ (ℂ × ℂ) ∧ ⟨𝐶, 0⟩ ≠ ⟨1, (√‘(𝐶 − 1))⟩))
72 op1stg 8026 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 0 ∈ ℂ) → (1st ‘⟨𝐶, 0⟩) = 𝐶)
7358, 72mpdan 687 . . . . . . . 8 (𝐶 ∈ ℂ → (1st ‘⟨𝐶, 0⟩) = 𝐶)
74 op2ndg 8027 . . . . . . . . . 10 ((𝐶 ∈ ℂ ∧ 0 ∈ ℂ) → (2nd ‘⟨𝐶, 0⟩) = 0)
7558, 74mpdan 687 . . . . . . . . 9 (𝐶 ∈ ℂ → (2nd ‘⟨𝐶, 0⟩) = 0)
7675sq0id 14233 . . . . . . . 8 (𝐶 ∈ ℂ → ((2nd ‘⟨𝐶, 0⟩)↑2) = 0)
7773, 76oveq12d 7449 . . . . . . 7 (𝐶 ∈ ℂ → ((1st ‘⟨𝐶, 0⟩) + ((2nd ‘⟨𝐶, 0⟩)↑2)) = (𝐶 + 0))
78 addrid 11441 . . . . . . 7 (𝐶 ∈ ℂ → (𝐶 + 0) = 𝐶)
7977, 78eqtrd 2777 . . . . . 6 (𝐶 ∈ ℂ → ((1st ‘⟨𝐶, 0⟩) + ((2nd ‘⟨𝐶, 0⟩)↑2)) = 𝐶)
80 op1stg 8026 . . . . . . . . 9 ((1 ∈ ℂ ∧ (√‘(𝐶 − 1)) ∈ ℂ) → (1st ‘⟨1, (√‘(𝐶 − 1))⟩) = 1)
8161, 63, 80syl2anc 584 . . . . . . . 8 (𝐶 ∈ ℂ → (1st ‘⟨1, (√‘(𝐶 − 1))⟩) = 1)
82 op2ndg 8027 . . . . . . . . . . 11 ((1 ∈ ℂ ∧ (√‘(𝐶 − 1)) ∈ ℂ) → (2nd ‘⟨1, (√‘(𝐶 − 1))⟩) = (√‘(𝐶 − 1)))
8361, 63, 82syl2anc 584 . . . . . . . . . 10 (𝐶 ∈ ℂ → (2nd ‘⟨1, (√‘(𝐶 − 1))⟩) = (√‘(𝐶 − 1)))
8483oveq1d 7446 . . . . . . . . 9 (𝐶 ∈ ℂ → ((2nd ‘⟨1, (√‘(𝐶 − 1))⟩)↑2) = ((√‘(𝐶 − 1))↑2))
8562sqsqrtd 15478 . . . . . . . . 9 (𝐶 ∈ ℂ → ((√‘(𝐶 − 1))↑2) = (𝐶 − 1))
8684, 85eqtrd 2777 . . . . . . . 8 (𝐶 ∈ ℂ → ((2nd ‘⟨1, (√‘(𝐶 − 1))⟩)↑2) = (𝐶 − 1))
8781, 86oveq12d 7449 . . . . . . 7 (𝐶 ∈ ℂ → ((1st ‘⟨1, (√‘(𝐶 − 1))⟩) + ((2nd ‘⟨1, (√‘(𝐶 − 1))⟩)↑2)) = (1 + (𝐶 − 1)))
8861, 57pncan3d 11623 . . . . . . 7 (𝐶 ∈ ℂ → (1 + (𝐶 − 1)) = 𝐶)
8987, 88eqtrd 2777 . . . . . 6 (𝐶 ∈ ℂ → ((1st ‘⟨1, (√‘(𝐶 − 1))⟩) + ((2nd ‘⟨1, (√‘(𝐶 − 1))⟩)↑2)) = 𝐶)
9079, 89jca 511 . . . . 5 (𝐶 ∈ ℂ → (((1st ‘⟨𝐶, 0⟩) + ((2nd ‘⟨𝐶, 0⟩)↑2)) = 𝐶 ∧ ((1st ‘⟨1, (√‘(𝐶 − 1))⟩) + ((2nd ‘⟨1, (√‘(𝐶 − 1))⟩)↑2)) = 𝐶))
9190adantr 480 . . . 4 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 1) → (((1st ‘⟨𝐶, 0⟩) + ((2nd ‘⟨𝐶, 0⟩)↑2)) = 𝐶 ∧ ((1st ‘⟨1, (√‘(𝐶 − 1))⟩) + ((2nd ‘⟨1, (√‘(𝐶 − 1))⟩)↑2)) = 𝐶))
92 fveq2 6906 . . . . . . 7 (𝑝 = ⟨𝐶, 0⟩ → (1st𝑝) = (1st ‘⟨𝐶, 0⟩))
93 fveq2 6906 . . . . . . . 8 (𝑝 = ⟨𝐶, 0⟩ → (2nd𝑝) = (2nd ‘⟨𝐶, 0⟩))
9493oveq1d 7446 . . . . . . 7 (𝑝 = ⟨𝐶, 0⟩ → ((2nd𝑝)↑2) = ((2nd ‘⟨𝐶, 0⟩)↑2))
9592, 94oveq12d 7449 . . . . . 6 (𝑝 = ⟨𝐶, 0⟩ → ((1st𝑝) + ((2nd𝑝)↑2)) = ((1st ‘⟨𝐶, 0⟩) + ((2nd ‘⟨𝐶, 0⟩)↑2)))
9695eqeq1d 2739 . . . . 5 (𝑝 = ⟨𝐶, 0⟩ → (((1st𝑝) + ((2nd𝑝)↑2)) = 𝐶 ↔ ((1st ‘⟨𝐶, 0⟩) + ((2nd ‘⟨𝐶, 0⟩)↑2)) = 𝐶))
97 fveq2 6906 . . . . . . 7 (𝑝 = ⟨1, (√‘(𝐶 − 1))⟩ → (1st𝑝) = (1st ‘⟨1, (√‘(𝐶 − 1))⟩))
98 fveq2 6906 . . . . . . . 8 (𝑝 = ⟨1, (√‘(𝐶 − 1))⟩ → (2nd𝑝) = (2nd ‘⟨1, (√‘(𝐶 − 1))⟩))
9998oveq1d 7446 . . . . . . 7 (𝑝 = ⟨1, (√‘(𝐶 − 1))⟩ → ((2nd𝑝)↑2) = ((2nd ‘⟨1, (√‘(𝐶 − 1))⟩)↑2))
10097, 99oveq12d 7449 . . . . . 6 (𝑝 = ⟨1, (√‘(𝐶 − 1))⟩ → ((1st𝑝) + ((2nd𝑝)↑2)) = ((1st ‘⟨1, (√‘(𝐶 − 1))⟩) + ((2nd ‘⟨1, (√‘(𝐶 − 1))⟩)↑2)))
101100eqeq1d 2739 . . . . 5 (𝑝 = ⟨1, (√‘(𝐶 − 1))⟩ → (((1st𝑝) + ((2nd𝑝)↑2)) = 𝐶 ↔ ((1st ‘⟨1, (√‘(𝐶 − 1))⟩) + ((2nd ‘⟨1, (√‘(𝐶 − 1))⟩)↑2)) = 𝐶))
10296, 1012nreu 4444 . . . 4 ((⟨𝐶, 0⟩ ∈ (ℂ × ℂ) ∧ ⟨1, (√‘(𝐶 − 1))⟩ ∈ (ℂ × ℂ) ∧ ⟨𝐶, 0⟩ ≠ ⟨1, (√‘(𝐶 − 1))⟩) → ((((1st ‘⟨𝐶, 0⟩) + ((2nd ‘⟨𝐶, 0⟩)↑2)) = 𝐶 ∧ ((1st ‘⟨1, (√‘(𝐶 − 1))⟩) + ((2nd ‘⟨1, (√‘(𝐶 − 1))⟩)↑2)) = 𝐶) → ¬ ∃!𝑝 ∈ (ℂ × ℂ)((1st𝑝) + ((2nd𝑝)↑2)) = 𝐶))
10371, 91, 102sylc 65 . . 3 ((𝐶 ∈ ℂ ∧ 𝐶 ≠ 1) → ¬ ∃!𝑝 ∈ (ℂ × ℂ)((1st𝑝) + ((2nd𝑝)↑2)) = 𝐶)
104103expcom 413 . 2 (𝐶 ≠ 1 → (𝐶 ∈ ℂ → ¬ ∃!𝑝 ∈ (ℂ × ℂ)((1st𝑝) + ((2nd𝑝)↑2)) = 𝐶))
10556, 104pm2.61ine 3025 1 (𝐶 ∈ ℂ → ¬ ∃!𝑝 ∈ (ℂ × ℂ)((1st𝑝) + ((2nd𝑝)↑2)) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940  ∃!wreu 3378  cop 4632   × cxp 5683  cfv 6561  (class class class)co 7431  1st c1st 8012  2nd c2nd 8013  cc 11153  0cc0 11155  1c1 11156   + caddc 11158  cmin 11492  -cneg 11493  2c2 12321  3c3 12322  4c4 12323  cexp 14102  csqrt 15272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator