MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppttop Structured version   Visualization version   GIF version

Theorem ppttop 22510
Description: The particular point topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
ppttop ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) β†’ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)} ∈ (TopOnβ€˜π΄))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝑃   π‘₯,𝑉

Proof of Theorem ppttop
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab 4071 . . . . 5 (𝑦 βŠ† {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)} ↔ (𝑦 βŠ† 𝒫 𝐴 ∧ βˆ€π‘₯ ∈ 𝑦 (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)))
2 eleq2 2823 . . . . . . . 8 (π‘₯ = βˆͺ 𝑦 β†’ (𝑃 ∈ π‘₯ ↔ 𝑃 ∈ βˆͺ 𝑦))
3 eqeq1 2737 . . . . . . . 8 (π‘₯ = βˆͺ 𝑦 β†’ (π‘₯ = βˆ… ↔ βˆͺ 𝑦 = βˆ…))
42, 3orbi12d 918 . . . . . . 7 (π‘₯ = βˆͺ 𝑦 β†’ ((𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…) ↔ (𝑃 ∈ βˆͺ 𝑦 ∨ βˆͺ 𝑦 = βˆ…)))
5 simprl 770 . . . . . . . . 9 (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 βŠ† 𝒫 𝐴 ∧ βˆ€π‘₯ ∈ 𝑦 (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…))) β†’ 𝑦 βŠ† 𝒫 𝐴)
6 sspwuni 5104 . . . . . . . . 9 (𝑦 βŠ† 𝒫 𝐴 ↔ βˆͺ 𝑦 βŠ† 𝐴)
75, 6sylib 217 . . . . . . . 8 (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 βŠ† 𝒫 𝐴 ∧ βˆ€π‘₯ ∈ 𝑦 (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…))) β†’ βˆͺ 𝑦 βŠ† 𝐴)
8 vuniex 7729 . . . . . . . . 9 βˆͺ 𝑦 ∈ V
98elpw 4607 . . . . . . . 8 (βˆͺ 𝑦 ∈ 𝒫 𝐴 ↔ βˆͺ 𝑦 βŠ† 𝐴)
107, 9sylibr 233 . . . . . . 7 (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 βŠ† 𝒫 𝐴 ∧ βˆ€π‘₯ ∈ 𝑦 (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…))) β†’ βˆͺ 𝑦 ∈ 𝒫 𝐴)
11 neq0 4346 . . . . . . . . . 10 (Β¬ βˆͺ 𝑦 = βˆ… ↔ βˆƒπ‘§ 𝑧 ∈ βˆͺ 𝑦)
12 eluni2 4913 . . . . . . . . . . . 12 (𝑧 ∈ βˆͺ 𝑦 ↔ βˆƒπ‘₯ ∈ 𝑦 𝑧 ∈ π‘₯)
13 r19.29 3115 . . . . . . . . . . . . . . 15 ((βˆ€π‘₯ ∈ 𝑦 (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…) ∧ βˆƒπ‘₯ ∈ 𝑦 𝑧 ∈ π‘₯) β†’ βˆƒπ‘₯ ∈ 𝑦 ((𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…) ∧ 𝑧 ∈ π‘₯))
14 n0i 4334 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ π‘₯ β†’ Β¬ π‘₯ = βˆ…)
1514adantl 483 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…) ∧ 𝑧 ∈ π‘₯) β†’ Β¬ π‘₯ = βˆ…)
16 simpl 484 . . . . . . . . . . . . . . . . . . 19 (((𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…) ∧ 𝑧 ∈ π‘₯) β†’ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…))
1716ord 863 . . . . . . . . . . . . . . . . . 18 (((𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…) ∧ 𝑧 ∈ π‘₯) β†’ (Β¬ 𝑃 ∈ π‘₯ β†’ π‘₯ = βˆ…))
1815, 17mt3d 148 . . . . . . . . . . . . . . . . 17 (((𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…) ∧ 𝑧 ∈ π‘₯) β†’ 𝑃 ∈ π‘₯)
19 simpl 484 . . . . . . . . . . . . . . . . 17 ((π‘₯ ∈ 𝑦 ∧ ((𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…) ∧ 𝑧 ∈ π‘₯)) β†’ π‘₯ ∈ 𝑦)
20 elunii 4914 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ π‘₯ ∧ π‘₯ ∈ 𝑦) β†’ 𝑃 ∈ βˆͺ 𝑦)
2118, 19, 20syl2an2 685 . . . . . . . . . . . . . . . 16 ((π‘₯ ∈ 𝑦 ∧ ((𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…) ∧ 𝑧 ∈ π‘₯)) β†’ 𝑃 ∈ βˆͺ 𝑦)
2221rexlimiva 3148 . . . . . . . . . . . . . . 15 (βˆƒπ‘₯ ∈ 𝑦 ((𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…) ∧ 𝑧 ∈ π‘₯) β†’ 𝑃 ∈ βˆͺ 𝑦)
2313, 22syl 17 . . . . . . . . . . . . . 14 ((βˆ€π‘₯ ∈ 𝑦 (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…) ∧ βˆƒπ‘₯ ∈ 𝑦 𝑧 ∈ π‘₯) β†’ 𝑃 ∈ βˆͺ 𝑦)
2423ex 414 . . . . . . . . . . . . 13 (βˆ€π‘₯ ∈ 𝑦 (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…) β†’ (βˆƒπ‘₯ ∈ 𝑦 𝑧 ∈ π‘₯ β†’ 𝑃 ∈ βˆͺ 𝑦))
2524ad2antll 728 . . . . . . . . . . . 12 (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 βŠ† 𝒫 𝐴 ∧ βˆ€π‘₯ ∈ 𝑦 (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…))) β†’ (βˆƒπ‘₯ ∈ 𝑦 𝑧 ∈ π‘₯ β†’ 𝑃 ∈ βˆͺ 𝑦))
2612, 25biimtrid 241 . . . . . . . . . . 11 (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 βŠ† 𝒫 𝐴 ∧ βˆ€π‘₯ ∈ 𝑦 (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…))) β†’ (𝑧 ∈ βˆͺ 𝑦 β†’ 𝑃 ∈ βˆͺ 𝑦))
2726exlimdv 1937 . . . . . . . . . 10 (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 βŠ† 𝒫 𝐴 ∧ βˆ€π‘₯ ∈ 𝑦 (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…))) β†’ (βˆƒπ‘§ 𝑧 ∈ βˆͺ 𝑦 β†’ 𝑃 ∈ βˆͺ 𝑦))
2811, 27biimtrid 241 . . . . . . . . 9 (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 βŠ† 𝒫 𝐴 ∧ βˆ€π‘₯ ∈ 𝑦 (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…))) β†’ (Β¬ βˆͺ 𝑦 = βˆ… β†’ 𝑃 ∈ βˆͺ 𝑦))
2928con1d 145 . . . . . . . 8 (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 βŠ† 𝒫 𝐴 ∧ βˆ€π‘₯ ∈ 𝑦 (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…))) β†’ (Β¬ 𝑃 ∈ βˆͺ 𝑦 β†’ βˆͺ 𝑦 = βˆ…))
3029orrd 862 . . . . . . 7 (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 βŠ† 𝒫 𝐴 ∧ βˆ€π‘₯ ∈ 𝑦 (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…))) β†’ (𝑃 ∈ βˆͺ 𝑦 ∨ βˆͺ 𝑦 = βˆ…))
314, 10, 30elrabd 3686 . . . . . 6 (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 βŠ† 𝒫 𝐴 ∧ βˆ€π‘₯ ∈ 𝑦 (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…))) β†’ βˆͺ 𝑦 ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)})
3231ex 414 . . . . 5 ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) β†’ ((𝑦 βŠ† 𝒫 𝐴 ∧ βˆ€π‘₯ ∈ 𝑦 (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)) β†’ βˆͺ 𝑦 ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)}))
331, 32biimtrid 241 . . . 4 ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) β†’ (𝑦 βŠ† {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)} β†’ βˆͺ 𝑦 ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)}))
3433alrimiv 1931 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) β†’ βˆ€π‘¦(𝑦 βŠ† {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)} β†’ βˆͺ 𝑦 ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)}))
35 eleq2 2823 . . . . . . . 8 (π‘₯ = 𝑦 β†’ (𝑃 ∈ π‘₯ ↔ 𝑃 ∈ 𝑦))
36 eqeq1 2737 . . . . . . . 8 (π‘₯ = 𝑦 β†’ (π‘₯ = βˆ… ↔ 𝑦 = βˆ…))
3735, 36orbi12d 918 . . . . . . 7 (π‘₯ = 𝑦 β†’ ((𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…) ↔ (𝑃 ∈ 𝑦 ∨ 𝑦 = βˆ…)))
3837elrab 3684 . . . . . 6 (𝑦 ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)} ↔ (𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 ∨ 𝑦 = βˆ…)))
39 eleq2 2823 . . . . . . . 8 (π‘₯ = 𝑧 β†’ (𝑃 ∈ π‘₯ ↔ 𝑃 ∈ 𝑧))
40 eqeq1 2737 . . . . . . . 8 (π‘₯ = 𝑧 β†’ (π‘₯ = βˆ… ↔ 𝑧 = βˆ…))
4139, 40orbi12d 918 . . . . . . 7 (π‘₯ = 𝑧 β†’ ((𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…) ↔ (𝑃 ∈ 𝑧 ∨ 𝑧 = βˆ…)))
4241elrab 3684 . . . . . 6 (𝑧 ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)} ↔ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = βˆ…)))
4338, 42anbi12i 628 . . . . 5 ((𝑦 ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)} ∧ 𝑧 ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)}) ↔ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 ∨ 𝑦 = βˆ…)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = βˆ…))))
44 eleq2 2823 . . . . . . . 8 (π‘₯ = (𝑦 ∩ 𝑧) β†’ (𝑃 ∈ π‘₯ ↔ 𝑃 ∈ (𝑦 ∩ 𝑧)))
45 eqeq1 2737 . . . . . . . 8 (π‘₯ = (𝑦 ∩ 𝑧) β†’ (π‘₯ = βˆ… ↔ (𝑦 ∩ 𝑧) = βˆ…))
4644, 45orbi12d 918 . . . . . . 7 (π‘₯ = (𝑦 ∩ 𝑧) β†’ ((𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…) ↔ (𝑃 ∈ (𝑦 ∩ 𝑧) ∨ (𝑦 ∩ 𝑧) = βˆ…)))
47 inss1 4229 . . . . . . . . 9 (𝑦 ∩ 𝑧) βŠ† 𝑦
48 simprll 778 . . . . . . . . . 10 (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 ∨ 𝑦 = βˆ…)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = βˆ…)))) β†’ 𝑦 ∈ 𝒫 𝐴)
4948elpwid 4612 . . . . . . . . 9 (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 ∨ 𝑦 = βˆ…)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = βˆ…)))) β†’ 𝑦 βŠ† 𝐴)
5047, 49sstrid 3994 . . . . . . . 8 (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 ∨ 𝑦 = βˆ…)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = βˆ…)))) β†’ (𝑦 ∩ 𝑧) βŠ† 𝐴)
51 vex 3479 . . . . . . . . . 10 𝑦 ∈ V
5251inex1 5318 . . . . . . . . 9 (𝑦 ∩ 𝑧) ∈ V
5352elpw 4607 . . . . . . . 8 ((𝑦 ∩ 𝑧) ∈ 𝒫 𝐴 ↔ (𝑦 ∩ 𝑧) βŠ† 𝐴)
5450, 53sylibr 233 . . . . . . 7 (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 ∨ 𝑦 = βˆ…)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = βˆ…)))) β†’ (𝑦 ∩ 𝑧) ∈ 𝒫 𝐴)
55 ianor 981 . . . . . . . . . . 11 (Β¬ (𝑃 ∈ 𝑦 ∧ 𝑃 ∈ 𝑧) ↔ (Β¬ 𝑃 ∈ 𝑦 ∨ Β¬ 𝑃 ∈ 𝑧))
56 elin 3965 . . . . . . . . . . 11 (𝑃 ∈ (𝑦 ∩ 𝑧) ↔ (𝑃 ∈ 𝑦 ∧ 𝑃 ∈ 𝑧))
5755, 56xchnxbir 333 . . . . . . . . . 10 (Β¬ 𝑃 ∈ (𝑦 ∩ 𝑧) ↔ (Β¬ 𝑃 ∈ 𝑦 ∨ Β¬ 𝑃 ∈ 𝑧))
58 simprlr 779 . . . . . . . . . . . 12 (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 ∨ 𝑦 = βˆ…)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = βˆ…)))) β†’ (𝑃 ∈ 𝑦 ∨ 𝑦 = βˆ…))
5958ord 863 . . . . . . . . . . 11 (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 ∨ 𝑦 = βˆ…)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = βˆ…)))) β†’ (Β¬ 𝑃 ∈ 𝑦 β†’ 𝑦 = βˆ…))
60 simprrr 781 . . . . . . . . . . . 12 (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 ∨ 𝑦 = βˆ…)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = βˆ…)))) β†’ (𝑃 ∈ 𝑧 ∨ 𝑧 = βˆ…))
6160ord 863 . . . . . . . . . . 11 (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 ∨ 𝑦 = βˆ…)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = βˆ…)))) β†’ (Β¬ 𝑃 ∈ 𝑧 β†’ 𝑧 = βˆ…))
6259, 61orim12d 964 . . . . . . . . . 10 (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 ∨ 𝑦 = βˆ…)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = βˆ…)))) β†’ ((Β¬ 𝑃 ∈ 𝑦 ∨ Β¬ 𝑃 ∈ 𝑧) β†’ (𝑦 = βˆ… ∨ 𝑧 = βˆ…)))
6357, 62biimtrid 241 . . . . . . . . 9 (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 ∨ 𝑦 = βˆ…)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = βˆ…)))) β†’ (Β¬ 𝑃 ∈ (𝑦 ∩ 𝑧) β†’ (𝑦 = βˆ… ∨ 𝑧 = βˆ…)))
64 inss 4239 . . . . . . . . . 10 ((𝑦 βŠ† βˆ… ∨ 𝑧 βŠ† βˆ…) β†’ (𝑦 ∩ 𝑧) βŠ† βˆ…)
65 ss0b 4398 . . . . . . . . . . 11 (𝑦 βŠ† βˆ… ↔ 𝑦 = βˆ…)
66 ss0b 4398 . . . . . . . . . . 11 (𝑧 βŠ† βˆ… ↔ 𝑧 = βˆ…)
6765, 66orbi12i 914 . . . . . . . . . 10 ((𝑦 βŠ† βˆ… ∨ 𝑧 βŠ† βˆ…) ↔ (𝑦 = βˆ… ∨ 𝑧 = βˆ…))
68 ss0b 4398 . . . . . . . . . 10 ((𝑦 ∩ 𝑧) βŠ† βˆ… ↔ (𝑦 ∩ 𝑧) = βˆ…)
6964, 67, 683imtr3i 291 . . . . . . . . 9 ((𝑦 = βˆ… ∨ 𝑧 = βˆ…) β†’ (𝑦 ∩ 𝑧) = βˆ…)
7063, 69syl6 35 . . . . . . . 8 (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 ∨ 𝑦 = βˆ…)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = βˆ…)))) β†’ (Β¬ 𝑃 ∈ (𝑦 ∩ 𝑧) β†’ (𝑦 ∩ 𝑧) = βˆ…))
7170orrd 862 . . . . . . 7 (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 ∨ 𝑦 = βˆ…)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = βˆ…)))) β†’ (𝑃 ∈ (𝑦 ∩ 𝑧) ∨ (𝑦 ∩ 𝑧) = βˆ…))
7246, 54, 71elrabd 3686 . . . . . 6 (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 ∨ 𝑦 = βˆ…)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = βˆ…)))) β†’ (𝑦 ∩ 𝑧) ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)})
7372ex 414 . . . . 5 ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) β†’ (((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 ∨ 𝑦 = βˆ…)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = βˆ…))) β†’ (𝑦 ∩ 𝑧) ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)}))
7443, 73biimtrid 241 . . . 4 ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) β†’ ((𝑦 ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)} ∧ 𝑧 ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)}) β†’ (𝑦 ∩ 𝑧) ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)}))
7574ralrimivv 3199 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) β†’ βˆ€π‘¦ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)}βˆ€π‘§ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)} (𝑦 ∩ 𝑧) ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)})
76 pwexg 5377 . . . . 5 (𝐴 ∈ 𝑉 β†’ 𝒫 𝐴 ∈ V)
7776adantr 482 . . . 4 ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) β†’ 𝒫 𝐴 ∈ V)
78 rabexg 5332 . . . 4 (𝒫 𝐴 ∈ V β†’ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)} ∈ V)
79 istopg 22397 . . . 4 ({π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)} ∈ V β†’ ({π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)} ∈ Top ↔ (βˆ€π‘¦(𝑦 βŠ† {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)} β†’ βˆͺ 𝑦 ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)}) ∧ βˆ€π‘¦ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)}βˆ€π‘§ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)} (𝑦 ∩ 𝑧) ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)})))
8077, 78, 793syl 18 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) β†’ ({π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)} ∈ Top ↔ (βˆ€π‘¦(𝑦 βŠ† {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)} β†’ βˆͺ 𝑦 ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)}) ∧ βˆ€π‘¦ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)}βˆ€π‘§ ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)} (𝑦 ∩ 𝑧) ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)})))
8134, 75, 80mpbir2and 712 . 2 ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) β†’ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)} ∈ Top)
82 eleq2 2823 . . . . . 6 (π‘₯ = 𝐴 β†’ (𝑃 ∈ π‘₯ ↔ 𝑃 ∈ 𝐴))
83 eqeq1 2737 . . . . . 6 (π‘₯ = 𝐴 β†’ (π‘₯ = βˆ… ↔ 𝐴 = βˆ…))
8482, 83orbi12d 918 . . . . 5 (π‘₯ = 𝐴 β†’ ((𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…) ↔ (𝑃 ∈ 𝐴 ∨ 𝐴 = βˆ…)))
85 pwidg 4623 . . . . . 6 (𝐴 ∈ 𝑉 β†’ 𝐴 ∈ 𝒫 𝐴)
8685adantr 482 . . . . 5 ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) β†’ 𝐴 ∈ 𝒫 𝐴)
87 animorrl 980 . . . . 5 ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) β†’ (𝑃 ∈ 𝐴 ∨ 𝐴 = βˆ…))
8884, 86, 87elrabd 3686 . . . 4 ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) β†’ 𝐴 ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)})
89 elssuni 4942 . . . 4 (𝐴 ∈ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)} β†’ 𝐴 βŠ† βˆͺ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)})
9088, 89syl 17 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) β†’ 𝐴 βŠ† βˆͺ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)})
91 ssrab2 4078 . . . . 5 {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)} βŠ† 𝒫 𝐴
92 sspwuni 5104 . . . . 5 ({π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)} βŠ† 𝒫 𝐴 ↔ βˆͺ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)} βŠ† 𝐴)
9391, 92mpbi 229 . . . 4 βˆͺ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)} βŠ† 𝐴
9493a1i 11 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) β†’ βˆͺ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)} βŠ† 𝐴)
9590, 94eqssd 4000 . 2 ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) β†’ 𝐴 = βˆͺ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)})
96 istopon 22414 . 2 ({π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)} ∈ (TopOnβ€˜π΄) ↔ ({π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)} ∈ Top ∧ 𝐴 = βˆͺ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)}))
9781, 95, 96sylanbrc 584 1 ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) β†’ {π‘₯ ∈ 𝒫 𝐴 ∣ (𝑃 ∈ π‘₯ ∨ π‘₯ = βˆ…)} ∈ (TopOnβ€˜π΄))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∨ wo 846  βˆ€wal 1540   = wceq 1542  βˆƒwex 1782   ∈ wcel 2107  βˆ€wral 3062  βˆƒwrex 3071  {crab 3433  Vcvv 3475   ∩ cin 3948   βŠ† wss 3949  βˆ…c0 4323  π’« cpw 4603  βˆͺ cuni 4909  β€˜cfv 6544  Topctop 22395  TopOnctopon 22412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-top 22396  df-topon 22413
This theorem is referenced by:  pptbas  22511
  Copyright terms: Public domain W3C validator