Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatsymb Structured version   Visualization version   GIF version

Theorem ccatsymb 13931
 Description: The symbol at a given position in a concatenated word. (Contributed by AV, 26-May-2018.) (Proof shortened by AV, 24-Nov-2018.)
Assertion
Ref Expression
ccatsymb ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝐴 ++ 𝐵)‘𝐼) = if(𝐼 < (♯‘𝐴), (𝐴𝐼), (𝐵‘(𝐼 − (♯‘𝐴)))))

Proof of Theorem ccatsymb
StepHypRef Expression
1 simprll 778 . . . . . . . 8 ((0 ≤ 𝐼 ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
2 simpr 488 . . . . . . . . . 10 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴)) → 𝐼 < (♯‘𝐴))
32anim2i 619 . . . . . . . . 9 ((0 ≤ 𝐼 ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴))) → (0 ≤ 𝐼𝐼 < (♯‘𝐴)))
4 simpr 488 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → 𝐼 ∈ ℤ)
5 0zd 11985 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → 0 ∈ ℤ)
6 lencl 13880 . . . . . . . . . . . . 13 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
76nn0zd 12077 . . . . . . . . . . . 12 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℤ)
87ad2antrr 725 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (♯‘𝐴) ∈ ℤ)
9 elfzo 13039 . . . . . . . . . . 11 ((𝐼 ∈ ℤ ∧ 0 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ) → (𝐼 ∈ (0..^(♯‘𝐴)) ↔ (0 ≤ 𝐼𝐼 < (♯‘𝐴))))
104, 5, 8, 9syl3anc 1368 . . . . . . . . . 10 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (𝐼 ∈ (0..^(♯‘𝐴)) ↔ (0 ≤ 𝐼𝐼 < (♯‘𝐴))))
1110ad2antrl 727 . . . . . . . . 9 ((0 ≤ 𝐼 ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴))) → (𝐼 ∈ (0..^(♯‘𝐴)) ↔ (0 ≤ 𝐼𝐼 < (♯‘𝐴))))
123, 11mpbird 260 . . . . . . . 8 ((0 ≤ 𝐼 ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴))) → 𝐼 ∈ (0..^(♯‘𝐴)))
13 df-3an 1086 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝐴))) ↔ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ (0..^(♯‘𝐴))))
141, 12, 13sylanbrc 586 . . . . . . 7 ((0 ≤ 𝐼 ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝐴))))
15 ccatval1 13925 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝐴))) → ((𝐴 ++ 𝐵)‘𝐼) = (𝐴𝐼))
1615eqcomd 2807 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝐴))) → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼))
1714, 16syl 17 . . . . . 6 ((0 ≤ 𝐼 ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴))) → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼))
1817ex 416 . . . . 5 (0 ≤ 𝐼 → ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴)) → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼)))
19 zre 11977 . . . . . . . . . 10 (𝐼 ∈ ℤ → 𝐼 ∈ ℝ)
20 0red 10637 . . . . . . . . . 10 (𝐼 ∈ ℤ → 0 ∈ ℝ)
2119, 20ltnled 10780 . . . . . . . . 9 (𝐼 ∈ ℤ → (𝐼 < 0 ↔ ¬ 0 ≤ 𝐼))
2221adantl 485 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (𝐼 < 0 ↔ ¬ 0 ≤ 𝐼))
23 simpl 486 . . . . . . . . . . . . 13 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝐴 ∈ Word 𝑉)
2423anim1i 617 . . . . . . . . . . . 12 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (𝐴 ∈ Word 𝑉𝐼 ∈ ℤ))
2524adantr 484 . . . . . . . . . . 11 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < 0) → (𝐴 ∈ Word 𝑉𝐼 ∈ ℤ))
26 animorrl 978 . . . . . . . . . . 11 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < 0) → (𝐼 < 0 ∨ (♯‘𝐴) ≤ 𝐼))
27 wrdsymb0 13896 . . . . . . . . . . 11 ((𝐴 ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝐼 < 0 ∨ (♯‘𝐴) ≤ 𝐼) → (𝐴𝐼) = ∅))
2825, 26, 27sylc 65 . . . . . . . . . 10 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < 0) → (𝐴𝐼) = ∅)
29 ccatcl 13921 . . . . . . . . . . . . 13 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
3029anim1i 617 . . . . . . . . . . . 12 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → ((𝐴 ++ 𝐵) ∈ Word 𝑉𝐼 ∈ ℤ))
3130adantr 484 . . . . . . . . . . 11 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < 0) → ((𝐴 ++ 𝐵) ∈ Word 𝑉𝐼 ∈ ℤ))
32 animorrl 978 . . . . . . . . . . 11 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < 0) → (𝐼 < 0 ∨ (♯‘(𝐴 ++ 𝐵)) ≤ 𝐼))
33 wrdsymb0 13896 . . . . . . . . . . 11 (((𝐴 ++ 𝐵) ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝐼 < 0 ∨ (♯‘(𝐴 ++ 𝐵)) ≤ 𝐼) → ((𝐴 ++ 𝐵)‘𝐼) = ∅))
3431, 32, 33sylc 65 . . . . . . . . . 10 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < 0) → ((𝐴 ++ 𝐵)‘𝐼) = ∅)
3528, 34eqtr4d 2839 . . . . . . . . 9 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < 0) → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼))
3635ex 416 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (𝐼 < 0 → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼)))
3722, 36sylbird 263 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (¬ 0 ≤ 𝐼 → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼)))
3837com12 32 . . . . . 6 (¬ 0 ≤ 𝐼 → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼)))
3938adantrd 495 . . . . 5 (¬ 0 ≤ 𝐼 → ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴)) → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼)))
4018, 39pm2.61i 185 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴)) → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼))
41 simprll 778 . . . . . . . 8 ((𝐼 < ((♯‘𝐴) + (♯‘𝐵)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
42 id 22 . . . . . . . . . 10 (𝐼 < ((♯‘𝐴) + (♯‘𝐵)) → 𝐼 < ((♯‘𝐴) + (♯‘𝐵)))
436nn0red 11948 . . . . . . . . . . . . 13 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℝ)
44 lenlt 10712 . . . . . . . . . . . . 13 (((♯‘𝐴) ∈ ℝ ∧ 𝐼 ∈ ℝ) → ((♯‘𝐴) ≤ 𝐼 ↔ ¬ 𝐼 < (♯‘𝐴)))
4543, 19, 44syl2an 598 . . . . . . . . . . . 12 ((𝐴 ∈ Word 𝑉𝐼 ∈ ℤ) → ((♯‘𝐴) ≤ 𝐼 ↔ ¬ 𝐼 < (♯‘𝐴)))
4645adantlr 714 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → ((♯‘𝐴) ≤ 𝐼 ↔ ¬ 𝐼 < (♯‘𝐴)))
4746biimpar 481 . . . . . . . . . 10 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴)) → (♯‘𝐴) ≤ 𝐼)
4842, 47anim12ci 616 . . . . . . . . 9 ((𝐼 < ((♯‘𝐴) + (♯‘𝐵)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴))) → ((♯‘𝐴) ≤ 𝐼𝐼 < ((♯‘𝐴) + (♯‘𝐵))))
49 lencl 13880 . . . . . . . . . . . . . 14 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℕ0)
5049nn0zd 12077 . . . . . . . . . . . . 13 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℤ)
51 zaddcl 12014 . . . . . . . . . . . . 13 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ)
527, 50, 51syl2an 598 . . . . . . . . . . . 12 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ)
5352adantr 484 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ)
54 elfzo 13039 . . . . . . . . . . 11 ((𝐼 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ) → (𝐼 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) ↔ ((♯‘𝐴) ≤ 𝐼𝐼 < ((♯‘𝐴) + (♯‘𝐵)))))
554, 8, 53, 54syl3anc 1368 . . . . . . . . . 10 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (𝐼 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) ↔ ((♯‘𝐴) ≤ 𝐼𝐼 < ((♯‘𝐴) + (♯‘𝐵)))))
5655ad2antrl 727 . . . . . . . . 9 ((𝐼 < ((♯‘𝐴) + (♯‘𝐵)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴))) → (𝐼 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) ↔ ((♯‘𝐴) ≤ 𝐼𝐼 < ((♯‘𝐴) + (♯‘𝐵)))))
5748, 56mpbird 260 . . . . . . . 8 ((𝐼 < ((♯‘𝐴) + (♯‘𝐵)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴))) → 𝐼 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
58 df-3an 1086 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) ↔ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))))
5941, 57, 58sylanbrc 586 . . . . . . 7 ((𝐼 < ((♯‘𝐴) + (♯‘𝐵)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))))
60 ccatval2 13927 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵)‘𝐼) = (𝐵‘(𝐼 − (♯‘𝐴))))
6160eqcomd 2807 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼))
6259, 61syl 17 . . . . . 6 ((𝐼 < ((♯‘𝐴) + (♯‘𝐵)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴))) → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼))
6362ex 416 . . . . 5 (𝐼 < ((♯‘𝐴) + (♯‘𝐵)) → ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴)) → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼)))
6449nn0red 11948 . . . . . . . . . 10 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℝ)
65 readdcl 10613 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℝ)
6643, 64, 65syl2an 598 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℝ)
67 lenlt 10712 . . . . . . . . 9 ((((♯‘𝐴) + (♯‘𝐵)) ∈ ℝ ∧ 𝐼 ∈ ℝ) → (((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼 ↔ ¬ 𝐼 < ((♯‘𝐴) + (♯‘𝐵))))
6866, 19, 67syl2an 598 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼 ↔ ¬ 𝐼 < ((♯‘𝐴) + (♯‘𝐵))))
69 simplr 768 . . . . . . . . . . . . 13 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → 𝐵 ∈ Word 𝑉)
70 simpr 488 . . . . . . . . . . . . . . 15 ((𝐴 ∈ Word 𝑉𝐼 ∈ ℤ) → 𝐼 ∈ ℤ)
717adantr 484 . . . . . . . . . . . . . . 15 ((𝐴 ∈ Word 𝑉𝐼 ∈ ℤ) → (♯‘𝐴) ∈ ℤ)
7270, 71zsubcld 12084 . . . . . . . . . . . . . 14 ((𝐴 ∈ Word 𝑉𝐼 ∈ ℤ) → (𝐼 − (♯‘𝐴)) ∈ ℤ)
7372adantlr 714 . . . . . . . . . . . . 13 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (𝐼 − (♯‘𝐴)) ∈ ℤ)
7469, 73jca 515 . . . . . . . . . . . 12 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (𝐵 ∈ Word 𝑉 ∧ (𝐼 − (♯‘𝐴)) ∈ ℤ))
7574adantr 484 . . . . . . . . . . 11 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → (𝐵 ∈ Word 𝑉 ∧ (𝐼 − (♯‘𝐴)) ∈ ℤ))
7643ad2antrr 725 . . . . . . . . . . . . . 14 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (♯‘𝐴) ∈ ℝ)
7764ad2antlr 726 . . . . . . . . . . . . . 14 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (♯‘𝐵) ∈ ℝ)
7819adantl 485 . . . . . . . . . . . . . 14 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → 𝐼 ∈ ℝ)
7976, 77, 78leaddsub2d 11235 . . . . . . . . . . . . 13 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼 ↔ (♯‘𝐵) ≤ (𝐼 − (♯‘𝐴))))
8079biimpa 480 . . . . . . . . . . . 12 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → (♯‘𝐵) ≤ (𝐼 − (♯‘𝐴)))
8180olcd 871 . . . . . . . . . . 11 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → ((𝐼 − (♯‘𝐴)) < 0 ∨ (♯‘𝐵) ≤ (𝐼 − (♯‘𝐴))))
82 wrdsymb0 13896 . . . . . . . . . . 11 ((𝐵 ∈ Word 𝑉 ∧ (𝐼 − (♯‘𝐴)) ∈ ℤ) → (((𝐼 − (♯‘𝐴)) < 0 ∨ (♯‘𝐵) ≤ (𝐼 − (♯‘𝐴))) → (𝐵‘(𝐼 − (♯‘𝐴))) = ∅))
8375, 81, 82sylc 65 . . . . . . . . . 10 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → (𝐵‘(𝐼 − (♯‘𝐴))) = ∅)
8430adantr 484 . . . . . . . . . . 11 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → ((𝐴 ++ 𝐵) ∈ Word 𝑉𝐼 ∈ ℤ))
85 ccatlen 13922 . . . . . . . . . . . . . 14 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
8685ad2antrr 725 . . . . . . . . . . . . 13 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
87 simpr 488 . . . . . . . . . . . . 13 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼)
8886, 87eqbrtrd 5055 . . . . . . . . . . . 12 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → (♯‘(𝐴 ++ 𝐵)) ≤ 𝐼)
8988olcd 871 . . . . . . . . . . 11 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → (𝐼 < 0 ∨ (♯‘(𝐴 ++ 𝐵)) ≤ 𝐼))
9084, 89, 33sylc 65 . . . . . . . . . 10 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → ((𝐴 ++ 𝐵)‘𝐼) = ∅)
9183, 90eqtr4d 2839 . . . . . . . . 9 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼))
9291ex 416 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼 → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼)))
9368, 92sylbird 263 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (¬ 𝐼 < ((♯‘𝐴) + (♯‘𝐵)) → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼)))
9493com12 32 . . . . . 6 𝐼 < ((♯‘𝐴) + (♯‘𝐵)) → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼)))
9594adantrd 495 . . . . 5 𝐼 < ((♯‘𝐴) + (♯‘𝐵)) → ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴)) → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼)))
9663, 95pm2.61i 185 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴)) → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼))
9740, 96ifeqda 4463 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → if(𝐼 < (♯‘𝐴), (𝐴𝐼), (𝐵‘(𝐼 − (♯‘𝐴)))) = ((𝐴 ++ 𝐵)‘𝐼))
9897eqcomd 2807 . 2 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → ((𝐴 ++ 𝐵)‘𝐼) = if(𝐼 < (♯‘𝐴), (𝐴𝐼), (𝐵‘(𝐼 − (♯‘𝐴)))))
99983impa 1107 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝐴 ++ 𝐵)‘𝐼) = if(𝐼 < (♯‘𝐴), (𝐴𝐼), (𝐵‘(𝐼 − (♯‘𝐴)))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112  ∅c0 4246  ifcif 4428   class class class wbr 5033  ‘cfv 6328  (class class class)co 7139  ℝcr 10529  0cc0 10530   + caddc 10533   < clt 10668   ≤ cle 10669   − cmin 10863  ℤcz 11973  ..^cfzo 13032  ♯chash 13690  Word cword 13861   ++ cconcat 13917 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12890  df-fzo 13033  df-hash 13691  df-word 13862  df-concat 13918 This theorem is referenced by:  swrdccatin2  14086  frlmvscadiccat  39427
 Copyright terms: Public domain W3C validator