MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreexexlem4d Structured version   Visualization version   GIF version

Theorem mreexexlem4d 17356
Description: Induction step of the induction in mreexexd 17357. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mreexexlem2d.1 (𝜑𝐴 ∈ (Moore‘𝑋))
mreexexlem2d.2 𝑁 = (mrCls‘𝐴)
mreexexlem2d.3 𝐼 = (mrInd‘𝐴)
mreexexlem2d.4 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
mreexexlem2d.5 (𝜑𝐹 ⊆ (𝑋𝐻))
mreexexlem2d.6 (𝜑𝐺 ⊆ (𝑋𝐻))
mreexexlem2d.7 (𝜑𝐹 ⊆ (𝑁‘(𝐺𝐻)))
mreexexlem2d.8 (𝜑 → (𝐹𝐻) ∈ 𝐼)
mreexexlem4d.9 (𝜑𝐿 ∈ ω)
mreexexlem4d.A (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝐿𝑔𝐿) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓𝑗 ∧ (𝑗) ∈ 𝐼)))
mreexexlem4d.B (𝜑 → (𝐹 ≈ suc 𝐿𝐺 ≈ suc 𝐿))
Assertion
Ref Expression
mreexexlem4d (𝜑 → ∃𝑗 ∈ 𝒫 𝐺(𝐹𝑗 ∧ (𝑗𝐻) ∈ 𝐼))
Distinct variable groups:   𝑓,𝑔,,𝑋   𝑓,𝐼,𝑗,𝑔,   𝑓,𝐿,𝑔,   𝑓,𝑁,𝑔,   𝑦,𝑠,𝑧,𝑁   𝐹,𝑠,𝑦,𝑧   𝐺,𝑠,𝑦,𝑧   𝐻,𝑠,𝑦,𝑧   𝜑,𝑠,𝑦,𝑧   𝑗,𝐹   𝑗,𝐺   𝑗,𝐻   𝑋,𝑠,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑔,,𝑗)   𝐴(𝑦,𝑧,𝑓,𝑔,,𝑗,𝑠)   𝐹(𝑓,𝑔,)   𝐺(𝑓,𝑔,)   𝐻(𝑓,𝑔,)   𝐼(𝑦,𝑧,𝑠)   𝐿(𝑦,𝑧,𝑗,𝑠)   𝑁(𝑗)   𝑋(𝑧,𝑗)

Proof of Theorem mreexexlem4d
Dummy variables 𝑖 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mreexexlem2d.1 . . . 4 (𝜑𝐴 ∈ (Moore‘𝑋))
21adantr 481 . . 3 ((𝜑𝐹 = ∅) → 𝐴 ∈ (Moore‘𝑋))
3 mreexexlem2d.2 . . 3 𝑁 = (mrCls‘𝐴)
4 mreexexlem2d.3 . . 3 𝐼 = (mrInd‘𝐴)
5 mreexexlem2d.4 . . . 4 (𝜑 → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
65adantr 481 . . 3 ((𝜑𝐹 = ∅) → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
7 mreexexlem2d.5 . . . 4 (𝜑𝐹 ⊆ (𝑋𝐻))
87adantr 481 . . 3 ((𝜑𝐹 = ∅) → 𝐹 ⊆ (𝑋𝐻))
9 mreexexlem2d.6 . . . 4 (𝜑𝐺 ⊆ (𝑋𝐻))
109adantr 481 . . 3 ((𝜑𝐹 = ∅) → 𝐺 ⊆ (𝑋𝐻))
11 mreexexlem2d.7 . . . 4 (𝜑𝐹 ⊆ (𝑁‘(𝐺𝐻)))
1211adantr 481 . . 3 ((𝜑𝐹 = ∅) → 𝐹 ⊆ (𝑁‘(𝐺𝐻)))
13 mreexexlem2d.8 . . . 4 (𝜑 → (𝐹𝐻) ∈ 𝐼)
1413adantr 481 . . 3 ((𝜑𝐹 = ∅) → (𝐹𝐻) ∈ 𝐼)
15 animorrl 978 . . 3 ((𝜑𝐹 = ∅) → (𝐹 = ∅ ∨ 𝐺 = ∅))
162, 3, 4, 6, 8, 10, 12, 14, 15mreexexlem3d 17355 . 2 ((𝜑𝐹 = ∅) → ∃𝑗 ∈ 𝒫 𝐺(𝐹𝑗 ∧ (𝑗𝐻) ∈ 𝐼))
17 n0 4280 . . . . 5 (𝐹 ≠ ∅ ↔ ∃𝑟 𝑟𝐹)
1817biimpi 215 . . . 4 (𝐹 ≠ ∅ → ∃𝑟 𝑟𝐹)
1918adantl 482 . . 3 ((𝜑𝐹 ≠ ∅) → ∃𝑟 𝑟𝐹)
201adantr 481 . . . . . 6 ((𝜑𝑟𝐹) → 𝐴 ∈ (Moore‘𝑋))
215adantr 481 . . . . . 6 ((𝜑𝑟𝐹) → ∀𝑠 ∈ 𝒫 𝑋𝑦𝑋𝑧 ∈ ((𝑁‘(𝑠 ∪ {𝑦})) ∖ (𝑁𝑠))𝑦 ∈ (𝑁‘(𝑠 ∪ {𝑧})))
227adantr 481 . . . . . 6 ((𝜑𝑟𝐹) → 𝐹 ⊆ (𝑋𝐻))
239adantr 481 . . . . . 6 ((𝜑𝑟𝐹) → 𝐺 ⊆ (𝑋𝐻))
2411adantr 481 . . . . . 6 ((𝜑𝑟𝐹) → 𝐹 ⊆ (𝑁‘(𝐺𝐻)))
2513adantr 481 . . . . . 6 ((𝜑𝑟𝐹) → (𝐹𝐻) ∈ 𝐼)
26 simpr 485 . . . . . 6 ((𝜑𝑟𝐹) → 𝑟𝐹)
2720, 3, 4, 21, 22, 23, 24, 25, 26mreexexlem2d 17354 . . . . 5 ((𝜑𝑟𝐹) → ∃𝑞𝐺𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))
28 3anass 1094 . . . . . 6 ((𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼) ↔ (𝑞𝐺 ∧ (¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)))
291ad2antrr 723 . . . . . . . . 9 (((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → 𝐴 ∈ (Moore‘𝑋))
3029elfvexd 6808 . . . . . . . 8 (((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → 𝑋 ∈ V)
31 simpr2 1194 . . . . . . . . . . 11 (((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}))
32 difsnb 4739 . . . . . . . . . . 11 𝑞 ∈ (𝐹 ∖ {𝑟}) ↔ ((𝐹 ∖ {𝑟}) ∖ {𝑞}) = (𝐹 ∖ {𝑟}))
3331, 32sylib 217 . . . . . . . . . 10 (((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → ((𝐹 ∖ {𝑟}) ∖ {𝑞}) = (𝐹 ∖ {𝑟}))
347ad2antrr 723 . . . . . . . . . . . 12 (((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → 𝐹 ⊆ (𝑋𝐻))
3534ssdifssd 4077 . . . . . . . . . . 11 (((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → (𝐹 ∖ {𝑟}) ⊆ (𝑋𝐻))
3635ssdifd 4075 . . . . . . . . . 10 (((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → ((𝐹 ∖ {𝑟}) ∖ {𝑞}) ⊆ ((𝑋𝐻) ∖ {𝑞}))
3733, 36eqsstrrd 3960 . . . . . . . . 9 (((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → (𝐹 ∖ {𝑟}) ⊆ ((𝑋𝐻) ∖ {𝑞}))
38 difun1 4223 . . . . . . . . 9 (𝑋 ∖ (𝐻 ∪ {𝑞})) = ((𝑋𝐻) ∖ {𝑞})
3937, 38sseqtrrdi 3972 . . . . . . . 8 (((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → (𝐹 ∖ {𝑟}) ⊆ (𝑋 ∖ (𝐻 ∪ {𝑞})))
409ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → 𝐺 ⊆ (𝑋𝐻))
4140ssdifd 4075 . . . . . . . . 9 (((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → (𝐺 ∖ {𝑞}) ⊆ ((𝑋𝐻) ∖ {𝑞}))
4241, 38sseqtrrdi 3972 . . . . . . . 8 (((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → (𝐺 ∖ {𝑞}) ⊆ (𝑋 ∖ (𝐻 ∪ {𝑞})))
4311ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → 𝐹 ⊆ (𝑁‘(𝐺𝐻)))
44 simpr1 1193 . . . . . . . . . . . 12 (((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → 𝑞𝐺)
45 uncom 4087 . . . . . . . . . . . . . 14 (𝐻 ∪ {𝑞}) = ({𝑞} ∪ 𝐻)
4645uneq2i 4094 . . . . . . . . . . . . 13 ((𝐺 ∖ {𝑞}) ∪ (𝐻 ∪ {𝑞})) = ((𝐺 ∖ {𝑞}) ∪ ({𝑞} ∪ 𝐻))
47 unass 4100 . . . . . . . . . . . . . 14 (((𝐺 ∖ {𝑞}) ∪ {𝑞}) ∪ 𝐻) = ((𝐺 ∖ {𝑞}) ∪ ({𝑞} ∪ 𝐻))
48 difsnid 4743 . . . . . . . . . . . . . . 15 (𝑞𝐺 → ((𝐺 ∖ {𝑞}) ∪ {𝑞}) = 𝐺)
4948uneq1d 4096 . . . . . . . . . . . . . 14 (𝑞𝐺 → (((𝐺 ∖ {𝑞}) ∪ {𝑞}) ∪ 𝐻) = (𝐺𝐻))
5047, 49eqtr3id 2792 . . . . . . . . . . . . 13 (𝑞𝐺 → ((𝐺 ∖ {𝑞}) ∪ ({𝑞} ∪ 𝐻)) = (𝐺𝐻))
5146, 50eqtrid 2790 . . . . . . . . . . . 12 (𝑞𝐺 → ((𝐺 ∖ {𝑞}) ∪ (𝐻 ∪ {𝑞})) = (𝐺𝐻))
5244, 51syl 17 . . . . . . . . . . 11 (((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → ((𝐺 ∖ {𝑞}) ∪ (𝐻 ∪ {𝑞})) = (𝐺𝐻))
5352fveq2d 6778 . . . . . . . . . 10 (((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → (𝑁‘((𝐺 ∖ {𝑞}) ∪ (𝐻 ∪ {𝑞}))) = (𝑁‘(𝐺𝐻)))
5443, 53sseqtrrd 3962 . . . . . . . . 9 (((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → 𝐹 ⊆ (𝑁‘((𝐺 ∖ {𝑞}) ∪ (𝐻 ∪ {𝑞}))))
5554ssdifssd 4077 . . . . . . . 8 (((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → (𝐹 ∖ {𝑟}) ⊆ (𝑁‘((𝐺 ∖ {𝑞}) ∪ (𝐻 ∪ {𝑞}))))
56 simpr3 1195 . . . . . . . 8 (((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)
57 mreexexlem4d.B . . . . . . . . . 10 (𝜑 → (𝐹 ≈ suc 𝐿𝐺 ≈ suc 𝐿))
5857ad2antrr 723 . . . . . . . . 9 (((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → (𝐹 ≈ suc 𝐿𝐺 ≈ suc 𝐿))
59 mreexexlem4d.9 . . . . . . . . . . . 12 (𝜑𝐿 ∈ ω)
6059ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → 𝐿 ∈ ω)
61 simplr 766 . . . . . . . . . . 11 (((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → 𝑟𝐹)
62 3anan12 1095 . . . . . . . . . . . . 13 ((𝐿 ∈ ω ∧ 𝐹 ≈ suc 𝐿𝑟𝐹) ↔ (𝐹 ≈ suc 𝐿 ∧ (𝐿 ∈ ω ∧ 𝑟𝐹)))
63 dif1en 8945 . . . . . . . . . . . . 13 ((𝐿 ∈ ω ∧ 𝐹 ≈ suc 𝐿𝑟𝐹) → (𝐹 ∖ {𝑟}) ≈ 𝐿)
6462, 63sylbir 234 . . . . . . . . . . . 12 ((𝐹 ≈ suc 𝐿 ∧ (𝐿 ∈ ω ∧ 𝑟𝐹)) → (𝐹 ∖ {𝑟}) ≈ 𝐿)
6564expcom 414 . . . . . . . . . . 11 ((𝐿 ∈ ω ∧ 𝑟𝐹) → (𝐹 ≈ suc 𝐿 → (𝐹 ∖ {𝑟}) ≈ 𝐿))
6660, 61, 65syl2anc 584 . . . . . . . . . 10 (((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → (𝐹 ≈ suc 𝐿 → (𝐹 ∖ {𝑟}) ≈ 𝐿))
67 3anan12 1095 . . . . . . . . . . . . 13 ((𝐿 ∈ ω ∧ 𝐺 ≈ suc 𝐿𝑞𝐺) ↔ (𝐺 ≈ suc 𝐿 ∧ (𝐿 ∈ ω ∧ 𝑞𝐺)))
68 dif1en 8945 . . . . . . . . . . . . 13 ((𝐿 ∈ ω ∧ 𝐺 ≈ suc 𝐿𝑞𝐺) → (𝐺 ∖ {𝑞}) ≈ 𝐿)
6967, 68sylbir 234 . . . . . . . . . . . 12 ((𝐺 ≈ suc 𝐿 ∧ (𝐿 ∈ ω ∧ 𝑞𝐺)) → (𝐺 ∖ {𝑞}) ≈ 𝐿)
7069expcom 414 . . . . . . . . . . 11 ((𝐿 ∈ ω ∧ 𝑞𝐺) → (𝐺 ≈ suc 𝐿 → (𝐺 ∖ {𝑞}) ≈ 𝐿))
7160, 44, 70syl2anc 584 . . . . . . . . . 10 (((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → (𝐺 ≈ suc 𝐿 → (𝐺 ∖ {𝑞}) ≈ 𝐿))
7266, 71orim12d 962 . . . . . . . . 9 (((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → ((𝐹 ≈ suc 𝐿𝐺 ≈ suc 𝐿) → ((𝐹 ∖ {𝑟}) ≈ 𝐿 ∨ (𝐺 ∖ {𝑞}) ≈ 𝐿)))
7358, 72mpd 15 . . . . . . . 8 (((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → ((𝐹 ∖ {𝑟}) ≈ 𝐿 ∨ (𝐺 ∖ {𝑞}) ≈ 𝐿))
74 mreexexlem4d.A . . . . . . . . 9 (𝜑 → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝐿𝑔𝐿) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓𝑗 ∧ (𝑗) ∈ 𝐼)))
7574ad2antrr 723 . . . . . . . 8 (((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → ∀𝑓 ∈ 𝒫 (𝑋)∀𝑔 ∈ 𝒫 (𝑋)(((𝑓𝐿𝑔𝐿) ∧ 𝑓 ⊆ (𝑁‘(𝑔)) ∧ (𝑓) ∈ 𝐼) → ∃𝑗 ∈ 𝒫 𝑔(𝑓𝑗 ∧ (𝑗) ∈ 𝐼)))
7630, 39, 42, 55, 56, 73, 75mreexexlemd 17353 . . . . . . 7 (((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → ∃𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞})((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))
7730adantr 481 . . . . . . . . . 10 ((((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → 𝑋 ∈ V)
789ad3antrrr 727 . . . . . . . . . . 11 ((((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → 𝐺 ⊆ (𝑋𝐻))
7978difss2d 4069 . . . . . . . . . 10 ((((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → 𝐺𝑋)
8077, 79ssexd 5248 . . . . . . . . 9 ((((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → 𝐺 ∈ V)
81 simprl 768 . . . . . . . . . . . 12 ((((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → 𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}))
8281elpwid 4544 . . . . . . . . . . 11 ((((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → 𝑖 ⊆ (𝐺 ∖ {𝑞}))
8382difss2d 4069 . . . . . . . . . 10 ((((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → 𝑖𝐺)
84 simplr1 1214 . . . . . . . . . . 11 ((((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → 𝑞𝐺)
8584snssd 4742 . . . . . . . . . 10 ((((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → {𝑞} ⊆ 𝐺)
8683, 85unssd 4120 . . . . . . . . 9 ((((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → (𝑖 ∪ {𝑞}) ⊆ 𝐺)
8780, 86sselpwd 5250 . . . . . . . 8 ((((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → (𝑖 ∪ {𝑞}) ∈ 𝒫 𝐺)
88 difsnid 4743 . . . . . . . . . 10 (𝑟𝐹 → ((𝐹 ∖ {𝑟}) ∪ {𝑟}) = 𝐹)
8988ad3antlr 728 . . . . . . . . 9 ((((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → ((𝐹 ∖ {𝑟}) ∪ {𝑟}) = 𝐹)
90 simprrl 778 . . . . . . . . . 10 ((((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → (𝐹 ∖ {𝑟}) ≈ 𝑖)
91 en2sn 8831 . . . . . . . . . . . 12 ((𝑟 ∈ V ∧ 𝑞 ∈ V) → {𝑟} ≈ {𝑞})
9291el2v 3440 . . . . . . . . . . 11 {𝑟} ≈ {𝑞}
9392a1i 11 . . . . . . . . . 10 ((((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → {𝑟} ≈ {𝑞})
94 disjdifr 4406 . . . . . . . . . . 11 ((𝐹 ∖ {𝑟}) ∩ {𝑟}) = ∅
9594a1i 11 . . . . . . . . . 10 ((((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → ((𝐹 ∖ {𝑟}) ∩ {𝑟}) = ∅)
96 ssdifin0 4416 . . . . . . . . . . 11 (𝑖 ⊆ (𝐺 ∖ {𝑞}) → (𝑖 ∩ {𝑞}) = ∅)
9782, 96syl 17 . . . . . . . . . 10 ((((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → (𝑖 ∩ {𝑞}) = ∅)
98 unen 8836 . . . . . . . . . 10 ((((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ {𝑟} ≈ {𝑞}) ∧ (((𝐹 ∖ {𝑟}) ∩ {𝑟}) = ∅ ∧ (𝑖 ∩ {𝑞}) = ∅)) → ((𝐹 ∖ {𝑟}) ∪ {𝑟}) ≈ (𝑖 ∪ {𝑞}))
9990, 93, 95, 97, 98syl22anc 836 . . . . . . . . 9 ((((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → ((𝐹 ∖ {𝑟}) ∪ {𝑟}) ≈ (𝑖 ∪ {𝑞}))
10089, 99eqbrtrrd 5098 . . . . . . . 8 ((((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → 𝐹 ≈ (𝑖 ∪ {𝑞}))
101 unass 4100 . . . . . . . . . 10 ((𝑖 ∪ {𝑞}) ∪ 𝐻) = (𝑖 ∪ ({𝑞} ∪ 𝐻))
102 uncom 4087 . . . . . . . . . . 11 ({𝑞} ∪ 𝐻) = (𝐻 ∪ {𝑞})
103102uneq2i 4094 . . . . . . . . . 10 (𝑖 ∪ ({𝑞} ∪ 𝐻)) = (𝑖 ∪ (𝐻 ∪ {𝑞}))
104101, 103eqtr2i 2767 . . . . . . . . 9 (𝑖 ∪ (𝐻 ∪ {𝑞})) = ((𝑖 ∪ {𝑞}) ∪ 𝐻)
105 simprrr 779 . . . . . . . . 9 ((((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)
106104, 105eqeltrrid 2844 . . . . . . . 8 ((((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → ((𝑖 ∪ {𝑞}) ∪ 𝐻) ∈ 𝐼)
107 breq2 5078 . . . . . . . . . 10 (𝑗 = (𝑖 ∪ {𝑞}) → (𝐹𝑗𝐹 ≈ (𝑖 ∪ {𝑞})))
108 uneq1 4090 . . . . . . . . . . 11 (𝑗 = (𝑖 ∪ {𝑞}) → (𝑗𝐻) = ((𝑖 ∪ {𝑞}) ∪ 𝐻))
109108eleq1d 2823 . . . . . . . . . 10 (𝑗 = (𝑖 ∪ {𝑞}) → ((𝑗𝐻) ∈ 𝐼 ↔ ((𝑖 ∪ {𝑞}) ∪ 𝐻) ∈ 𝐼))
110107, 109anbi12d 631 . . . . . . . . 9 (𝑗 = (𝑖 ∪ {𝑞}) → ((𝐹𝑗 ∧ (𝑗𝐻) ∈ 𝐼) ↔ (𝐹 ≈ (𝑖 ∪ {𝑞}) ∧ ((𝑖 ∪ {𝑞}) ∪ 𝐻) ∈ 𝐼)))
111110rspcev 3561 . . . . . . . 8 (((𝑖 ∪ {𝑞}) ∈ 𝒫 𝐺 ∧ (𝐹 ≈ (𝑖 ∪ {𝑞}) ∧ ((𝑖 ∪ {𝑞}) ∪ 𝐻) ∈ 𝐼)) → ∃𝑗 ∈ 𝒫 𝐺(𝐹𝑗 ∧ (𝑗𝐻) ∈ 𝐼))
11287, 100, 106, 111syl12anc 834 . . . . . . 7 ((((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) ∧ (𝑖 ∈ 𝒫 (𝐺 ∖ {𝑞}) ∧ ((𝐹 ∖ {𝑟}) ≈ 𝑖 ∧ (𝑖 ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → ∃𝑗 ∈ 𝒫 𝐺(𝐹𝑗 ∧ (𝑗𝐻) ∈ 𝐼))
11376, 112rexlimddv 3220 . . . . . 6 (((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ ¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼)) → ∃𝑗 ∈ 𝒫 𝐺(𝐹𝑗 ∧ (𝑗𝐻) ∈ 𝐼))
11428, 113sylan2br 595 . . . . 5 (((𝜑𝑟𝐹) ∧ (𝑞𝐺 ∧ (¬ 𝑞 ∈ (𝐹 ∖ {𝑟}) ∧ ((𝐹 ∖ {𝑟}) ∪ (𝐻 ∪ {𝑞})) ∈ 𝐼))) → ∃𝑗 ∈ 𝒫 𝐺(𝐹𝑗 ∧ (𝑗𝐻) ∈ 𝐼))
11527, 114rexlimddv 3220 . . . 4 ((𝜑𝑟𝐹) → ∃𝑗 ∈ 𝒫 𝐺(𝐹𝑗 ∧ (𝑗𝐻) ∈ 𝐼))
116115adantlr 712 . . 3 (((𝜑𝐹 ≠ ∅) ∧ 𝑟𝐹) → ∃𝑗 ∈ 𝒫 𝐺(𝐹𝑗 ∧ (𝑗𝐻) ∈ 𝐼))
11719, 116exlimddv 1938 . 2 ((𝜑𝐹 ≠ ∅) → ∃𝑗 ∈ 𝒫 𝐺(𝐹𝑗 ∧ (𝑗𝐻) ∈ 𝐼))
11816, 117pm2.61dane 3032 1 (𝜑 → ∃𝑗 ∈ 𝒫 𝐺(𝐹𝑗 ∧ (𝑗𝐻) ∈ 𝐼))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 844  w3a 1086  wal 1537   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  cdif 3884  cun 3885  cin 3886  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561   class class class wbr 5074  suc csuc 6268  cfv 6433  ωcom 7712  cen 8730  Moorecmre 17291  mrClscmrc 17292  mrIndcmri 17293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-en 8734  df-mre 17295  df-mrc 17296  df-mri 17297
This theorem is referenced by:  mreexexd  17357
  Copyright terms: Public domain W3C validator