MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ppttop Structured version   Visualization version   GIF version

Theorem ppttop 21025
Description: The particular point topology. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
ppttop ((𝐴𝑉𝑃𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ (TopOn‘𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑃   𝑥,𝑉

Proof of Theorem ppttop
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab 3877 . . . . 5 (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ↔ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅)))
2 simprl 778 . . . . . . . . 9 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → 𝑦 ⊆ 𝒫 𝐴)
3 sspwuni 4803 . . . . . . . . 9 (𝑦 ⊆ 𝒫 𝐴 𝑦𝐴)
42, 3sylib 209 . . . . . . . 8 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → 𝑦𝐴)
5 vuniex 7184 . . . . . . . . 9 𝑦 ∈ V
65elpw 4357 . . . . . . . 8 ( 𝑦 ∈ 𝒫 𝐴 𝑦𝐴)
74, 6sylibr 225 . . . . . . 7 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → 𝑦 ∈ 𝒫 𝐴)
8 neq0 4131 . . . . . . . . . 10 𝑦 = ∅ ↔ ∃𝑧 𝑧 𝑦)
9 eluni2 4634 . . . . . . . . . . . 12 (𝑧 𝑦 ↔ ∃𝑥𝑦 𝑧𝑥)
10 r19.29 3260 . . . . . . . . . . . . . . 15 ((∀𝑥𝑦 (𝑃𝑥𝑥 = ∅) ∧ ∃𝑥𝑦 𝑧𝑥) → ∃𝑥𝑦 ((𝑃𝑥𝑥 = ∅) ∧ 𝑧𝑥))
11 n0i 4121 . . . . . . . . . . . . . . . . . . . 20 (𝑧𝑥 → ¬ 𝑥 = ∅)
1211adantl 469 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑥𝑥 = ∅) ∧ 𝑧𝑥) → ¬ 𝑥 = ∅)
13 simpl 470 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑥𝑥 = ∅) ∧ 𝑧𝑥) → (𝑃𝑥𝑥 = ∅))
1413ord 882 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑥𝑥 = ∅) ∧ 𝑧𝑥) → (¬ 𝑃𝑥𝑥 = ∅))
1512, 14mt3d 142 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑥𝑥 = ∅) ∧ 𝑧𝑥) → 𝑃𝑥)
1615adantl 469 . . . . . . . . . . . . . . . . 17 ((𝑥𝑦 ∧ ((𝑃𝑥𝑥 = ∅) ∧ 𝑧𝑥)) → 𝑃𝑥)
17 simpl 470 . . . . . . . . . . . . . . . . 17 ((𝑥𝑦 ∧ ((𝑃𝑥𝑥 = ∅) ∧ 𝑧𝑥)) → 𝑥𝑦)
18 elunii 4635 . . . . . . . . . . . . . . . . 17 ((𝑃𝑥𝑥𝑦) → 𝑃 𝑦)
1916, 17, 18syl2anc 575 . . . . . . . . . . . . . . . 16 ((𝑥𝑦 ∧ ((𝑃𝑥𝑥 = ∅) ∧ 𝑧𝑥)) → 𝑃 𝑦)
2019rexlimiva 3216 . . . . . . . . . . . . . . 15 (∃𝑥𝑦 ((𝑃𝑥𝑥 = ∅) ∧ 𝑧𝑥) → 𝑃 𝑦)
2110, 20syl 17 . . . . . . . . . . . . . 14 ((∀𝑥𝑦 (𝑃𝑥𝑥 = ∅) ∧ ∃𝑥𝑦 𝑧𝑥) → 𝑃 𝑦)
2221ex 399 . . . . . . . . . . . . 13 (∀𝑥𝑦 (𝑃𝑥𝑥 = ∅) → (∃𝑥𝑦 𝑧𝑥𝑃 𝑦))
2322ad2antll 711 . . . . . . . . . . . 12 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → (∃𝑥𝑦 𝑧𝑥𝑃 𝑦))
249, 23syl5bi 233 . . . . . . . . . . 11 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → (𝑧 𝑦𝑃 𝑦))
2524exlimdv 2024 . . . . . . . . . 10 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → (∃𝑧 𝑧 𝑦𝑃 𝑦))
268, 25syl5bi 233 . . . . . . . . 9 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → (¬ 𝑦 = ∅ → 𝑃 𝑦))
2726con1d 141 . . . . . . . 8 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → (¬ 𝑃 𝑦 𝑦 = ∅))
2827orrd 881 . . . . . . 7 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → (𝑃 𝑦 𝑦 = ∅))
29 eleq2 2874 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑃𝑥𝑃 𝑦))
30 eqeq1 2810 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅))
3129, 30orbi12d 933 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑃𝑥𝑥 = ∅) ↔ (𝑃 𝑦 𝑦 = ∅)))
3231elrab 3559 . . . . . . 7 ( 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ↔ ( 𝑦 ∈ 𝒫 𝐴 ∧ (𝑃 𝑦 𝑦 = ∅)))
337, 28, 32sylanbrc 574 . . . . . 6 (((𝐴𝑉𝑃𝐴) ∧ (𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅))) → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)})
3433ex 399 . . . . 5 ((𝐴𝑉𝑃𝐴) → ((𝑦 ⊆ 𝒫 𝐴 ∧ ∀𝑥𝑦 (𝑃𝑥𝑥 = ∅)) → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}))
351, 34syl5bi 233 . . . 4 ((𝐴𝑉𝑃𝐴) → (𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}))
3635alrimiv 2018 . . 3 ((𝐴𝑉𝑃𝐴) → ∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}))
37 eleq2 2874 . . . . . . . 8 (𝑥 = 𝑦 → (𝑃𝑥𝑃𝑦))
38 eqeq1 2810 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 = ∅ ↔ 𝑦 = ∅))
3937, 38orbi12d 933 . . . . . . 7 (𝑥 = 𝑦 → ((𝑃𝑥𝑥 = ∅) ↔ (𝑃𝑦𝑦 = ∅)))
4039elrab 3559 . . . . . 6 (𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ↔ (𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)))
41 eleq2 2874 . . . . . . . 8 (𝑥 = 𝑧 → (𝑃𝑥𝑃𝑧))
42 eqeq1 2810 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥 = ∅ ↔ 𝑧 = ∅))
4341, 42orbi12d 933 . . . . . . 7 (𝑥 = 𝑧 → ((𝑃𝑥𝑥 = ∅) ↔ (𝑃𝑧𝑧 = ∅)))
4443elrab 3559 . . . . . 6 (𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ↔ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))
4540, 44anbi12i 614 . . . . 5 ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}) ↔ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅))))
46 inss1 4029 . . . . . . . . 9 (𝑦𝑧) ⊆ 𝑦
47 simprll 788 . . . . . . . . . 10 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → 𝑦 ∈ 𝒫 𝐴)
4847elpwid 4363 . . . . . . . . 9 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → 𝑦𝐴)
4946, 48syl5ss 3809 . . . . . . . 8 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (𝑦𝑧) ⊆ 𝐴)
50 vex 3394 . . . . . . . . . 10 𝑦 ∈ V
5150inex1 4994 . . . . . . . . 9 (𝑦𝑧) ∈ V
5251elpw 4357 . . . . . . . 8 ((𝑦𝑧) ∈ 𝒫 𝐴 ↔ (𝑦𝑧) ⊆ 𝐴)
5349, 52sylibr 225 . . . . . . 7 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (𝑦𝑧) ∈ 𝒫 𝐴)
54 ianor 995 . . . . . . . . . . 11 (¬ (𝑃𝑦𝑃𝑧) ↔ (¬ 𝑃𝑦 ∨ ¬ 𝑃𝑧))
55 elin 3995 . . . . . . . . . . 11 (𝑃 ∈ (𝑦𝑧) ↔ (𝑃𝑦𝑃𝑧))
5654, 55xchnxbir 324 . . . . . . . . . 10 𝑃 ∈ (𝑦𝑧) ↔ (¬ 𝑃𝑦 ∨ ¬ 𝑃𝑧))
57 simprlr 789 . . . . . . . . . . . 12 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (𝑃𝑦𝑦 = ∅))
5857ord 882 . . . . . . . . . . 11 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (¬ 𝑃𝑦𝑦 = ∅))
59 simprrr 791 . . . . . . . . . . . 12 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (𝑃𝑧𝑧 = ∅))
6059ord 882 . . . . . . . . . . 11 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (¬ 𝑃𝑧𝑧 = ∅))
6158, 60orim12d 978 . . . . . . . . . 10 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → ((¬ 𝑃𝑦 ∨ ¬ 𝑃𝑧) → (𝑦 = ∅ ∨ 𝑧 = ∅)))
6256, 61syl5bi 233 . . . . . . . . 9 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (¬ 𝑃 ∈ (𝑦𝑧) → (𝑦 = ∅ ∨ 𝑧 = ∅)))
63 inss 4039 . . . . . . . . . 10 ((𝑦 ⊆ ∅ ∨ 𝑧 ⊆ ∅) → (𝑦𝑧) ⊆ ∅)
64 ss0b 4171 . . . . . . . . . . 11 (𝑦 ⊆ ∅ ↔ 𝑦 = ∅)
65 ss0b 4171 . . . . . . . . . . 11 (𝑧 ⊆ ∅ ↔ 𝑧 = ∅)
6664, 65orbi12i 929 . . . . . . . . . 10 ((𝑦 ⊆ ∅ ∨ 𝑧 ⊆ ∅) ↔ (𝑦 = ∅ ∨ 𝑧 = ∅))
67 ss0b 4171 . . . . . . . . . 10 ((𝑦𝑧) ⊆ ∅ ↔ (𝑦𝑧) = ∅)
6863, 66, 673imtr3i 282 . . . . . . . . 9 ((𝑦 = ∅ ∨ 𝑧 = ∅) → (𝑦𝑧) = ∅)
6962, 68syl6 35 . . . . . . . 8 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (¬ 𝑃 ∈ (𝑦𝑧) → (𝑦𝑧) = ∅))
7069orrd 881 . . . . . . 7 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (𝑃 ∈ (𝑦𝑧) ∨ (𝑦𝑧) = ∅))
71 eleq2 2874 . . . . . . . . 9 (𝑥 = (𝑦𝑧) → (𝑃𝑥𝑃 ∈ (𝑦𝑧)))
72 eqeq1 2810 . . . . . . . . 9 (𝑥 = (𝑦𝑧) → (𝑥 = ∅ ↔ (𝑦𝑧) = ∅))
7371, 72orbi12d 933 . . . . . . . 8 (𝑥 = (𝑦𝑧) → ((𝑃𝑥𝑥 = ∅) ↔ (𝑃 ∈ (𝑦𝑧) ∨ (𝑦𝑧) = ∅)))
7473elrab 3559 . . . . . . 7 ((𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ↔ ((𝑦𝑧) ∈ 𝒫 𝐴 ∧ (𝑃 ∈ (𝑦𝑧) ∨ (𝑦𝑧) = ∅)))
7553, 70, 74sylanbrc 574 . . . . . 6 (((𝐴𝑉𝑃𝐴) ∧ ((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))) → (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)})
7675ex 399 . . . . 5 ((𝐴𝑉𝑃𝐴) → (((𝑦 ∈ 𝒫 𝐴 ∧ (𝑃𝑦𝑦 = ∅)) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅))) → (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}))
7745, 76syl5bi 233 . . . 4 ((𝐴𝑉𝑃𝐴) → ((𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∧ 𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}) → (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}))
7877ralrimivv 3158 . . 3 ((𝐴𝑉𝑃𝐴) → ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)})
79 pwexg 5048 . . . . . 6 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
8079adantr 468 . . . . 5 ((𝐴𝑉𝑃𝐴) → 𝒫 𝐴 ∈ V)
81 rabexg 5006 . . . . 5 (𝒫 𝐴 ∈ V → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ V)
8280, 81syl 17 . . . 4 ((𝐴𝑉𝑃𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ V)
83 istopg 20913 . . . 4 ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ V → ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)})))
8482, 83syl 17 . . 3 ((𝐴𝑉𝑃𝐴) → ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ Top ↔ (∀𝑦(𝑦 ⊆ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} → 𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}) ∧ ∀𝑦 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}∀𝑧 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} (𝑦𝑧) ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)})))
8536, 78, 84mpbir2and 695 . 2 ((𝐴𝑉𝑃𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ Top)
86 pwidg 4366 . . . . . 6 (𝐴𝑉𝐴 ∈ 𝒫 𝐴)
8786adantr 468 . . . . 5 ((𝐴𝑉𝑃𝐴) → 𝐴 ∈ 𝒫 𝐴)
88 simpr 473 . . . . . 6 ((𝐴𝑉𝑃𝐴) → 𝑃𝐴)
8988orcd 891 . . . . 5 ((𝐴𝑉𝑃𝐴) → (𝑃𝐴𝐴 = ∅))
90 eleq2 2874 . . . . . . 7 (𝑥 = 𝐴 → (𝑃𝑥𝑃𝐴))
91 eqeq1 2810 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 = ∅ ↔ 𝐴 = ∅))
9290, 91orbi12d 933 . . . . . 6 (𝑥 = 𝐴 → ((𝑃𝑥𝑥 = ∅) ↔ (𝑃𝐴𝐴 = ∅)))
9392elrab 3559 . . . . 5 (𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ↔ (𝐴 ∈ 𝒫 𝐴 ∧ (𝑃𝐴𝐴 = ∅)))
9487, 89, 93sylanbrc 574 . . . 4 ((𝐴𝑉𝑃𝐴) → 𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)})
95 elssuni 4661 . . . 4 (𝐴 ∈ {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} → 𝐴 {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)})
9694, 95syl 17 . . 3 ((𝐴𝑉𝑃𝐴) → 𝐴 {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)})
97 ssrab2 3884 . . . . 5 {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ⊆ 𝒫 𝐴
98 sspwuni 4803 . . . . 5 ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ⊆ 𝒫 𝐴 {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ⊆ 𝐴)
9997, 98mpbi 221 . . . 4 {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ⊆ 𝐴
10099a1i 11 . . 3 ((𝐴𝑉𝑃𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ⊆ 𝐴)
10196, 100eqssd 3815 . 2 ((𝐴𝑉𝑃𝐴) → 𝐴 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)})
102 istopon 20930 . 2 ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ (TopOn‘𝐴) ↔ ({𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ Top ∧ 𝐴 = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}))
10385, 101, 102sylanbrc 574 1 ((𝐴𝑉𝑃𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} ∈ (TopOn‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 865  wal 1635   = wceq 1637  wex 1859  wcel 2156  wral 3096  wrex 3097  {crab 3100  Vcvv 3391  cin 3768  wss 3769  c0 4116  𝒫 cpw 4351   cuni 4630  cfv 6101  Topctop 20911  TopOnctopon 20928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7179
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-ral 3101  df-rex 3102  df-rab 3105  df-v 3393  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-op 4377  df-uni 4631  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5219  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-iota 6064  df-fun 6103  df-fv 6109  df-top 20912  df-topon 20929
This theorem is referenced by:  pptbas  21026
  Copyright terms: Public domain W3C validator