| Step | Hyp | Ref
| Expression |
| 1 | | mreexexlem2d.1 |
. . . 4
⊢ (𝜑 → 𝐴 ∈ (Moore‘𝑋)) |
| 2 | 1 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐹 = ∅) → 𝐴 ∈ (Moore‘𝑋)) |
| 3 | | mreexexlem2d.2 |
. . 3
⊢ 𝑁 = (mrCls‘𝐴) |
| 4 | | mreexexlem2d.3 |
. . 3
⊢ 𝐼 = (mrInd‘𝐴) |
| 5 | | mreexexlem2d.4 |
. . . 4
⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
| 6 | 5 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐹 = ∅) → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
| 7 | | mreexexlem2d.5 |
. . . 4
⊢ (𝜑 → 𝐹 ⊆ (𝑋 ∖ 𝐻)) |
| 8 | 7 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐹 = ∅) → 𝐹 ⊆ (𝑋 ∖ 𝐻)) |
| 9 | | mreexexlem2d.6 |
. . . 4
⊢ (𝜑 → 𝐺 ⊆ (𝑋 ∖ 𝐻)) |
| 10 | 9 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐹 = ∅) → 𝐺 ⊆ (𝑋 ∖ 𝐻)) |
| 11 | | mreexexlem2d.7 |
. . . 4
⊢ (𝜑 → 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻))) |
| 12 | 11 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐹 = ∅) → 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻))) |
| 13 | | mreexexlem2d.8 |
. . . 4
⊢ (𝜑 → (𝐹 ∪ 𝐻) ∈ 𝐼) |
| 14 | 13 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐹 = ∅) → (𝐹 ∪ 𝐻) ∈ 𝐼) |
| 15 | | animorrl 983 |
. . 3
⊢ ((𝜑 ∧ 𝐹 = ∅) → (𝐹 = ∅ ∨ 𝐺 = ∅)) |
| 16 | 2, 3, 4, 6, 8, 10,
12, 14, 15 | mreexexlem3d 17689 |
. 2
⊢ ((𝜑 ∧ 𝐹 = ∅) → ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼)) |
| 17 | | n0 4353 |
. . . . 5
⊢ (𝐹 ≠ ∅ ↔
∃𝑟 𝑟 ∈ 𝐹) |
| 18 | 17 | biimpi 216 |
. . . 4
⊢ (𝐹 ≠ ∅ →
∃𝑟 𝑟 ∈ 𝐹) |
| 19 | 18 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ 𝐹 ≠ ∅) → ∃𝑟 𝑟 ∈ 𝐹) |
| 20 | 1 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ 𝐹) → 𝐴 ∈ (Moore‘𝑋)) |
| 21 | 5 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ 𝐹) → ∀𝑠 ∈ 𝒫 𝑋∀𝑦 ∈ 𝑋 ∀𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁‘𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧}))) |
| 22 | 7 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ 𝐹) → 𝐹 ⊆ (𝑋 ∖ 𝐻)) |
| 23 | 9 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ 𝐹) → 𝐺 ⊆ (𝑋 ∖ 𝐻)) |
| 24 | 11 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ 𝐹) → 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻))) |
| 25 | 13 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ 𝐹) → (𝐹 ∪ 𝐻) ∈ 𝐼) |
| 26 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ 𝐹) → 𝑟 ∈ 𝐹) |
| 27 | 20, 3, 4, 21, 22, 23, 24, 25, 26 | mreexexlem2d 17688 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ 𝐹) → ∃𝑞 ∈ 𝐺 (¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) |
| 28 | | 3anass 1095 |
. . . . . 6
⊢ ((𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼) ↔ (𝑞 ∈ 𝐺 ∧ (¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) |
| 29 | 1 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → 𝐴 ∈ (Moore‘𝑋)) |
| 30 | 29 | elfvexd 6945 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → 𝑋 ∈ V) |
| 31 | | simpr2 1196 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → ¬ 𝑞 ∈ (𝐹 ∖ {𝑟})) |
| 32 | | difsnb 4806 |
. . . . . . . . . . 11
⊢ (¬
𝑞 ∈ (𝐹 ∖ {𝑟}) ↔ ((𝐹 ∖ {𝑟}) ∖ {𝑞}) = (𝐹 ∖ {𝑟})) |
| 33 | 31, 32 | sylib 218 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → ((𝐹 ∖ {𝑟}) ∖ {𝑞}) = (𝐹 ∖ {𝑟})) |
| 34 | 7 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → 𝐹 ⊆ (𝑋 ∖ 𝐻)) |
| 35 | 34 | ssdifssd 4147 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → (𝐹 ∖ {𝑟}) ⊆ (𝑋 ∖ 𝐻)) |
| 36 | 35 | ssdifd 4145 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → ((𝐹 ∖ {𝑟}) ∖ {𝑞}) ⊆ ((𝑋 ∖ 𝐻) ∖ {𝑞})) |
| 37 | 33, 36 | eqsstrrd 4019 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → (𝐹 ∖ {𝑟}) ⊆ ((𝑋 ∖ 𝐻) ∖ {𝑞})) |
| 38 | | difun1 4299 |
. . . . . . . . 9
⊢ (𝑋 ∖ (𝐻 ∪ {𝑞})) = ((𝑋 ∖ 𝐻) ∖ {𝑞}) |
| 39 | 37, 38 | sseqtrrdi 4025 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → (𝐹 ∖ {𝑟}) ⊆ (𝑋 ∖ (𝐻 ∪ {𝑞}))) |
| 40 | 9 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → 𝐺 ⊆ (𝑋 ∖ 𝐻)) |
| 41 | 40 | ssdifd 4145 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → (𝐺 ∖ {𝑞}) ⊆ ((𝑋 ∖ 𝐻) ∖ {𝑞})) |
| 42 | 41, 38 | sseqtrrdi 4025 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → (𝐺 ∖ {𝑞}) ⊆ (𝑋 ∖ (𝐻 ∪ {𝑞}))) |
| 43 | 11 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → 𝐹 ⊆ (𝑁‘(𝐺 ∪ 𝐻))) |
| 44 | | simpr1 1195 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → 𝑞 ∈ 𝐺) |
| 45 | | uncom 4158 |
. . . . . . . . . . . . . 14
⊢ (𝐻 ∪ {𝑞}) = ({𝑞} ∪ 𝐻) |
| 46 | 45 | uneq2i 4165 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∖ {𝑞}) ∪ (𝐻 ∪ {𝑞})) = ((𝐺 ∖ {𝑞}) ∪ ({𝑞} ∪ 𝐻)) |
| 47 | | unass 4172 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∖ {𝑞}) ∪ {𝑞}) ∪ 𝐻) = ((𝐺 ∖ {𝑞}) ∪ ({𝑞} ∪ 𝐻)) |
| 48 | | difsnid 4810 |
. . . . . . . . . . . . . . 15
⊢ (𝑞 ∈ 𝐺 → ((𝐺 ∖ {𝑞}) ∪ {𝑞}) = 𝐺) |
| 49 | 48 | uneq1d 4167 |
. . . . . . . . . . . . . 14
⊢ (𝑞 ∈ 𝐺 → (((𝐺 ∖ {𝑞}) ∪ {𝑞}) ∪ 𝐻) = (𝐺 ∪ 𝐻)) |
| 50 | 47, 49 | eqtr3id 2791 |
. . . . . . . . . . . . 13
⊢ (𝑞 ∈ 𝐺 → ((𝐺 ∖ {𝑞}) ∪ ({𝑞} ∪ 𝐻)) = (𝐺 ∪ 𝐻)) |
| 51 | 46, 50 | eqtrid 2789 |
. . . . . . . . . . . 12
⊢ (𝑞 ∈ 𝐺 → ((𝐺 ∖ {𝑞}) ∪ (𝐻 ∪ {𝑞})) = (𝐺 ∪ 𝐻)) |
| 52 | 44, 51 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → ((𝐺 ∖ {𝑞}) ∪ (𝐻 ∪ {𝑞})) = (𝐺 ∪ 𝐻)) |
| 53 | 52 | fveq2d 6910 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → (𝑁‘((𝐺 ∖ {𝑞}) ∪ (𝐻 ∪ {𝑞}))) = (𝑁‘(𝐺 ∪ 𝐻))) |
| 54 | 43, 53 | sseqtrrd 4021 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → 𝐹 ⊆ (𝑁‘((𝐺 ∖ {𝑞}) ∪ (𝐻 ∪ {𝑞})))) |
| 55 | 54 | ssdifssd 4147 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → (𝐹 ∖ {𝑟}) ⊆ (𝑁‘((𝐺 ∖ {𝑞}) ∪ (𝐻 ∪ {𝑞})))) |
| 56 | | simpr3 1197 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼) |
| 57 | | mreexexlem4d.B |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹 ≈ suc 𝐿 ∨ 𝐺 ≈ suc 𝐿)) |
| 58 | 57 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → (𝐹 ≈ suc 𝐿 ∨ 𝐺 ≈ suc 𝐿)) |
| 59 | | mreexexlem4d.9 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐿 ∈ ω) |
| 60 | 59 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → 𝐿 ∈ ω) |
| 61 | | simplr 769 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → 𝑟 ∈ 𝐹) |
| 62 | | 3anan12 1096 |
. . . . . . . . . . . . 13
⊢ ((𝐿 ∈ ω ∧ 𝐹 ≈ suc 𝐿 ∧ 𝑟 ∈ 𝐹) ↔ (𝐹 ≈ suc 𝐿 ∧ (𝐿 ∈ ω ∧ 𝑟 ∈ 𝐹))) |
| 63 | | dif1ennn 9201 |
. . . . . . . . . . . . 13
⊢ ((𝐿 ∈ ω ∧ 𝐹 ≈ suc 𝐿 ∧ 𝑟 ∈ 𝐹) → (𝐹 ∖ {𝑟}) ≈ 𝐿) |
| 64 | 62, 63 | sylbir 235 |
. . . . . . . . . . . 12
⊢ ((𝐹 ≈ suc 𝐿 ∧ (𝐿 ∈ ω ∧ 𝑟 ∈ 𝐹)) → (𝐹 ∖ {𝑟}) ≈ 𝐿) |
| 65 | 64 | expcom 413 |
. . . . . . . . . . 11
⊢ ((𝐿 ∈ ω ∧ 𝑟 ∈ 𝐹) → (𝐹 ≈ suc 𝐿 → (𝐹 ∖ {𝑟}) ≈ 𝐿)) |
| 66 | 60, 61, 65 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → (𝐹 ≈ suc 𝐿 → (𝐹 ∖ {𝑟}) ≈ 𝐿)) |
| 67 | | 3anan12 1096 |
. . . . . . . . . . . . 13
⊢ ((𝐿 ∈ ω ∧ 𝐺 ≈ suc 𝐿 ∧ 𝑞 ∈ 𝐺) ↔ (𝐺 ≈ suc 𝐿 ∧ (𝐿 ∈ ω ∧ 𝑞 ∈ 𝐺))) |
| 68 | | dif1ennn 9201 |
. . . . . . . . . . . . 13
⊢ ((𝐿 ∈ ω ∧ 𝐺 ≈ suc 𝐿 ∧ 𝑞 ∈ 𝐺) → (𝐺 ∖ {𝑞}) ≈ 𝐿) |
| 69 | 67, 68 | sylbir 235 |
. . . . . . . . . . . 12
⊢ ((𝐺 ≈ suc 𝐿 ∧ (𝐿 ∈ ω ∧ 𝑞 ∈ 𝐺)) → (𝐺 ∖ {𝑞}) ≈ 𝐿) |
| 70 | 69 | expcom 413 |
. . . . . . . . . . 11
⊢ ((𝐿 ∈ ω ∧ 𝑞 ∈ 𝐺) → (𝐺 ≈ suc 𝐿 → (𝐺 ∖ {𝑞}) ≈ 𝐿)) |
| 71 | 60, 44, 70 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → (𝐺 ≈ suc 𝐿 → (𝐺 ∖ {𝑞}) ≈ 𝐿)) |
| 72 | 66, 71 | orim12d 967 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → ((𝐹 ≈ suc 𝐿 ∨ 𝐺 ≈ suc 𝐿) → ((𝐹 ∖ {𝑟}) ≈ 𝐿 ∨ (𝐺 ∖ {𝑞}) ≈ 𝐿))) |
| 73 | 58, 72 | mpd 15 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → ((𝐹 ∖ {𝑟}) ≈ 𝐿 ∨ (𝐺 ∖ {𝑞}) ≈ 𝐿)) |
| 74 | | mreexexlem4d.A |
. . . . . . . . 9
⊢ (𝜑 → ∀ℎ∀𝑓 ∈ 𝒫 (𝑋 ∖ ℎ)∀𝑔 ∈ 𝒫 (𝑋 ∖ ℎ)(((𝑓 ≈ 𝐿 ∨ 𝑔 ≈ 𝐿) ∧ 𝑓 ⊆ (𝑁‘(𝑔 ∪ ℎ)) ∧ (𝑓 ∪ ℎ) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓 ≈ 𝑗 ∧ (𝑗 ∪ ℎ) ∈ 𝐼))) |
| 75 | 74 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → ∀ℎ∀𝑓 ∈ 𝒫 (𝑋 ∖ ℎ)∀𝑔 ∈ 𝒫 (𝑋 ∖ ℎ)(((𝑓 ≈ 𝐿 ∨ 𝑔 ≈ 𝐿) ∧ 𝑓 ⊆ (𝑁‘(𝑔 ∪ ℎ)) ∧ (𝑓 ∪ ℎ) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓 ≈ 𝑗 ∧ (𝑗 ∪ ℎ) ∈ 𝐼))) |
| 76 | 30, 39, 42, 55, 56, 73, 75 | mreexexlemd 17687 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → ∃𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞})((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) |
| 77 | 30 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → 𝑋 ∈ V) |
| 78 | 9 | ad3antrrr 730 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → 𝐺 ⊆ (𝑋 ∖ 𝐻)) |
| 79 | 78 | difss2d 4139 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → 𝐺 ⊆ 𝑋) |
| 80 | 77, 79 | ssexd 5324 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → 𝐺 ∈ V) |
| 81 | | simprl 771 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → 𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞})) |
| 82 | 81 | elpwid 4609 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → 𝑖 ⊆ (𝐺 ∖ {𝑞})) |
| 83 | 82 | difss2d 4139 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → 𝑖 ⊆ 𝐺) |
| 84 | | simplr1 1216 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → 𝑞 ∈ 𝐺) |
| 85 | 84 | snssd 4809 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → {𝑞} ⊆ 𝐺) |
| 86 | 83, 85 | unssd 4192 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → (𝑖 ∪ {𝑞}) ⊆ 𝐺) |
| 87 | 80, 86 | sselpwd 5328 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → (𝑖 ∪ {𝑞}) ∈ 𝒫 𝐺) |
| 88 | | difsnid 4810 |
. . . . . . . . . 10
⊢ (𝑟 ∈ 𝐹 → ((𝐹 ∖ {𝑟}) ∪ {𝑟}) = 𝐹) |
| 89 | 88 | ad3antlr 731 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → ((𝐹 ∖ {𝑟}) ∪ {𝑟}) = 𝐹) |
| 90 | | simprrl 781 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → (𝐹 ∖ {𝑟}) ≈ 𝑖) |
| 91 | | en2sn 9081 |
. . . . . . . . . . . 12
⊢ ((𝑟 ∈ V ∧ 𝑞 ∈ V) → {𝑟} ≈ {𝑞}) |
| 92 | 91 | el2v 3487 |
. . . . . . . . . . 11
⊢ {𝑟} ≈ {𝑞} |
| 93 | 92 | a1i 11 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → {𝑟} ≈ {𝑞}) |
| 94 | | disjdifr 4473 |
. . . . . . . . . . 11
⊢ ((𝐹 ∖ {𝑟}) ∩ {𝑟}) = ∅ |
| 95 | 94 | a1i 11 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → ((𝐹 ∖ {𝑟}) ∩ {𝑟}) = ∅) |
| 96 | | ssdifin0 4486 |
. . . . . . . . . . 11
⊢ (𝑖 ⊆ (𝐺 ∖ {𝑞}) → (𝑖 ∩ {𝑞}) = ∅) |
| 97 | 82, 96 | syl 17 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → (𝑖 ∩ {𝑞}) = ∅) |
| 98 | | unen 9086 |
. . . . . . . . . 10
⊢ ((((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ {𝑟} ≈ {𝑞}) ∧ (((𝐹 ∖ {𝑟}) ∩ {𝑟}) = ∅ ∧ (𝑖 ∩ {𝑞}) = ∅)) → ((𝐹 ∖ {𝑟}) ∪ {𝑟}) ≈ (𝑖 ∪ {𝑞})) |
| 99 | 90, 93, 95, 97, 98 | syl22anc 839 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → ((𝐹 ∖ {𝑟}) ∪ {𝑟}) ≈ (𝑖 ∪ {𝑞})) |
| 100 | 89, 99 | eqbrtrrd 5167 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → 𝐹 ≈ (𝑖 ∪ {𝑞})) |
| 101 | | unass 4172 |
. . . . . . . . . 10
⊢ ((𝑖 ∪ {𝑞}) ∪ 𝐻) = (𝑖 ∪ ({𝑞} ∪ 𝐻)) |
| 102 | | uncom 4158 |
. . . . . . . . . . 11
⊢ ({𝑞} ∪ 𝐻) = (𝐻 ∪ {𝑞}) |
| 103 | 102 | uneq2i 4165 |
. . . . . . . . . 10
⊢ (𝑖 ∪ ({𝑞} ∪ 𝐻)) = (𝑖 ∪ (𝐻 ∪ {𝑞})) |
| 104 | 101, 103 | eqtr2i 2766 |
. . . . . . . . 9
⊢ (𝑖 ∪ (𝐻 ∪ {𝑞})) = ((𝑖 ∪ {𝑞}) ∪ 𝐻) |
| 105 | | simprrr 782 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼) |
| 106 | 104, 105 | eqeltrrid 2846 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → ((𝑖 ∪ {𝑞}) ∪ 𝐻) ∈ 𝐼) |
| 107 | | breq2 5147 |
. . . . . . . . . 10
⊢ (𝑗 = (𝑖 ∪ {𝑞}) → (𝐹 ≈ 𝑗 ↔ 𝐹 ≈ (𝑖 ∪ {𝑞}))) |
| 108 | | uneq1 4161 |
. . . . . . . . . . 11
⊢ (𝑗 = (𝑖 ∪ {𝑞}) → (𝑗 ∪ 𝐻) = ((𝑖 ∪ {𝑞}) ∪ 𝐻)) |
| 109 | 108 | eleq1d 2826 |
. . . . . . . . . 10
⊢ (𝑗 = (𝑖 ∪ {𝑞}) → ((𝑗 ∪ 𝐻) ∈ 𝐼 ↔ ((𝑖 ∪ {𝑞}) ∪ 𝐻) ∈ 𝐼)) |
| 110 | 107, 109 | anbi12d 632 |
. . . . . . . . 9
⊢ (𝑗 = (𝑖 ∪ {𝑞}) → ((𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼) ↔ (𝐹 ≈ (𝑖 ∪ {𝑞}) ∧ ((𝑖 ∪ {𝑞}) ∪ 𝐻) ∈ 𝐼))) |
| 111 | 110 | rspcev 3622 |
. . . . . . . 8
⊢ (((𝑖 ∪ {𝑞}) ∈ 𝒫 𝐺 ∧ (𝐹 ≈ (𝑖 ∪ {𝑞}) ∧ ((𝑖 ∪ {𝑞}) ∪ 𝐻) ∈ 𝐼)) → ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼)) |
| 112 | 87, 100, 106, 111 | syl12anc 837 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼)) |
| 113 | 76, 112 | rexlimddv 3161 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼)) |
| 114 | 28, 113 | sylan2br 595 |
. . . . 5
⊢ (((𝜑 ∧ 𝑟 ∈ 𝐹) ∧ (𝑞 ∈ 𝐺 ∧ (¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼)) |
| 115 | 27, 114 | rexlimddv 3161 |
. . . 4
⊢ ((𝜑 ∧ 𝑟 ∈ 𝐹) → ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼)) |
| 116 | 115 | adantlr 715 |
. . 3
⊢ (((𝜑 ∧ 𝐹 ≠ ∅) ∧ 𝑟 ∈ 𝐹) → ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼)) |
| 117 | 19, 116 | exlimddv 1935 |
. 2
⊢ ((𝜑 ∧ 𝐹 ≠ ∅) → ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼)) |
| 118 | 16, 117 | pm2.61dane 3029 |
1
⊢ (𝜑 → ∃𝑗 ∈ 𝒫 𝐺(𝐹 ≈ 𝑗 ∧ (𝑗 ∪ 𝐻) ∈ 𝐼)) |