MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ccatsymb Structured version   Visualization version   GIF version

Theorem ccatsymb 14538
Description: The symbol at a given position in a concatenated word. (Contributed by AV, 26-May-2018.) (Proof shortened by AV, 24-Nov-2018.)
Assertion
Ref Expression
ccatsymb ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝐴 ++ 𝐵)‘𝐼) = if(𝐼 < (♯‘𝐴), (𝐴𝐼), (𝐵‘(𝐼 − (♯‘𝐴)))))

Proof of Theorem ccatsymb
StepHypRef Expression
1 simprll 776 . . . . . . . 8 ((0 ≤ 𝐼 ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
2 simpr 484 . . . . . . . . . 10 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴)) → 𝐼 < (♯‘𝐴))
32anim2i 616 . . . . . . . . 9 ((0 ≤ 𝐼 ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴))) → (0 ≤ 𝐼𝐼 < (♯‘𝐴)))
4 simpr 484 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → 𝐼 ∈ ℤ)
5 0zd 12574 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → 0 ∈ ℤ)
6 lencl 14489 . . . . . . . . . . . . 13 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
76nn0zd 12588 . . . . . . . . . . . 12 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℤ)
87ad2antrr 723 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (♯‘𝐴) ∈ ℤ)
9 elfzo 13640 . . . . . . . . . . 11 ((𝐼 ∈ ℤ ∧ 0 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ) → (𝐼 ∈ (0..^(♯‘𝐴)) ↔ (0 ≤ 𝐼𝐼 < (♯‘𝐴))))
104, 5, 8, 9syl3anc 1368 . . . . . . . . . 10 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (𝐼 ∈ (0..^(♯‘𝐴)) ↔ (0 ≤ 𝐼𝐼 < (♯‘𝐴))))
1110ad2antrl 725 . . . . . . . . 9 ((0 ≤ 𝐼 ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴))) → (𝐼 ∈ (0..^(♯‘𝐴)) ↔ (0 ≤ 𝐼𝐼 < (♯‘𝐴))))
123, 11mpbird 257 . . . . . . . 8 ((0 ≤ 𝐼 ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴))) → 𝐼 ∈ (0..^(♯‘𝐴)))
13 df-3an 1086 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝐴))) ↔ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ (0..^(♯‘𝐴))))
141, 12, 13sylanbrc 582 . . . . . . 7 ((0 ≤ 𝐼 ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝐴))))
15 ccatval1 14533 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝐴))) → ((𝐴 ++ 𝐵)‘𝐼) = (𝐴𝐼))
1615eqcomd 2732 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝐴))) → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼))
1714, 16syl 17 . . . . . 6 ((0 ≤ 𝐼 ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴))) → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼))
1817ex 412 . . . . 5 (0 ≤ 𝐼 → ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴)) → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼)))
19 zre 12566 . . . . . . . . . 10 (𝐼 ∈ ℤ → 𝐼 ∈ ℝ)
20 0red 11221 . . . . . . . . . 10 (𝐼 ∈ ℤ → 0 ∈ ℝ)
2119, 20ltnled 11365 . . . . . . . . 9 (𝐼 ∈ ℤ → (𝐼 < 0 ↔ ¬ 0 ≤ 𝐼))
2221adantl 481 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (𝐼 < 0 ↔ ¬ 0 ≤ 𝐼))
23 simpl 482 . . . . . . . . . . . . 13 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝐴 ∈ Word 𝑉)
2423anim1i 614 . . . . . . . . . . . 12 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (𝐴 ∈ Word 𝑉𝐼 ∈ ℤ))
2524adantr 480 . . . . . . . . . . 11 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < 0) → (𝐴 ∈ Word 𝑉𝐼 ∈ ℤ))
26 animorrl 977 . . . . . . . . . . 11 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < 0) → (𝐼 < 0 ∨ (♯‘𝐴) ≤ 𝐼))
27 wrdsymb0 14505 . . . . . . . . . . 11 ((𝐴 ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝐼 < 0 ∨ (♯‘𝐴) ≤ 𝐼) → (𝐴𝐼) = ∅))
2825, 26, 27sylc 65 . . . . . . . . . 10 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < 0) → (𝐴𝐼) = ∅)
29 ccatcl 14530 . . . . . . . . . . . . 13 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝐴 ++ 𝐵) ∈ Word 𝑉)
3029anim1i 614 . . . . . . . . . . . 12 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → ((𝐴 ++ 𝐵) ∈ Word 𝑉𝐼 ∈ ℤ))
3130adantr 480 . . . . . . . . . . 11 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < 0) → ((𝐴 ++ 𝐵) ∈ Word 𝑉𝐼 ∈ ℤ))
32 animorrl 977 . . . . . . . . . . 11 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < 0) → (𝐼 < 0 ∨ (♯‘(𝐴 ++ 𝐵)) ≤ 𝐼))
33 wrdsymb0 14505 . . . . . . . . . . 11 (((𝐴 ++ 𝐵) ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝐼 < 0 ∨ (♯‘(𝐴 ++ 𝐵)) ≤ 𝐼) → ((𝐴 ++ 𝐵)‘𝐼) = ∅))
3431, 32, 33sylc 65 . . . . . . . . . 10 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < 0) → ((𝐴 ++ 𝐵)‘𝐼) = ∅)
3528, 34eqtr4d 2769 . . . . . . . . 9 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < 0) → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼))
3635ex 412 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (𝐼 < 0 → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼)))
3722, 36sylbird 260 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (¬ 0 ≤ 𝐼 → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼)))
3837com12 32 . . . . . 6 (¬ 0 ≤ 𝐼 → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼)))
3938adantrd 491 . . . . 5 (¬ 0 ≤ 𝐼 → ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴)) → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼)))
4018, 39pm2.61i 182 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ 𝐼 < (♯‘𝐴)) → (𝐴𝐼) = ((𝐴 ++ 𝐵)‘𝐼))
41 simprll 776 . . . . . . . 8 ((𝐼 < ((♯‘𝐴) + (♯‘𝐵)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
42 id 22 . . . . . . . . . 10 (𝐼 < ((♯‘𝐴) + (♯‘𝐵)) → 𝐼 < ((♯‘𝐴) + (♯‘𝐵)))
436nn0red 12537 . . . . . . . . . . . . 13 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℝ)
44 lenlt 11296 . . . . . . . . . . . . 13 (((♯‘𝐴) ∈ ℝ ∧ 𝐼 ∈ ℝ) → ((♯‘𝐴) ≤ 𝐼 ↔ ¬ 𝐼 < (♯‘𝐴)))
4543, 19, 44syl2an 595 . . . . . . . . . . . 12 ((𝐴 ∈ Word 𝑉𝐼 ∈ ℤ) → ((♯‘𝐴) ≤ 𝐼 ↔ ¬ 𝐼 < (♯‘𝐴)))
4645adantlr 712 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → ((♯‘𝐴) ≤ 𝐼 ↔ ¬ 𝐼 < (♯‘𝐴)))
4746biimpar 477 . . . . . . . . . 10 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴)) → (♯‘𝐴) ≤ 𝐼)
4842, 47anim12ci 613 . . . . . . . . 9 ((𝐼 < ((♯‘𝐴) + (♯‘𝐵)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴))) → ((♯‘𝐴) ≤ 𝐼𝐼 < ((♯‘𝐴) + (♯‘𝐵))))
49 lencl 14489 . . . . . . . . . . . . . 14 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℕ0)
5049nn0zd 12588 . . . . . . . . . . . . 13 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℤ)
51 zaddcl 12606 . . . . . . . . . . . . 13 (((♯‘𝐴) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ)
527, 50, 51syl2an 595 . . . . . . . . . . . 12 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ)
5352adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ)
54 elfzo 13640 . . . . . . . . . . 11 ((𝐼 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ ∧ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℤ) → (𝐼 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) ↔ ((♯‘𝐴) ≤ 𝐼𝐼 < ((♯‘𝐴) + (♯‘𝐵)))))
554, 8, 53, 54syl3anc 1368 . . . . . . . . . 10 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (𝐼 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) ↔ ((♯‘𝐴) ≤ 𝐼𝐼 < ((♯‘𝐴) + (♯‘𝐵)))))
5655ad2antrl 725 . . . . . . . . 9 ((𝐼 < ((♯‘𝐴) + (♯‘𝐵)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴))) → (𝐼 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))) ↔ ((♯‘𝐴) ≤ 𝐼𝐼 < ((♯‘𝐴) + (♯‘𝐵)))))
5748, 56mpbird 257 . . . . . . . 8 ((𝐼 < ((♯‘𝐴) + (♯‘𝐵)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴))) → 𝐼 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵))))
58 df-3an 1086 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) ↔ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))))
5941, 57, 58sylanbrc 582 . . . . . . 7 ((𝐼 < ((♯‘𝐴) + (♯‘𝐵)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))))
60 ccatval2 14534 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) → ((𝐴 ++ 𝐵)‘𝐼) = (𝐵‘(𝐼 − (♯‘𝐴))))
6160eqcomd 2732 . . . . . . 7 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ((♯‘𝐴)..^((♯‘𝐴) + (♯‘𝐵)))) → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼))
6259, 61syl 17 . . . . . 6 ((𝐼 < ((♯‘𝐴) + (♯‘𝐵)) ∧ (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴))) → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼))
6362ex 412 . . . . 5 (𝐼 < ((♯‘𝐴) + (♯‘𝐵)) → ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴)) → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼)))
6449nn0red 12537 . . . . . . . . . 10 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℝ)
65 readdcl 11195 . . . . . . . . . 10 (((♯‘𝐴) ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℝ)
6643, 64, 65syl2an 595 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((♯‘𝐴) + (♯‘𝐵)) ∈ ℝ)
67 lenlt 11296 . . . . . . . . 9 ((((♯‘𝐴) + (♯‘𝐵)) ∈ ℝ ∧ 𝐼 ∈ ℝ) → (((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼 ↔ ¬ 𝐼 < ((♯‘𝐴) + (♯‘𝐵))))
6866, 19, 67syl2an 595 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼 ↔ ¬ 𝐼 < ((♯‘𝐴) + (♯‘𝐵))))
69 simplr 766 . . . . . . . . . . . . 13 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → 𝐵 ∈ Word 𝑉)
70 simpr 484 . . . . . . . . . . . . . . 15 ((𝐴 ∈ Word 𝑉𝐼 ∈ ℤ) → 𝐼 ∈ ℤ)
717adantr 480 . . . . . . . . . . . . . . 15 ((𝐴 ∈ Word 𝑉𝐼 ∈ ℤ) → (♯‘𝐴) ∈ ℤ)
7270, 71zsubcld 12675 . . . . . . . . . . . . . 14 ((𝐴 ∈ Word 𝑉𝐼 ∈ ℤ) → (𝐼 − (♯‘𝐴)) ∈ ℤ)
7372adantlr 712 . . . . . . . . . . . . 13 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (𝐼 − (♯‘𝐴)) ∈ ℤ)
7469, 73jca 511 . . . . . . . . . . . 12 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (𝐵 ∈ Word 𝑉 ∧ (𝐼 − (♯‘𝐴)) ∈ ℤ))
7574adantr 480 . . . . . . . . . . 11 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → (𝐵 ∈ Word 𝑉 ∧ (𝐼 − (♯‘𝐴)) ∈ ℤ))
7643ad2antrr 723 . . . . . . . . . . . . . 14 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (♯‘𝐴) ∈ ℝ)
7764ad2antlr 724 . . . . . . . . . . . . . 14 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (♯‘𝐵) ∈ ℝ)
7819adantl 481 . . . . . . . . . . . . . 14 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → 𝐼 ∈ ℝ)
7976, 77, 78leaddsub2d 11820 . . . . . . . . . . . . 13 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼 ↔ (♯‘𝐵) ≤ (𝐼 − (♯‘𝐴))))
8079biimpa 476 . . . . . . . . . . . 12 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → (♯‘𝐵) ≤ (𝐼 − (♯‘𝐴)))
8180olcd 871 . . . . . . . . . . 11 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → ((𝐼 − (♯‘𝐴)) < 0 ∨ (♯‘𝐵) ≤ (𝐼 − (♯‘𝐴))))
82 wrdsymb0 14505 . . . . . . . . . . 11 ((𝐵 ∈ Word 𝑉 ∧ (𝐼 − (♯‘𝐴)) ∈ ℤ) → (((𝐼 − (♯‘𝐴)) < 0 ∨ (♯‘𝐵) ≤ (𝐼 − (♯‘𝐴))) → (𝐵‘(𝐼 − (♯‘𝐴))) = ∅))
8375, 81, 82sylc 65 . . . . . . . . . 10 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → (𝐵‘(𝐼 − (♯‘𝐴))) = ∅)
8430adantr 480 . . . . . . . . . . 11 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → ((𝐴 ++ 𝐵) ∈ Word 𝑉𝐼 ∈ ℤ))
85 ccatlen 14531 . . . . . . . . . . . . . 14 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
8685ad2antrr 723 . . . . . . . . . . . . 13 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → (♯‘(𝐴 ++ 𝐵)) = ((♯‘𝐴) + (♯‘𝐵)))
87 simpr 484 . . . . . . . . . . . . 13 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼)
8886, 87eqbrtrd 5163 . . . . . . . . . . . 12 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → (♯‘(𝐴 ++ 𝐵)) ≤ 𝐼)
8988olcd 871 . . . . . . . . . . 11 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → (𝐼 < 0 ∨ (♯‘(𝐴 ++ 𝐵)) ≤ 𝐼))
9084, 89, 33sylc 65 . . . . . . . . . 10 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → ((𝐴 ++ 𝐵)‘𝐼) = ∅)
9183, 90eqtr4d 2769 . . . . . . . . 9 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼) → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼))
9291ex 412 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (((♯‘𝐴) + (♯‘𝐵)) ≤ 𝐼 → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼)))
9368, 92sylbird 260 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (¬ 𝐼 < ((♯‘𝐴) + (♯‘𝐵)) → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼)))
9493com12 32 . . . . . 6 𝐼 < ((♯‘𝐴) + (♯‘𝐵)) → (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼)))
9594adantrd 491 . . . . 5 𝐼 < ((♯‘𝐴) + (♯‘𝐵)) → ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴)) → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼)))
9663, 95pm2.61i 182 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) ∧ ¬ 𝐼 < (♯‘𝐴)) → (𝐵‘(𝐼 − (♯‘𝐴))) = ((𝐴 ++ 𝐵)‘𝐼))
9740, 96ifeqda 4559 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → if(𝐼 < (♯‘𝐴), (𝐴𝐼), (𝐵‘(𝐼 − (♯‘𝐴)))) = ((𝐴 ++ 𝐵)‘𝐼))
9897eqcomd 2732 . 2 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝐼 ∈ ℤ) → ((𝐴 ++ 𝐵)‘𝐼) = if(𝐼 < (♯‘𝐴), (𝐴𝐼), (𝐵‘(𝐼 − (♯‘𝐴)))))
99983impa 1107 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝐼 ∈ ℤ) → ((𝐴 ++ 𝐵)‘𝐼) = if(𝐼 < (♯‘𝐴), (𝐴𝐼), (𝐵‘(𝐼 − (♯‘𝐴)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 844  w3a 1084   = wceq 1533  wcel 2098  c0 4317  ifcif 4523   class class class wbr 5141  cfv 6537  (class class class)co 7405  cr 11111  0cc0 11112   + caddc 11115   < clt 11252  cle 11253  cmin 11448  cz 12562  ..^cfzo 13633  chash 14295  Word cword 14470   ++ cconcat 14526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13491  df-fzo 13634  df-hash 14296  df-word 14471  df-concat 14527
This theorem is referenced by:  swrdccatin2  14685  frlmvscadiccat  41641
  Copyright terms: Public domain W3C validator