Proof of Theorem fnwe2lem3
Step | Hyp | Ref
| Expression |
1 | | animorrl 978 |
. . . 4
⊢ ((𝜑 ∧ (𝐹‘𝑎)𝑅(𝐹‘𝑏)) → ((𝐹‘𝑎)𝑅(𝐹‘𝑏) ∨ ((𝐹‘𝑎) = (𝐹‘𝑏) ∧ 𝑎⦋(𝐹‘𝑎) / 𝑧⦌𝑆𝑏))) |
2 | | fnwe2.su |
. . . . 5
⊢ (𝑧 = (𝐹‘𝑥) → 𝑆 = 𝑈) |
3 | | fnwe2.t |
. . . . 5
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ((𝐹‘𝑥)𝑅(𝐹‘𝑦) ∨ ((𝐹‘𝑥) = (𝐹‘𝑦) ∧ 𝑥𝑈𝑦))} |
4 | 2, 3 | fnwe2val 40401 |
. . . 4
⊢ (𝑎𝑇𝑏 ↔ ((𝐹‘𝑎)𝑅(𝐹‘𝑏) ∨ ((𝐹‘𝑎) = (𝐹‘𝑏) ∧ 𝑎⦋(𝐹‘𝑎) / 𝑧⦌𝑆𝑏))) |
5 | 1, 4 | sylibr 237 |
. . 3
⊢ ((𝜑 ∧ (𝐹‘𝑎)𝑅(𝐹‘𝑏)) → 𝑎𝑇𝑏) |
6 | 5 | 3mix1d 1333 |
. 2
⊢ ((𝜑 ∧ (𝐹‘𝑎)𝑅(𝐹‘𝑏)) → (𝑎𝑇𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑇𝑎)) |
7 | | simplr 768 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ 𝑎⦋(𝐹‘𝑎) / 𝑧⦌𝑆𝑏) → (𝐹‘𝑎) = (𝐹‘𝑏)) |
8 | | simpr 488 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ 𝑎⦋(𝐹‘𝑎) / 𝑧⦌𝑆𝑏) → 𝑎⦋(𝐹‘𝑎) / 𝑧⦌𝑆𝑏) |
9 | 7, 8 | jca 515 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ 𝑎⦋(𝐹‘𝑎) / 𝑧⦌𝑆𝑏) → ((𝐹‘𝑎) = (𝐹‘𝑏) ∧ 𝑎⦋(𝐹‘𝑎) / 𝑧⦌𝑆𝑏)) |
10 | 9 | olcd 871 |
. . . . 5
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ 𝑎⦋(𝐹‘𝑎) / 𝑧⦌𝑆𝑏) → ((𝐹‘𝑎)𝑅(𝐹‘𝑏) ∨ ((𝐹‘𝑎) = (𝐹‘𝑏) ∧ 𝑎⦋(𝐹‘𝑎) / 𝑧⦌𝑆𝑏))) |
11 | 10, 4 | sylibr 237 |
. . . 4
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ 𝑎⦋(𝐹‘𝑎) / 𝑧⦌𝑆𝑏) → 𝑎𝑇𝑏) |
12 | 11 | 3mix1d 1333 |
. . 3
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ 𝑎⦋(𝐹‘𝑎) / 𝑧⦌𝑆𝑏) → (𝑎𝑇𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑇𝑎)) |
13 | | 3mix2 1328 |
. . . 4
⊢ (𝑎 = 𝑏 → (𝑎𝑇𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑇𝑎)) |
14 | 13 | adantl 485 |
. . 3
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ 𝑎 = 𝑏) → (𝑎𝑇𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑇𝑎)) |
15 | | simplr 768 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ 𝑏⦋(𝐹‘𝑎) / 𝑧⦌𝑆𝑎) → (𝐹‘𝑎) = (𝐹‘𝑏)) |
16 | 15 | eqcomd 2764 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ 𝑏⦋(𝐹‘𝑎) / 𝑧⦌𝑆𝑎) → (𝐹‘𝑏) = (𝐹‘𝑎)) |
17 | | csbeq1 3810 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑎) = (𝐹‘𝑏) → ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 = ⦋(𝐹‘𝑏) / 𝑧⦌𝑆) |
18 | 17 | adantl 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 = ⦋(𝐹‘𝑏) / 𝑧⦌𝑆) |
19 | 18 | breqd 5047 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → (𝑏⦋(𝐹‘𝑎) / 𝑧⦌𝑆𝑎 ↔ 𝑏⦋(𝐹‘𝑏) / 𝑧⦌𝑆𝑎)) |
20 | 19 | biimpa 480 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ 𝑏⦋(𝐹‘𝑎) / 𝑧⦌𝑆𝑎) → 𝑏⦋(𝐹‘𝑏) / 𝑧⦌𝑆𝑎) |
21 | 16, 20 | jca 515 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ 𝑏⦋(𝐹‘𝑎) / 𝑧⦌𝑆𝑎) → ((𝐹‘𝑏) = (𝐹‘𝑎) ∧ 𝑏⦋(𝐹‘𝑏) / 𝑧⦌𝑆𝑎)) |
22 | 21 | olcd 871 |
. . . . 5
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ 𝑏⦋(𝐹‘𝑎) / 𝑧⦌𝑆𝑎) → ((𝐹‘𝑏)𝑅(𝐹‘𝑎) ∨ ((𝐹‘𝑏) = (𝐹‘𝑎) ∧ 𝑏⦋(𝐹‘𝑏) / 𝑧⦌𝑆𝑎))) |
23 | 2, 3 | fnwe2val 40401 |
. . . . 5
⊢ (𝑏𝑇𝑎 ↔ ((𝐹‘𝑏)𝑅(𝐹‘𝑎) ∨ ((𝐹‘𝑏) = (𝐹‘𝑎) ∧ 𝑏⦋(𝐹‘𝑏) / 𝑧⦌𝑆𝑎))) |
24 | 22, 23 | sylibr 237 |
. . . 4
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ 𝑏⦋(𝐹‘𝑎) / 𝑧⦌𝑆𝑎) → 𝑏𝑇𝑎) |
25 | 24 | 3mix3d 1335 |
. . 3
⊢ (((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) ∧ 𝑏⦋(𝐹‘𝑎) / 𝑧⦌𝑆𝑎) → (𝑎𝑇𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑇𝑎)) |
26 | | fnwe2lem3.a |
. . . . . . 7
⊢ (𝜑 → 𝑎 ∈ 𝐴) |
27 | | fnwe2.s |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑈 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑥)}) |
28 | 2, 3, 27 | fnwe2lem1 40402 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑎 ∈ 𝐴) → ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)}) |
29 | 26, 28 | mpdan 686 |
. . . . . 6
⊢ (𝜑 → ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)}) |
30 | | weso 5519 |
. . . . . 6
⊢
(⦋(𝐹‘𝑎) / 𝑧⦌𝑆 We {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)} → ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 Or {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)}) |
31 | 29, 30 | syl 17 |
. . . . 5
⊢ (𝜑 → ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 Or {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)}) |
32 | 31 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → ⦋(𝐹‘𝑎) / 𝑧⦌𝑆 Or {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)}) |
33 | | fveqeq2 6672 |
. . . . 5
⊢ (𝑦 = 𝑎 → ((𝐹‘𝑦) = (𝐹‘𝑎) ↔ (𝐹‘𝑎) = (𝐹‘𝑎))) |
34 | 26 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → 𝑎 ∈ 𝐴) |
35 | | eqidd 2759 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → (𝐹‘𝑎) = (𝐹‘𝑎)) |
36 | 33, 34, 35 | elrabd 3606 |
. . . 4
⊢ ((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → 𝑎 ∈ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)}) |
37 | | fveqeq2 6672 |
. . . . 5
⊢ (𝑦 = 𝑏 → ((𝐹‘𝑦) = (𝐹‘𝑎) ↔ (𝐹‘𝑏) = (𝐹‘𝑎))) |
38 | | fnwe2lem3.b |
. . . . . 6
⊢ (𝜑 → 𝑏 ∈ 𝐴) |
39 | 38 | adantr 484 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → 𝑏 ∈ 𝐴) |
40 | | simpr 488 |
. . . . . 6
⊢ ((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → (𝐹‘𝑎) = (𝐹‘𝑏)) |
41 | 40 | eqcomd 2764 |
. . . . 5
⊢ ((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → (𝐹‘𝑏) = (𝐹‘𝑎)) |
42 | 37, 39, 41 | elrabd 3606 |
. . . 4
⊢ ((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → 𝑏 ∈ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)}) |
43 | | solin 5471 |
. . . 4
⊢
((⦋(𝐹‘𝑎) / 𝑧⦌𝑆 Or {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)} ∧ (𝑎 ∈ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)} ∧ 𝑏 ∈ {𝑦 ∈ 𝐴 ∣ (𝐹‘𝑦) = (𝐹‘𝑎)})) → (𝑎⦋(𝐹‘𝑎) / 𝑧⦌𝑆𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏⦋(𝐹‘𝑎) / 𝑧⦌𝑆𝑎)) |
44 | 32, 36, 42, 43 | syl12anc 835 |
. . 3
⊢ ((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → (𝑎⦋(𝐹‘𝑎) / 𝑧⦌𝑆𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏⦋(𝐹‘𝑎) / 𝑧⦌𝑆𝑎)) |
45 | 12, 14, 25, 44 | mpjao3dan 1428 |
. 2
⊢ ((𝜑 ∧ (𝐹‘𝑎) = (𝐹‘𝑏)) → (𝑎𝑇𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑇𝑎)) |
46 | | animorrl 978 |
. . . 4
⊢ ((𝜑 ∧ (𝐹‘𝑏)𝑅(𝐹‘𝑎)) → ((𝐹‘𝑏)𝑅(𝐹‘𝑎) ∨ ((𝐹‘𝑏) = (𝐹‘𝑎) ∧ 𝑏⦋(𝐹‘𝑏) / 𝑧⦌𝑆𝑎))) |
47 | 46, 23 | sylibr 237 |
. . 3
⊢ ((𝜑 ∧ (𝐹‘𝑏)𝑅(𝐹‘𝑎)) → 𝑏𝑇𝑎) |
48 | 47 | 3mix3d 1335 |
. 2
⊢ ((𝜑 ∧ (𝐹‘𝑏)𝑅(𝐹‘𝑎)) → (𝑎𝑇𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑇𝑎)) |
49 | | fnwe2.r |
. . . 4
⊢ (𝜑 → 𝑅 We 𝐵) |
50 | | weso 5519 |
. . . 4
⊢ (𝑅 We 𝐵 → 𝑅 Or 𝐵) |
51 | 49, 50 | syl 17 |
. . 3
⊢ (𝜑 → 𝑅 Or 𝐵) |
52 | 26 | fvresd 6683 |
. . . 4
⊢ (𝜑 → ((𝐹 ↾ 𝐴)‘𝑎) = (𝐹‘𝑎)) |
53 | | fnwe2.f |
. . . . 5
⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴⟶𝐵) |
54 | 53, 26 | ffvelrnd 6849 |
. . . 4
⊢ (𝜑 → ((𝐹 ↾ 𝐴)‘𝑎) ∈ 𝐵) |
55 | 52, 54 | eqeltrrd 2853 |
. . 3
⊢ (𝜑 → (𝐹‘𝑎) ∈ 𝐵) |
56 | 38 | fvresd 6683 |
. . . 4
⊢ (𝜑 → ((𝐹 ↾ 𝐴)‘𝑏) = (𝐹‘𝑏)) |
57 | 53, 38 | ffvelrnd 6849 |
. . . 4
⊢ (𝜑 → ((𝐹 ↾ 𝐴)‘𝑏) ∈ 𝐵) |
58 | 56, 57 | eqeltrrd 2853 |
. . 3
⊢ (𝜑 → (𝐹‘𝑏) ∈ 𝐵) |
59 | | solin 5471 |
. . 3
⊢ ((𝑅 Or 𝐵 ∧ ((𝐹‘𝑎) ∈ 𝐵 ∧ (𝐹‘𝑏) ∈ 𝐵)) → ((𝐹‘𝑎)𝑅(𝐹‘𝑏) ∨ (𝐹‘𝑎) = (𝐹‘𝑏) ∨ (𝐹‘𝑏)𝑅(𝐹‘𝑎))) |
60 | 51, 55, 58, 59 | syl12anc 835 |
. 2
⊢ (𝜑 → ((𝐹‘𝑎)𝑅(𝐹‘𝑏) ∨ (𝐹‘𝑎) = (𝐹‘𝑏) ∨ (𝐹‘𝑏)𝑅(𝐹‘𝑎))) |
61 | 6, 45, 48, 60 | mpjao3dan 1428 |
1
⊢ (𝜑 → (𝑎𝑇𝑏 ∨ 𝑎 = 𝑏 ∨ 𝑏𝑇𝑎)) |