MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatsymb Structured version   Visualization version   GIF version

Theorem ccatsymb 14285
Description: The symbol at a given position in a concatenated word. (Contributed by AV, 26-May-2018.) (Proof shortened by AV, 24-Nov-2018.)
Assertion
Ref Expression
ccatsymb ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝐴 ++ 𝐵)‘𝐼) = if(𝐼 < (♯‘𝐴), (𝐴𝐼), (𝐵‘(𝐼 − (♯‘𝐴)))))

Proof of Theorem ccatsymb
StepHypRef Expression
1 simprll 776 . . . . . . . 8 ((0 ≤ 𝐼 ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
2 simpr 485 . . . . . . . . . 10 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴)) → 𝐼 < (♯‘𝐴))
32anim2i 617 . . . . . . . . 9 ((0 ≤ 𝐼 ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴))) → (0 ≤ 𝐼𝐼 < (♯‘𝐴)))
4 simpr 485 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → 𝐼 ∈ ℤ)
5 0zd 12331 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → 0 ∈ ℤ)
6 lencl 14234 . . . . . . . . . . . . 13 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
76nn0zd 12423 . . . . . . . . . . . 12 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℤ)
87ad2antrr 723 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (♯‘𝐴) ∈ ℤ)
9 elfzo 13388 . . . . . . . . . . 11 ((𝐼 ∈ ℤ ∧ 0 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ) → (𝐼 ∈ (0..^(♯‘𝐴)) ↔ (0 ≤ 𝐼𝐼 < (♯‘𝐴))))
104, 5, 8, 9syl3anc 1370 . . . . . . . . . 10 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (𝐼 ∈ (0..^(♯‘𝐴)) ↔ (0 ≤ 𝐼𝐼 < (♯‘𝐴))))
1110ad2antrl 725 . . . . . . . . 9 ((0 ≤ 𝐼 ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴))) → (𝐼 ∈ (0..^(♯‘𝐴)) ↔ (0 ≤ 𝐼𝐼 < (♯‘𝐴))))
123, 11mpbird 256 . . . . . . . 8 ((0 ≤ 𝐼 ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴))) → 𝐼 ∈ (0..^(♯‘𝐴)))
13 df-3an 1088 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝐴))) ↔ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ (0..^(♯‘𝐴))))
141, 12, 13sylanbrc 583 . . . . . . 7 ((0 ≤ 𝐼 ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝐴))))
15 ccatval1 14279 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝐴))) → ((𝐴 ++ 𝐵)‘𝐼) = (𝐴𝐼))
1615eqcomd 2746 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝐴))) → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼))
1714, 16syl 17 . . . . . 6 ((0 ≤ 𝐼 ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴))) → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼))
1817ex 413 . . . . 5 (0 ≤ 𝐼 → ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴)) → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼)))
19 zre 12323 . . . . . . . . . 10 (𝐼 ∈ ℤ → 𝐼 ∈ ℝ)
20 0red 10979 . . . . . . . . . 10 (𝐼 ∈ ℤ → 0 ∈ ℝ)
2119, 20ltnled 11122 . . . . . . . . 9 (𝐼 ∈ ℤ → (𝐼 < 0 ↔ ¬ 0 ≤ 𝐼))
2221adantl 482 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (𝐼 < 0 ↔ ¬ 0 ≤ 𝐼))
23 simpl 483 . . . . . . . . . . . . 13 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝐴 ∈ Word 𝑉)
2423anim1i 615 . . . . . . . . . . . 12 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (𝐴 ∈ Word 𝑉𝐼 ∈ ℤ))
2524adantr 481 . . . . . . . . . . 11 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < 0) → (𝐴 ∈ Word 𝑉𝐼 ∈ ℤ))
26 animorrl 978 . . . . . . . . . . 11 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < 0) → (𝐼 < 0 ∨ (♯‘𝐴) ≤ 𝐼))
27 wrdsymb0 14250 . . . . . . . . . . 11 ((𝐴 ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝐼 < 0 ∨ (♯‘𝐴) ≤ 𝐼) → (𝐴𝐼) = ∅))
2825, 26, 27sylc 65 . . . . . . . . . 10 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < 0) → (𝐴𝐼) = ∅)
29 ccatcl 14275 . . . . . . . . . . . . 13 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
3029anim1i 615 . . . . . . . . . . . 12 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → ((𝐴 ++ 𝐵) ∈ Word 𝑉𝐼 ∈ ℤ))
3130adantr 481 . . . . . . . . . . 11 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < 0) → ((𝐴 ++ 𝐵) ∈ Word 𝑉𝐼 ∈ ℤ))
32 animorrl 978 . . . . . . . . . . 11 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < 0) → (𝐼 < 0 ∨ (♯‘(𝐴 ++ 𝐵)) ≤ 𝐼))
33 wrdsymb0 14250 . . . . . . . . . . 11 (((𝐴 ++ 𝐵) ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝐼 < 0 ∨ (♯‘(𝐴 ++ 𝐵)) ≤ 𝐼) → ((𝐴 ++ 𝐵)‘𝐼) = ∅))
3431, 32, 33sylc 65 . . . . . . . . . 10 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < 0) → ((𝐴 ++ 𝐵)‘𝐼) = ∅)
3528, 34eqtr4d 2783 . . . . . . . . 9 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < 0) → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼))
3635ex 413 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (𝐼 < 0 → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼)))
3722, 36sylbird 259 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (¬ 0 ≤ 𝐼 → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼)))
3837com12 32 . . . . . 6 (¬ 0 ≤ 𝐼 → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼)))
3938adantrd 492 . . . . 5 (¬ 0 ≤ 𝐼 → ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴)) → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼)))
4018, 39pm2.61i 182 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴)) → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼))
41 simprll 776 . . . . . . . 8 ((𝐼 < ((♯‘𝐴) + (♯‘𝐵)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
42 id 22 . . . . . . . . . 10 (𝐼 < ((♯‘𝐴) + (♯‘𝐵)) → 𝐼 < ((♯‘𝐴) + (♯‘𝐵)))
436nn0red 12294 . . . . . . . . . . . . 13 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℝ)
44 lenlt 11054 . . . . . . . . . . . . 13 (((♯‘𝐴) ∈ ℝ ∧ 𝐼 ∈ ℝ) → ((♯‘𝐴) ≤ 𝐼 ↔ ¬ 𝐼 < (♯‘𝐴)))
4543, 19, 44syl2an 596 . . . . . . . . . . . 12 ((𝐴 ∈ Word 𝑉𝐼 ∈ ℤ) → ((♯‘𝐴) ≤ 𝐼 ↔ ¬ 𝐼 < (♯‘𝐴)))
4645adantlr 712 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → ((♯‘𝐴) ≤ 𝐼 ↔ ¬ 𝐼 < (♯‘𝐴)))
4746biimpar 478 . . . . . . . . . 10 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴)) → (♯‘𝐴) ≤ 𝐼)
4842, 47anim12ci 614 . . . . . . . . 9 ((𝐼 < ((♯‘𝐴) + (♯‘𝐵)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴))) → ((♯‘𝐴) ≤ 𝐼𝐼 < ((♯‘𝐴) + (♯‘𝐵))))
49 lencl 14234 . . . . . . . . . . . . . 14 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℕ0)
5049nn0zd 12423 . . . . . . . . . . . . 13 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℤ)
51 zaddcl 12360 . . . . . . . . . . . . 13 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ)
527, 50, 51syl2an 596 . . . . . . . . . . . 12 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ)
5352adantr 481 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ)
54 elfzo 13388 . . . . . . . . . . 11 ((𝐼 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ) → (𝐼 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) ↔ ((♯‘𝐴) ≤ 𝐼𝐼 < ((♯‘𝐴) + (♯‘𝐵)))))
554, 8, 53, 54syl3anc 1370 . . . . . . . . . 10 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (𝐼 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) ↔ ((♯‘𝐴) ≤ 𝐼𝐼 < ((♯‘𝐴) + (♯‘𝐵)))))
5655ad2antrl 725 . . . . . . . . 9 ((𝐼 < ((♯‘𝐴) + (♯‘𝐵)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴))) → (𝐼 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) ↔ ((♯‘𝐴) ≤ 𝐼𝐼 < ((♯‘𝐴) + (♯‘𝐵)))))
5748, 56mpbird 256 . . . . . . . 8 ((𝐼 < ((♯‘𝐴) + (♯‘𝐵)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴))) → 𝐼 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
58 df-3an 1088 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) ↔ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))))
5941, 57, 58sylanbrc 583 . . . . . . 7 ((𝐼 < ((♯‘𝐴) + (♯‘𝐵)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))))
60 ccatval2 14281 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵)‘𝐼) = (𝐵‘(𝐼 − (♯‘𝐴))))
6160eqcomd 2746 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼))
6259, 61syl 17 . . . . . 6 ((𝐼 < ((♯‘𝐴) + (♯‘𝐵)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴))) → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼))
6362ex 413 . . . . 5 (𝐼 < ((♯‘𝐴) + (♯‘𝐵)) → ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴)) → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼)))
6449nn0red 12294 . . . . . . . . . 10 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℝ)
65 readdcl 10955 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℝ)
6643, 64, 65syl2an 596 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℝ)
67 lenlt 11054 . . . . . . . . 9 ((((♯‘𝐴) + (♯‘𝐵)) ∈ ℝ ∧ 𝐼 ∈ ℝ) → (((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼 ↔ ¬ 𝐼 < ((♯‘𝐴) + (♯‘𝐵))))
6866, 19, 67syl2an 596 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼 ↔ ¬ 𝐼 < ((♯‘𝐴) + (♯‘𝐵))))
69 simplr 766 . . . . . . . . . . . . 13 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → 𝐵 ∈ Word 𝑉)
70 simpr 485 . . . . . . . . . . . . . . 15 ((𝐴 ∈ Word 𝑉𝐼 ∈ ℤ) → 𝐼 ∈ ℤ)
717adantr 481 . . . . . . . . . . . . . . 15 ((𝐴 ∈ Word 𝑉𝐼 ∈ ℤ) → (♯‘𝐴) ∈ ℤ)
7270, 71zsubcld 12430 . . . . . . . . . . . . . 14 ((𝐴 ∈ Word 𝑉𝐼 ∈ ℤ) → (𝐼 − (♯‘𝐴)) ∈ ℤ)
7372adantlr 712 . . . . . . . . . . . . 13 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (𝐼 − (♯‘𝐴)) ∈ ℤ)
7469, 73jca 512 . . . . . . . . . . . 12 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (𝐵 ∈ Word 𝑉 ∧ (𝐼 − (♯‘𝐴)) ∈ ℤ))
7574adantr 481 . . . . . . . . . . 11 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → (𝐵 ∈ Word 𝑉 ∧ (𝐼 − (♯‘𝐴)) ∈ ℤ))
7643ad2antrr 723 . . . . . . . . . . . . . 14 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (♯‘𝐴) ∈ ℝ)
7764ad2antlr 724 . . . . . . . . . . . . . 14 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (♯‘𝐵) ∈ ℝ)
7819adantl 482 . . . . . . . . . . . . . 14 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → 𝐼 ∈ ℝ)
7976, 77, 78leaddsub2d 11577 . . . . . . . . . . . . 13 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼 ↔ (♯‘𝐵) ≤ (𝐼 − (♯‘𝐴))))
8079biimpa 477 . . . . . . . . . . . 12 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → (♯‘𝐵) ≤ (𝐼 − (♯‘𝐴)))
8180olcd 871 . . . . . . . . . . 11 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → ((𝐼 − (♯‘𝐴)) < 0 ∨ (♯‘𝐵) ≤ (𝐼 − (♯‘𝐴))))
82 wrdsymb0 14250 . . . . . . . . . . 11 ((𝐵 ∈ Word 𝑉 ∧ (𝐼 − (♯‘𝐴)) ∈ ℤ) → (((𝐼 − (♯‘𝐴)) < 0 ∨ (♯‘𝐵) ≤ (𝐼 − (♯‘𝐴))) → (𝐵‘(𝐼 − (♯‘𝐴))) = ∅))
8375, 81, 82sylc 65 . . . . . . . . . 10 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → (𝐵‘(𝐼 − (♯‘𝐴))) = ∅)
8430adantr 481 . . . . . . . . . . 11 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → ((𝐴 ++ 𝐵) ∈ Word 𝑉𝐼 ∈ ℤ))
85 ccatlen 14276 . . . . . . . . . . . . . 14 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
8685ad2antrr 723 . . . . . . . . . . . . 13 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
87 simpr 485 . . . . . . . . . . . . 13 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼)
8886, 87eqbrtrd 5101 . . . . . . . . . . . 12 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → (♯‘(𝐴 ++ 𝐵)) ≤ 𝐼)
8988olcd 871 . . . . . . . . . . 11 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → (𝐼 < 0 ∨ (♯‘(𝐴 ++ 𝐵)) ≤ 𝐼))
9084, 89, 33sylc 65 . . . . . . . . . 10 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → ((𝐴 ++ 𝐵)‘𝐼) = ∅)
9183, 90eqtr4d 2783 . . . . . . . . 9 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼))
9291ex 413 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼 → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼)))
9368, 92sylbird 259 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (¬ 𝐼 < ((♯‘𝐴) + (♯‘𝐵)) → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼)))
9493com12 32 . . . . . 6 𝐼 < ((♯‘𝐴) + (♯‘𝐵)) → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼)))
9594adantrd 492 . . . . 5 𝐼 < ((♯‘𝐴) + (♯‘𝐵)) → ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴)) → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼)))
9663, 95pm2.61i 182 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴)) → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼))
9740, 96ifeqda 4501 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → if(𝐼 < (♯‘𝐴), (𝐴𝐼), (𝐵‘(𝐼 − (♯‘𝐴)))) = ((𝐴 ++ 𝐵)‘𝐼))
9897eqcomd 2746 . 2 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → ((𝐴 ++ 𝐵)‘𝐼) = if(𝐼 < (♯‘𝐴), (𝐴𝐼), (𝐵‘(𝐼 − (♯‘𝐴)))))
99983impa 1109 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝐴 ++ 𝐵)‘𝐼) = if(𝐼 < (♯‘𝐴), (𝐴𝐼), (𝐵‘(𝐼 − (♯‘𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1542  wcel 2110  c0 4262  ifcif 4465   class class class wbr 5079  cfv 6432  (class class class)co 7271  cr 10871  0cc0 10872   + caddc 10875   < clt 11010  cle 11011  cmin 11205  cz 12319  ..^cfzo 13381  chash 14042  Word cword 14215   ++ cconcat 14271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12582  df-fz 13239  df-fzo 13382  df-hash 14043  df-word 14216  df-concat 14272
This theorem is referenced by:  swrdccatin2  14440  frlmvscadiccat  40234
  Copyright terms: Public domain W3C validator