| Step | Hyp | Ref
| Expression |
| 1 | | ssrab 4073 |
. . . . 5
⊢ (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} ↔ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅))) |
| 2 | | eleq2 2830 |
. . . . . . . 8
⊢ (𝑥 = ∪
𝑦 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ ∪ 𝑦)) |
| 3 | | eqeq1 2741 |
. . . . . . . 8
⊢ (𝑥 = ∪
𝑦 → (𝑥 = ∅ ↔ ∪ 𝑦 =
∅)) |
| 4 | 2, 3 | orbi12d 919 |
. . . . . . 7
⊢ (𝑥 = ∪
𝑦 → ((𝑃 ∈ 𝑥 ∨ 𝑥 = ∅) ↔ (𝑃 ∈ ∪ 𝑦 ∨ ∪ 𝑦 =
∅))) |
| 5 | | simprl 771 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅))) → 𝑦 ⊆ 𝒫 𝐴) |
| 6 | | sspwuni 5100 |
. . . . . . . . 9
⊢ (𝑦 ⊆ 𝒫 𝐴 ↔ ∪ 𝑦
⊆ 𝐴) |
| 7 | 5, 6 | sylib 218 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅))) → ∪ 𝑦
⊆ 𝐴) |
| 8 | | vuniex 7759 |
. . . . . . . . 9
⊢ ∪ 𝑦
∈ V |
| 9 | 8 | elpw 4604 |
. . . . . . . 8
⊢ (∪ 𝑦
∈ 𝒫 𝐴 ↔
∪ 𝑦 ⊆ 𝐴) |
| 10 | 7, 9 | sylibr 234 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅))) → ∪ 𝑦
∈ 𝒫 𝐴) |
| 11 | | neq0 4352 |
. . . . . . . . . 10
⊢ (¬
∪ 𝑦 = ∅ ↔ ∃𝑧 𝑧 ∈ ∪ 𝑦) |
| 12 | | eluni2 4911 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ∪ 𝑦
↔ ∃𝑥 ∈
𝑦 𝑧 ∈ 𝑥) |
| 13 | | r19.29 3114 |
. . . . . . . . . . . . . . 15
⊢
((∀𝑥 ∈
𝑦 (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅) ∧ ∃𝑥 ∈ 𝑦 𝑧 ∈ 𝑥) → ∃𝑥 ∈ 𝑦 ((𝑃 ∈ 𝑥 ∨ 𝑥 = ∅) ∧ 𝑧 ∈ 𝑥)) |
| 14 | | n0i 4340 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ 𝑥 → ¬ 𝑥 = ∅) |
| 15 | 14 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑃 ∈ 𝑥 ∨ 𝑥 = ∅) ∧ 𝑧 ∈ 𝑥) → ¬ 𝑥 = ∅) |
| 16 | | simpl 482 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑃 ∈ 𝑥 ∨ 𝑥 = ∅) ∧ 𝑧 ∈ 𝑥) → (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)) |
| 17 | 16 | ord 865 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑃 ∈ 𝑥 ∨ 𝑥 = ∅) ∧ 𝑧 ∈ 𝑥) → (¬ 𝑃 ∈ 𝑥 → 𝑥 = ∅)) |
| 18 | 15, 17 | mt3d 148 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑃 ∈ 𝑥 ∨ 𝑥 = ∅) ∧ 𝑧 ∈ 𝑥) → 𝑃 ∈ 𝑥) |
| 19 | | simpl 482 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ 𝑦 ∧ ((𝑃 ∈ 𝑥 ∨ 𝑥 = ∅) ∧ 𝑧 ∈ 𝑥)) → 𝑥 ∈ 𝑦) |
| 20 | | elunii 4912 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦) → 𝑃 ∈ ∪ 𝑦) |
| 21 | 18, 19, 20 | syl2an2 686 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ 𝑦 ∧ ((𝑃 ∈ 𝑥 ∨ 𝑥 = ∅) ∧ 𝑧 ∈ 𝑥)) → 𝑃 ∈ ∪ 𝑦) |
| 22 | 21 | rexlimiva 3147 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑥 ∈
𝑦 ((𝑃 ∈ 𝑥 ∨ 𝑥 = ∅) ∧ 𝑧 ∈ 𝑥) → 𝑃 ∈ ∪ 𝑦) |
| 23 | 13, 22 | syl 17 |
. . . . . . . . . . . . . 14
⊢
((∀𝑥 ∈
𝑦 (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅) ∧ ∃𝑥 ∈ 𝑦 𝑧 ∈ 𝑥) → 𝑃 ∈ ∪ 𝑦) |
| 24 | 23 | ex 412 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
𝑦 (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅) → (∃𝑥 ∈ 𝑦 𝑧 ∈ 𝑥 → 𝑃 ∈ ∪ 𝑦)) |
| 25 | 24 | ad2antll 729 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅))) → (∃𝑥 ∈ 𝑦 𝑧 ∈ 𝑥 → 𝑃 ∈ ∪ 𝑦)) |
| 26 | 12, 25 | biimtrid 242 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅))) → (𝑧 ∈ ∪ 𝑦 → 𝑃 ∈ ∪ 𝑦)) |
| 27 | 26 | exlimdv 1933 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅))) → (∃𝑧 𝑧 ∈ ∪ 𝑦 → 𝑃 ∈ ∪ 𝑦)) |
| 28 | 11, 27 | biimtrid 242 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅))) → (¬ ∪ 𝑦 =
∅ → 𝑃 ∈
∪ 𝑦)) |
| 29 | 28 | con1d 145 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅))) → (¬ 𝑃 ∈ ∪ 𝑦 → ∪ 𝑦 =
∅)) |
| 30 | 29 | orrd 864 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅))) → (𝑃 ∈ ∪ 𝑦 ∨ ∪ 𝑦 =
∅)) |
| 31 | 4, 10, 30 | elrabd 3694 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅))) → ∪ 𝑦
∈ {𝑥 ∈ 𝒫
𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)}) |
| 32 | 31 | ex 412 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ((𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥 ∈ 𝑦 (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)) → ∪ 𝑦
∈ {𝑥 ∈ 𝒫
𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)})) |
| 33 | 1, 32 | biimtrid 242 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} → ∪ 𝑦
∈ {𝑥 ∈ 𝒫
𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)})) |
| 34 | 33 | alrimiv 1927 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} → ∪ 𝑦
∈ {𝑥 ∈ 𝒫
𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)})) |
| 35 | | eleq2 2830 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑦)) |
| 36 | | eqeq1 2741 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅)) |
| 37 | 35, 36 | orbi12d 919 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((𝑃 ∈ 𝑥 ∨ 𝑥 = ∅) ↔ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅))) |
| 38 | 37 | elrab 3692 |
. . . . . 6
⊢ (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} ↔ (𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅))) |
| 39 | | eleq2 2830 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑧)) |
| 40 | | eqeq1 2741 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑥 = ∅ ↔ 𝑧 = ∅)) |
| 41 | 39, 40 | orbi12d 919 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → ((𝑃 ∈ 𝑥 ∨ 𝑥 = ∅) ↔ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) |
| 42 | 41 | elrab 3692 |
. . . . . 6
⊢ (𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} ↔ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) |
| 43 | 38, 42 | anbi12i 628 |
. . . . 5
⊢ ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)}) ↔ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅)))) |
| 44 | | eleq2 2830 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∩ 𝑧) → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ (𝑦 ∩ 𝑧))) |
| 45 | | eqeq1 2741 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 ∩ 𝑧) → (𝑥 = ∅ ↔ (𝑦 ∩ 𝑧) = ∅)) |
| 46 | 44, 45 | orbi12d 919 |
. . . . . . 7
⊢ (𝑥 = (𝑦 ∩ 𝑧) → ((𝑃 ∈ 𝑥 ∨ 𝑥 = ∅) ↔ (𝑃 ∈ (𝑦 ∩ 𝑧) ∨ (𝑦 ∩ 𝑧) = ∅))) |
| 47 | | inss1 4237 |
. . . . . . . . 9
⊢ (𝑦 ∩ 𝑧) ⊆ 𝑦 |
| 48 | | simprll 779 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅)))) → 𝑦 ∈ 𝒫 𝐴) |
| 49 | 48 | elpwid 4609 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅)))) → 𝑦 ⊆ 𝐴) |
| 50 | 47, 49 | sstrid 3995 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅)))) → (𝑦 ∩ 𝑧) ⊆ 𝐴) |
| 51 | | vex 3484 |
. . . . . . . . . 10
⊢ 𝑦 ∈ V |
| 52 | 51 | inex1 5317 |
. . . . . . . . 9
⊢ (𝑦 ∩ 𝑧) ∈ V |
| 53 | 52 | elpw 4604 |
. . . . . . . 8
⊢ ((𝑦 ∩ 𝑧) ∈ 𝒫 𝐴 ↔ (𝑦 ∩ 𝑧) ⊆ 𝐴) |
| 54 | 50, 53 | sylibr 234 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅)))) → (𝑦 ∩ 𝑧) ∈ 𝒫 𝐴) |
| 55 | | ianor 984 |
. . . . . . . . . . 11
⊢ (¬
(𝑃 ∈ 𝑦 ∧ 𝑃 ∈ 𝑧) ↔ (¬ 𝑃 ∈ 𝑦 ∨ ¬ 𝑃 ∈ 𝑧)) |
| 56 | | elin 3967 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ (𝑦 ∩ 𝑧) ↔ (𝑃 ∈ 𝑦 ∧ 𝑃 ∈ 𝑧)) |
| 57 | 55, 56 | xchnxbir 333 |
. . . . . . . . . 10
⊢ (¬
𝑃 ∈ (𝑦 ∩ 𝑧) ↔ (¬ 𝑃 ∈ 𝑦 ∨ ¬ 𝑃 ∈ 𝑧)) |
| 58 | | simprlr 780 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅)))) → (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)) |
| 59 | 58 | ord 865 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅)))) → (¬ 𝑃 ∈ 𝑦 → 𝑦 = ∅)) |
| 60 | | simprrr 782 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅)))) → (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅)) |
| 61 | 60 | ord 865 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅)))) → (¬ 𝑃 ∈ 𝑧 → 𝑧 = ∅)) |
| 62 | 59, 61 | orim12d 967 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅)))) → ((¬ 𝑃 ∈ 𝑦 ∨ ¬ 𝑃 ∈ 𝑧) → (𝑦 = ∅ ∨ 𝑧 = ∅))) |
| 63 | 57, 62 | biimtrid 242 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅)))) → (¬ 𝑃 ∈ (𝑦 ∩ 𝑧) → (𝑦 = ∅ ∨ 𝑧 = ∅))) |
| 64 | | inss 4248 |
. . . . . . . . . 10
⊢ ((𝑦 ⊆ ∅ ∨ 𝑧 ⊆ ∅) → (𝑦 ∩ 𝑧) ⊆ ∅) |
| 65 | | ss0b 4401 |
. . . . . . . . . . 11
⊢ (𝑦 ⊆ ∅ ↔ 𝑦 = ∅) |
| 66 | | ss0b 4401 |
. . . . . . . . . . 11
⊢ (𝑧 ⊆ ∅ ↔ 𝑧 = ∅) |
| 67 | 65, 66 | orbi12i 915 |
. . . . . . . . . 10
⊢ ((𝑦 ⊆ ∅ ∨ 𝑧 ⊆ ∅) ↔ (𝑦 = ∅ ∨ 𝑧 = ∅)) |
| 68 | | ss0b 4401 |
. . . . . . . . . 10
⊢ ((𝑦 ∩ 𝑧) ⊆ ∅ ↔ (𝑦 ∩ 𝑧) = ∅) |
| 69 | 64, 67, 68 | 3imtr3i 291 |
. . . . . . . . 9
⊢ ((𝑦 = ∅ ∨ 𝑧 = ∅) → (𝑦 ∩ 𝑧) = ∅) |
| 70 | 63, 69 | syl6 35 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅)))) → (¬ 𝑃 ∈ (𝑦 ∩ 𝑧) → (𝑦 ∩ 𝑧) = ∅)) |
| 71 | 70 | orrd 864 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅)))) → (𝑃 ∈ (𝑦 ∩ 𝑧) ∨ (𝑦 ∩ 𝑧) = ∅)) |
| 72 | 46, 54, 71 | elrabd 3694 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅)))) → (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)}) |
| 73 | 72 | ex 412 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → (((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) → (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)})) |
| 74 | 43, 73 | biimtrid 242 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)}) → (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)})) |
| 75 | 74 | ralrimivv 3200 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)}) |
| 76 | | pwexg 5378 |
. . . . 5
⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V) |
| 77 | 76 | adantr 480 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → 𝒫 𝐴 ∈ V) |
| 78 | | rabexg 5337 |
. . . 4
⊢
(𝒫 𝐴 ∈
V → {𝑥 ∈
𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} ∈ V) |
| 79 | | istopg 22901 |
. . . 4
⊢ ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} ∈ V → ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} → ∪ 𝑦
∈ {𝑥 ∈ 𝒫
𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)}))) |
| 80 | 77, 78, 79 | 3syl 18 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} → ∪ 𝑦
∈ {𝑥 ∈ 𝒫
𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} (𝑦 ∩ 𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)}))) |
| 81 | 34, 75, 80 | mpbir2and 713 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} ∈ Top) |
| 82 | | eleq2 2830 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝐴)) |
| 83 | | eqeq1 2741 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅)) |
| 84 | 82, 83 | orbi12d 919 |
. . . . 5
⊢ (𝑥 = 𝐴 → ((𝑃 ∈ 𝑥 ∨ 𝑥 = ∅) ↔ (𝑃 ∈ 𝐴 ∨ 𝐴 = ∅))) |
| 85 | | pwidg 4620 |
. . . . . 6
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝒫 𝐴) |
| 86 | 85 | adantr 480 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → 𝐴 ∈ 𝒫 𝐴) |
| 87 | | animorrl 983 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → (𝑃 ∈ 𝐴 ∨ 𝐴 = ∅)) |
| 88 | 84, 86, 87 | elrabd 3694 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → 𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)}) |
| 89 | | elssuni 4937 |
. . . 4
⊢ (𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} → 𝐴 ⊆ ∪ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)}) |
| 90 | 88, 89 | syl 17 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → 𝐴 ⊆ ∪ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)}) |
| 91 | | ssrab2 4080 |
. . . . 5
⊢ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} ⊆ 𝒫 𝐴 |
| 92 | | sspwuni 5100 |
. . . . 5
⊢ ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} ⊆ 𝒫 𝐴 ↔ ∪ {𝑥
∈ 𝒫 𝐴 ∣
(𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} ⊆ 𝐴) |
| 93 | 91, 92 | mpbi 230 |
. . . 4
⊢ ∪ {𝑥
∈ 𝒫 𝐴 ∣
(𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} ⊆ 𝐴 |
| 94 | 93 | a1i 11 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ∪ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} ⊆ 𝐴) |
| 95 | 90, 94 | eqssd 4001 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → 𝐴 = ∪ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)}) |
| 96 | | istopon 22918 |
. 2
⊢ ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴) ↔ ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} ∈ Top ∧ 𝐴 = ∪
{𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)})) |
| 97 | 81, 95, 96 | sylanbrc 583 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} ∈ (TopOn‘𝐴)) |