Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnwe2lem3 Structured version   Visualization version   GIF version

Theorem fnwe2lem3 40793
Description: Lemma for fnwe2 40794. Trichotomy. (Contributed by Stefan O'Rear, 19-Jan-2015.)
Hypotheses
Ref Expression
fnwe2.su (𝑧 = (𝐹𝑥) → 𝑆 = 𝑈)
fnwe2.t 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑈𝑦))}
fnwe2.s ((𝜑𝑥𝐴) → 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
fnwe2.f (𝜑 → (𝐹𝐴):𝐴𝐵)
fnwe2.r (𝜑𝑅 We 𝐵)
fnwe2lem3.a (𝜑𝑎𝐴)
fnwe2lem3.b (𝜑𝑏𝐴)
Assertion
Ref Expression
fnwe2lem3 (𝜑 → (𝑎𝑇𝑏𝑎 = 𝑏𝑏𝑇𝑎))
Distinct variable groups:   𝑦,𝑈,𝑧,𝑎,𝑏   𝑥,𝑆,𝑦,𝑎,𝑏   𝑥,𝑅,𝑦,𝑎,𝑏   𝜑,𝑥,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧,𝑎,𝑏   𝑥,𝐹,𝑦,𝑧,𝑎,𝑏   𝑇,𝑎,𝑏   𝐵,𝑎,𝑏
Allowed substitution hints:   𝜑(𝑎,𝑏)   𝐵(𝑥,𝑦,𝑧)   𝑅(𝑧)   𝑆(𝑧)   𝑇(𝑥,𝑦,𝑧)   𝑈(𝑥)

Proof of Theorem fnwe2lem3
StepHypRef Expression
1 animorrl 977 . . . 4 ((𝜑 ∧ (𝐹𝑎)𝑅(𝐹𝑏)) → ((𝐹𝑎)𝑅(𝐹𝑏) ∨ ((𝐹𝑎) = (𝐹𝑏) ∧ 𝑎(𝐹𝑎) / 𝑧𝑆𝑏)))
2 fnwe2.su . . . . 5 (𝑧 = (𝐹𝑥) → 𝑆 = 𝑈)
3 fnwe2.t . . . . 5 𝑇 = {⟨𝑥, 𝑦⟩ ∣ ((𝐹𝑥)𝑅(𝐹𝑦) ∨ ((𝐹𝑥) = (𝐹𝑦) ∧ 𝑥𝑈𝑦))}
42, 3fnwe2val 40790 . . . 4 (𝑎𝑇𝑏 ↔ ((𝐹𝑎)𝑅(𝐹𝑏) ∨ ((𝐹𝑎) = (𝐹𝑏) ∧ 𝑎(𝐹𝑎) / 𝑧𝑆𝑏)))
51, 4sylibr 233 . . 3 ((𝜑 ∧ (𝐹𝑎)𝑅(𝐹𝑏)) → 𝑎𝑇𝑏)
653mix1d 1334 . 2 ((𝜑 ∧ (𝐹𝑎)𝑅(𝐹𝑏)) → (𝑎𝑇𝑏𝑎 = 𝑏𝑏𝑇𝑎))
7 simplr 765 . . . . . . 7 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ 𝑎(𝐹𝑎) / 𝑧𝑆𝑏) → (𝐹𝑎) = (𝐹𝑏))
8 simpr 484 . . . . . . 7 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ 𝑎(𝐹𝑎) / 𝑧𝑆𝑏) → 𝑎(𝐹𝑎) / 𝑧𝑆𝑏)
97, 8jca 511 . . . . . 6 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ 𝑎(𝐹𝑎) / 𝑧𝑆𝑏) → ((𝐹𝑎) = (𝐹𝑏) ∧ 𝑎(𝐹𝑎) / 𝑧𝑆𝑏))
109olcd 870 . . . . 5 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ 𝑎(𝐹𝑎) / 𝑧𝑆𝑏) → ((𝐹𝑎)𝑅(𝐹𝑏) ∨ ((𝐹𝑎) = (𝐹𝑏) ∧ 𝑎(𝐹𝑎) / 𝑧𝑆𝑏)))
1110, 4sylibr 233 . . . 4 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ 𝑎(𝐹𝑎) / 𝑧𝑆𝑏) → 𝑎𝑇𝑏)
12113mix1d 1334 . . 3 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ 𝑎(𝐹𝑎) / 𝑧𝑆𝑏) → (𝑎𝑇𝑏𝑎 = 𝑏𝑏𝑇𝑎))
13 3mix2 1329 . . . 4 (𝑎 = 𝑏 → (𝑎𝑇𝑏𝑎 = 𝑏𝑏𝑇𝑎))
1413adantl 481 . . 3 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ 𝑎 = 𝑏) → (𝑎𝑇𝑏𝑎 = 𝑏𝑏𝑇𝑎))
15 simplr 765 . . . . . . . 8 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ 𝑏(𝐹𝑎) / 𝑧𝑆𝑎) → (𝐹𝑎) = (𝐹𝑏))
1615eqcomd 2744 . . . . . . 7 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ 𝑏(𝐹𝑎) / 𝑧𝑆𝑎) → (𝐹𝑏) = (𝐹𝑎))
17 csbeq1 3831 . . . . . . . . . 10 ((𝐹𝑎) = (𝐹𝑏) → (𝐹𝑎) / 𝑧𝑆 = (𝐹𝑏) / 𝑧𝑆)
1817adantl 481 . . . . . . . . 9 ((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹𝑎) / 𝑧𝑆 = (𝐹𝑏) / 𝑧𝑆)
1918breqd 5081 . . . . . . . 8 ((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝑏(𝐹𝑎) / 𝑧𝑆𝑎𝑏(𝐹𝑏) / 𝑧𝑆𝑎))
2019biimpa 476 . . . . . . 7 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ 𝑏(𝐹𝑎) / 𝑧𝑆𝑎) → 𝑏(𝐹𝑏) / 𝑧𝑆𝑎)
2116, 20jca 511 . . . . . 6 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ 𝑏(𝐹𝑎) / 𝑧𝑆𝑎) → ((𝐹𝑏) = (𝐹𝑎) ∧ 𝑏(𝐹𝑏) / 𝑧𝑆𝑎))
2221olcd 870 . . . . 5 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ 𝑏(𝐹𝑎) / 𝑧𝑆𝑎) → ((𝐹𝑏)𝑅(𝐹𝑎) ∨ ((𝐹𝑏) = (𝐹𝑎) ∧ 𝑏(𝐹𝑏) / 𝑧𝑆𝑎)))
232, 3fnwe2val 40790 . . . . 5 (𝑏𝑇𝑎 ↔ ((𝐹𝑏)𝑅(𝐹𝑎) ∨ ((𝐹𝑏) = (𝐹𝑎) ∧ 𝑏(𝐹𝑏) / 𝑧𝑆𝑎)))
2422, 23sylibr 233 . . . 4 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ 𝑏(𝐹𝑎) / 𝑧𝑆𝑎) → 𝑏𝑇𝑎)
25243mix3d 1336 . . 3 (((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) ∧ 𝑏(𝐹𝑎) / 𝑧𝑆𝑎) → (𝑎𝑇𝑏𝑎 = 𝑏𝑏𝑇𝑎))
26 fnwe2lem3.a . . . . . . 7 (𝜑𝑎𝐴)
27 fnwe2.s . . . . . . . 8 ((𝜑𝑥𝐴) → 𝑈 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑥)})
282, 3, 27fnwe2lem1 40791 . . . . . . 7 ((𝜑𝑎𝐴) → (𝐹𝑎) / 𝑧𝑆 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑎)})
2926, 28mpdan 683 . . . . . 6 (𝜑(𝐹𝑎) / 𝑧𝑆 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑎)})
30 weso 5571 . . . . . 6 ((𝐹𝑎) / 𝑧𝑆 We {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑎)} → (𝐹𝑎) / 𝑧𝑆 Or {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑎)})
3129, 30syl 17 . . . . 5 (𝜑(𝐹𝑎) / 𝑧𝑆 Or {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑎)})
3231adantr 480 . . . 4 ((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹𝑎) / 𝑧𝑆 Or {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑎)})
33 fveqeq2 6765 . . . . 5 (𝑦 = 𝑎 → ((𝐹𝑦) = (𝐹𝑎) ↔ (𝐹𝑎) = (𝐹𝑎)))
3426adantr 480 . . . . 5 ((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑎𝐴)
35 eqidd 2739 . . . . 5 ((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹𝑎) = (𝐹𝑎))
3633, 34, 35elrabd 3619 . . . 4 ((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑎 ∈ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑎)})
37 fveqeq2 6765 . . . . 5 (𝑦 = 𝑏 → ((𝐹𝑦) = (𝐹𝑎) ↔ (𝐹𝑏) = (𝐹𝑎)))
38 fnwe2lem3.b . . . . . 6 (𝜑𝑏𝐴)
3938adantr 480 . . . . 5 ((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑏𝐴)
40 simpr 484 . . . . . 6 ((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹𝑎) = (𝐹𝑏))
4140eqcomd 2744 . . . . 5 ((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝐹𝑏) = (𝐹𝑎))
4237, 39, 41elrabd 3619 . . . 4 ((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) → 𝑏 ∈ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑎)})
43 solin 5519 . . . 4 (((𝐹𝑎) / 𝑧𝑆 Or {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑎)} ∧ (𝑎 ∈ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑎)} ∧ 𝑏 ∈ {𝑦𝐴 ∣ (𝐹𝑦) = (𝐹𝑎)})) → (𝑎(𝐹𝑎) / 𝑧𝑆𝑏𝑎 = 𝑏𝑏(𝐹𝑎) / 𝑧𝑆𝑎))
4432, 36, 42, 43syl12anc 833 . . 3 ((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝑎(𝐹𝑎) / 𝑧𝑆𝑏𝑎 = 𝑏𝑏(𝐹𝑎) / 𝑧𝑆𝑎))
4512, 14, 25, 44mpjao3dan 1429 . 2 ((𝜑 ∧ (𝐹𝑎) = (𝐹𝑏)) → (𝑎𝑇𝑏𝑎 = 𝑏𝑏𝑇𝑎))
46 animorrl 977 . . . 4 ((𝜑 ∧ (𝐹𝑏)𝑅(𝐹𝑎)) → ((𝐹𝑏)𝑅(𝐹𝑎) ∨ ((𝐹𝑏) = (𝐹𝑎) ∧ 𝑏(𝐹𝑏) / 𝑧𝑆𝑎)))
4746, 23sylibr 233 . . 3 ((𝜑 ∧ (𝐹𝑏)𝑅(𝐹𝑎)) → 𝑏𝑇𝑎)
48473mix3d 1336 . 2 ((𝜑 ∧ (𝐹𝑏)𝑅(𝐹𝑎)) → (𝑎𝑇𝑏𝑎 = 𝑏𝑏𝑇𝑎))
49 fnwe2.r . . . 4 (𝜑𝑅 We 𝐵)
50 weso 5571 . . . 4 (𝑅 We 𝐵𝑅 Or 𝐵)
5149, 50syl 17 . . 3 (𝜑𝑅 Or 𝐵)
5226fvresd 6776 . . . 4 (𝜑 → ((𝐹𝐴)‘𝑎) = (𝐹𝑎))
53 fnwe2.f . . . . 5 (𝜑 → (𝐹𝐴):𝐴𝐵)
5453, 26ffvelrnd 6944 . . . 4 (𝜑 → ((𝐹𝐴)‘𝑎) ∈ 𝐵)
5552, 54eqeltrrd 2840 . . 3 (𝜑 → (𝐹𝑎) ∈ 𝐵)
5638fvresd 6776 . . . 4 (𝜑 → ((𝐹𝐴)‘𝑏) = (𝐹𝑏))
5753, 38ffvelrnd 6944 . . . 4 (𝜑 → ((𝐹𝐴)‘𝑏) ∈ 𝐵)
5856, 57eqeltrrd 2840 . . 3 (𝜑 → (𝐹𝑏) ∈ 𝐵)
59 solin 5519 . . 3 ((𝑅 Or 𝐵 ∧ ((𝐹𝑎) ∈ 𝐵 ∧ (𝐹𝑏) ∈ 𝐵)) → ((𝐹𝑎)𝑅(𝐹𝑏) ∨ (𝐹𝑎) = (𝐹𝑏) ∨ (𝐹𝑏)𝑅(𝐹𝑎)))
6051, 55, 58, 59syl12anc 833 . 2 (𝜑 → ((𝐹𝑎)𝑅(𝐹𝑏) ∨ (𝐹𝑎) = (𝐹𝑏) ∨ (𝐹𝑏)𝑅(𝐹𝑎)))
616, 45, 48, 60mpjao3dan 1429 1 (𝜑 → (𝑎𝑇𝑏𝑎 = 𝑏𝑏𝑇𝑎))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843  w3o 1084   = wceq 1539  wcel 2108  {crab 3067  csb 3828   class class class wbr 5070  {copab 5132   Or wor 5493   We wwe 5534  cres 5582  wf 6414  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426
This theorem is referenced by:  fnwe2  40794
  Copyright terms: Public domain W3C validator