MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppttop Structured version   Visualization version   GIF version

Theorem ppttop 22309
Description: The particular point topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
ppttop ((𝐴𝑉𝑃𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ (TopOn‘𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑃   𝑥,𝑉

Proof of Theorem ppttop
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab 4029 . . . . 5 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ↔ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅)))
2 eleq2 2827 . . . . . . . 8 (𝑥 = 𝑦 → (𝑃𝑥𝑃 𝑦))
3 eqeq1 2742 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅))
42, 3orbi12d 918 . . . . . . 7 (𝑥 = 𝑦 → ((𝑃𝑥𝑥 = ∅) ↔ (𝑃 𝑦 𝑦 = ∅)))
5 simprl 770 . . . . . . . . 9 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → 𝑦 ⊆ 𝒫 𝐴)
6 sspwuni 5059 . . . . . . . . 9 (𝑦 ⊆ 𝒫 𝐴 𝑦𝐴)
75, 6sylib 217 . . . . . . . 8 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → 𝑦𝐴)
8 vuniex 7669 . . . . . . . . 9 𝑦 ∈ V
98elpw 4563 . . . . . . . 8 ( 𝑦 ∈ 𝒫 𝐴 𝑦𝐴)
107, 9sylibr 233 . . . . . . 7 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → 𝑦 ∈ 𝒫 𝐴)
11 neq0 4304 . . . . . . . . . 10 𝑦 = ∅ ↔ ∃𝑧 𝑧 𝑦)
12 eluni2 4868 . . . . . . . . . . . 12 (𝑧 𝑦 ↔ ∃𝑥𝑦 𝑧𝑥)
13 r19.29 3116 . . . . . . . . . . . . . . 15 ((∀𝑥𝑦 (𝑃𝑥𝑥 = ∅) ∧ ∃𝑥𝑦 𝑧𝑥) → ∃𝑥𝑦 ((𝑃𝑥𝑥 = ∅) ∧ 𝑧𝑥))
14 n0i 4292 . . . . . . . . . . . . . . . . . . 19 (𝑧𝑥 → ¬ 𝑥 = ∅)
1514adantl 483 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑥𝑥 = ∅) ∧ 𝑧𝑥) → ¬ 𝑥 = ∅)
16 simpl 484 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑥𝑥 = ∅) ∧ 𝑧𝑥) → (𝑃𝑥𝑥 = ∅))
1716ord 863 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑥𝑥 = ∅) ∧ 𝑧𝑥) → (¬ 𝑃𝑥𝑥 = ∅))
1815, 17mt3d 148 . . . . . . . . . . . . . . . . 17 (((𝑃𝑥𝑥 = ∅) ∧ 𝑧𝑥) → 𝑃𝑥)
19 simpl 484 . . . . . . . . . . . . . . . . 17 ((𝑥𝑦 ∧ ((𝑃𝑥𝑥 = ∅) ∧ 𝑧𝑥)) → 𝑥𝑦)
20 elunii 4869 . . . . . . . . . . . . . . . . 17 ((𝑃𝑥𝑥𝑦) → 𝑃 𝑦)
2118, 19, 20syl2an2 685 . . . . . . . . . . . . . . . 16 ((𝑥𝑦 ∧ ((𝑃𝑥𝑥 = ∅) ∧ 𝑧𝑥)) → 𝑃 𝑦)
2221rexlimiva 3143 . . . . . . . . . . . . . . 15 (∃𝑥𝑦 ((𝑃𝑥𝑥 = ∅) ∧ 𝑧𝑥) → 𝑃 𝑦)
2313, 22syl 17 . . . . . . . . . . . . . 14 ((∀𝑥𝑦 (𝑃𝑥𝑥 = ∅) ∧ ∃𝑥𝑦 𝑧𝑥) → 𝑃 𝑦)
2423ex 414 . . . . . . . . . . . . 13 (∀𝑥𝑦 (𝑃𝑥𝑥 = ∅) → (∃𝑥𝑦 𝑧𝑥𝑃 𝑦))
2524ad2antll 728 . . . . . . . . . . . 12 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → (∃𝑥𝑦 𝑧𝑥𝑃 𝑦))
2612, 25biimtrid 241 . . . . . . . . . . 11 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → (𝑧 𝑦𝑃 𝑦))
2726exlimdv 1937 . . . . . . . . . 10 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → (∃𝑧 𝑧 𝑦𝑃 𝑦))
2811, 27biimtrid 241 . . . . . . . . 9 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → (¬ 𝑦 = ∅ → 𝑃 𝑦))
2928con1d 145 . . . . . . . 8 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → (¬ 𝑃 𝑦 𝑦 = ∅))
3029orrd 862 . . . . . . 7 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → (𝑃 𝑦 𝑦 = ∅))
314, 10, 30elrabd 3646 . . . . . 6 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)})
3231ex 414 . . . . 5 ((𝐴𝑉𝑃𝐴) → ((𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅)) → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}))
331, 32biimtrid 241 . . . 4 ((𝐴𝑉𝑃𝐴) → (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}))
3433alrimiv 1931 . . 3 ((𝐴𝑉𝑃𝐴) → ∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}))
35 eleq2 2827 . . . . . . . 8 (𝑥 = 𝑦 → (𝑃𝑥𝑃𝑦))
36 eqeq1 2742 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅))
3735, 36orbi12d 918 . . . . . . 7 (𝑥 = 𝑦 → ((𝑃𝑥𝑥 = ∅) ↔ (𝑃𝑦𝑦 = ∅)))
3837elrab 3644 . . . . . 6 (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ↔ (𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)))
39 eleq2 2827 . . . . . . . 8 (𝑥 = 𝑧 → (𝑃𝑥𝑃𝑧))
40 eqeq1 2742 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = ∅ ↔ 𝑧 = ∅))
4139, 40orbi12d 918 . . . . . . 7 (𝑥 = 𝑧 → ((𝑃𝑥𝑥 = ∅) ↔ (𝑃𝑧𝑧 = ∅)))
4241elrab 3644 . . . . . 6 (𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ↔ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))
4338, 42anbi12i 628 . . . . 5 ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}) ↔ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅))))
44 eleq2 2827 . . . . . . . 8 (𝑥 = (𝑦𝑧) → (𝑃𝑥𝑃 ∈ (𝑦𝑧)))
45 eqeq1 2742 . . . . . . . 8 (𝑥 = (𝑦𝑧) → (𝑥 = ∅ ↔ (𝑦𝑧) = ∅))
4644, 45orbi12d 918 . . . . . . 7 (𝑥 = (𝑦𝑧) → ((𝑃𝑥𝑥 = ∅) ↔ (𝑃 ∈ (𝑦𝑧) ∨ (𝑦𝑧) = ∅)))
47 inss1 4187 . . . . . . . . 9 (𝑦𝑧) ⊆ 𝑦
48 simprll 778 . . . . . . . . . 10 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → 𝑦 ∈ 𝒫 𝐴)
4948elpwid 4568 . . . . . . . . 9 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → 𝑦𝐴)
5047, 49sstrid 3954 . . . . . . . 8 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (𝑦𝑧) ⊆ 𝐴)
51 vex 3448 . . . . . . . . . 10 𝑦 ∈ V
5251inex1 5273 . . . . . . . . 9 (𝑦𝑧) ∈ V
5352elpw 4563 . . . . . . . 8 ((𝑦𝑧) ∈ 𝒫 𝐴 ↔ (𝑦𝑧) ⊆ 𝐴)
5450, 53sylibr 233 . . . . . . 7 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (𝑦𝑧) ∈ 𝒫 𝐴)
55 ianor 981 . . . . . . . . . . 11 (¬ (𝑃𝑦𝑃𝑧) ↔ (¬ 𝑃𝑦 ∨ ¬ 𝑃𝑧))
56 elin 3925 . . . . . . . . . . 11 (𝑃 ∈ (𝑦𝑧) ↔ (𝑃𝑦𝑃𝑧))
5755, 56xchnxbir 333 . . . . . . . . . 10 𝑃 ∈ (𝑦𝑧) ↔ (¬ 𝑃𝑦 ∨ ¬ 𝑃𝑧))
58 simprlr 779 . . . . . . . . . . . 12 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (𝑃𝑦𝑦 = ∅))
5958ord 863 . . . . . . . . . . 11 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (¬ 𝑃𝑦𝑦 = ∅))
60 simprrr 781 . . . . . . . . . . . 12 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (𝑃𝑧𝑧 = ∅))
6160ord 863 . . . . . . . . . . 11 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (¬ 𝑃𝑧𝑧 = ∅))
6259, 61orim12d 964 . . . . . . . . . 10 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → ((¬ 𝑃𝑦 ∨ ¬ 𝑃𝑧) → (𝑦 = ∅ ∨ 𝑧 = ∅)))
6357, 62biimtrid 241 . . . . . . . . 9 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (¬ 𝑃 ∈ (𝑦𝑧) → (𝑦 = ∅ ∨ 𝑧 = ∅)))
64 inss 4197 . . . . . . . . . 10 ((𝑦 ⊆ ∅ ∨ 𝑧 ⊆ ∅) → (𝑦𝑧) ⊆ ∅)
65 ss0b 4356 . . . . . . . . . . 11 (𝑦 ⊆ ∅ ↔ 𝑦 = ∅)
66 ss0b 4356 . . . . . . . . . . 11 (𝑧 ⊆ ∅ ↔ 𝑧 = ∅)
6765, 66orbi12i 914 . . . . . . . . . 10 ((𝑦 ⊆ ∅ ∨ 𝑧 ⊆ ∅) ↔ (𝑦 = ∅ ∨ 𝑧 = ∅))
68 ss0b 4356 . . . . . . . . . 10 ((𝑦𝑧) ⊆ ∅ ↔ (𝑦𝑧) = ∅)
6964, 67, 683imtr3i 291 . . . . . . . . 9 ((𝑦 = ∅ ∨ 𝑧 = ∅) → (𝑦𝑧) = ∅)
7063, 69syl6 35 . . . . . . . 8 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (¬ 𝑃 ∈ (𝑦𝑧) → (𝑦𝑧) = ∅))
7170orrd 862 . . . . . . 7 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (𝑃 ∈ (𝑦𝑧) ∨ (𝑦𝑧) = ∅))
7246, 54, 71elrabd 3646 . . . . . 6 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)})
7372ex 414 . . . . 5 ((𝐴𝑉𝑃𝐴) → (((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅))) → (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}))
7443, 73biimtrid 241 . . . 4 ((𝐴𝑉𝑃𝐴) → ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}) → (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}))
7574ralrimivv 3194 . . 3 ((𝐴𝑉𝑃𝐴) → ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)})
76 pwexg 5332 . . . . 5 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
7776adantr 482 . . . 4 ((𝐴𝑉𝑃𝐴) → 𝒫 𝐴 ∈ V)
78 rabexg 5287 . . . 4 (𝒫 𝐴 ∈ V → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ V)
79 istopg 22196 . . . 4 ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ V → ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)})))
8077, 78, 793syl 18 . . 3 ((𝐴𝑉𝑃𝐴) → ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)})))
8134, 75, 80mpbir2and 712 . 2 ((𝐴𝑉𝑃𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ Top)
82 eleq2 2827 . . . . . 6 (𝑥 = 𝐴 → (𝑃𝑥𝑃𝐴))
83 eqeq1 2742 . . . . . 6 (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅))
8482, 83orbi12d 918 . . . . 5 (𝑥 = 𝐴 → ((𝑃𝑥𝑥 = ∅) ↔ (𝑃𝐴𝐴 = ∅)))
85 pwidg 4579 . . . . . 6 (𝐴𝑉𝐴 ∈ 𝒫 𝐴)
8685adantr 482 . . . . 5 ((𝐴𝑉𝑃𝐴) → 𝐴 ∈ 𝒫 𝐴)
87 animorrl 980 . . . . 5 ((𝐴𝑉𝑃𝐴) → (𝑃𝐴𝐴 = ∅))
8884, 86, 87elrabd 3646 . . . 4 ((𝐴𝑉𝑃𝐴) → 𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)})
89 elssuni 4897 . . . 4 (𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} → 𝐴 {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)})
9088, 89syl 17 . . 3 ((𝐴𝑉𝑃𝐴) → 𝐴 {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)})
91 ssrab2 4036 . . . . 5 {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ⊆ 𝒫 𝐴
92 sspwuni 5059 . . . . 5 ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ⊆ 𝒫 𝐴 {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ⊆ 𝐴)
9391, 92mpbi 229 . . . 4 {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ⊆ 𝐴
9493a1i 11 . . 3 ((𝐴𝑉𝑃𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ⊆ 𝐴)
9590, 94eqssd 3960 . 2 ((𝐴𝑉𝑃𝐴) → 𝐴 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)})
96 istopon 22213 . 2 ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ (TopOn‘𝐴) ↔ ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ Top ∧ 𝐴 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}))
9781, 95, 96sylanbrc 584 1 ((𝐴𝑉𝑃𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ (TopOn‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846  wal 1540   = wceq 1542  wex 1782  wcel 2107  wral 3063  wrex 3072  {crab 3406  Vcvv 3444  cin 3908  wss 3909  c0 4281  𝒫 cpw 4559   cuni 4864  cfv 6494  Topctop 22194  TopOnctopon 22211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7665
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ral 3064  df-rex 3073  df-rab 3407  df-v 3446  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-br 5105  df-opab 5167  df-mpt 5188  df-id 5530  df-xp 5638  df-rel 5639  df-cnv 5640  df-co 5641  df-dm 5642  df-iota 6446  df-fun 6496  df-fv 6502  df-top 22195  df-topon 22212
This theorem is referenced by:  pptbas  22310
  Copyright terms: Public domain W3C validator