MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wilthlem2 Structured version   Visualization version   GIF version

Theorem wilthlem2 25654
Description: Lemma for wilth 25656: induction step. The "hand proof" version of this theorem works by writing out the list of all numbers from 1 to 𝑃 − 1 in pairs such that a number is paired with its inverse. Every number has a unique inverse different from itself except 1 and 𝑃 − 1, and so each pair multiplies to 1, and 1 and 𝑃 − 1≡-1 multiply to -1, so the full product is equal to -1. Here we make this precise by doing the product pair by pair.

The induction hypothesis says that every subset 𝑆 of 1...(𝑃 − 1) that is closed under inverse (i.e. all pairs are matched up) and contains 𝑃 − 1 multiplies to -1 mod 𝑃. Given such a set, we take out one element 𝑧𝑃 − 1. If there are no such elements, then 𝑆 = {𝑃 − 1} which forms the base case. Otherwise, 𝑆 ∖ {𝑧, 𝑧↑-1} is also closed under inverse and contains 𝑃 − 1, so the induction hypothesis says that this equals -1; and the remaining two elements are either equal to each other, in which case wilthlem1 25653 gives that 𝑧 = 1 or 𝑃 − 1, and we've already excluded the second case, so the product gives 1; or 𝑧𝑧↑-1 and their product is 1. In either case the accumulated product is unaffected. (Contributed by Mario Carneiro, 24-Jan-2015.) (Proof shortened by AV, 27-Jul-2019.)

Hypotheses
Ref Expression
wilthlem.t 𝑇 = (mulGrp‘ℂfld)
wilthlem.a 𝐴 = {𝑥 ∈ 𝒫 (1...(𝑃 − 1)) ∣ ((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥)}
wilthlem2.p (𝜑𝑃 ∈ ℙ)
wilthlem2.s (𝜑𝑆𝐴)
wilthlem2.r (𝜑 → ∀𝑠𝐴 (𝑠𝑆 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))
Assertion
Ref Expression
wilthlem2 (𝜑 → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (-1 mod 𝑃))
Distinct variable groups:   𝑥,𝑠,𝑦,𝐴   𝑃,𝑠,𝑥,𝑦   𝜑,𝑥,𝑦   𝑆,𝑠,𝑥,𝑦   𝑇,𝑠,𝑥,𝑦
Allowed substitution hint:   𝜑(𝑠)

Proof of Theorem wilthlem2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . . . . . . . 9 ((𝜑𝑆 ⊆ {(𝑃 − 1)}) → 𝑆 ⊆ {(𝑃 − 1)})
2 wilthlem2.s . . . . . . . . . . . . . 14 (𝜑𝑆𝐴)
3 eleq2 2878 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑆 → ((𝑃 − 1) ∈ 𝑥 ↔ (𝑃 − 1) ∈ 𝑆))
4 eleq2 2878 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑆 → (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥 ↔ ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆))
54raleqbi1dv 3356 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑆 → (∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥 ↔ ∀𝑦𝑆 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆))
63, 5anbi12d 633 . . . . . . . . . . . . . . 15 (𝑥 = 𝑆 → (((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥) ↔ ((𝑃 − 1) ∈ 𝑆 ∧ ∀𝑦𝑆 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆)))
7 wilthlem.a . . . . . . . . . . . . . . 15 𝐴 = {𝑥 ∈ 𝒫 (1...(𝑃 − 1)) ∣ ((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥)}
86, 7elrab2 3631 . . . . . . . . . . . . . 14 (𝑆𝐴 ↔ (𝑆 ∈ 𝒫 (1...(𝑃 − 1)) ∧ ((𝑃 − 1) ∈ 𝑆 ∧ ∀𝑦𝑆 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆)))
92, 8sylib 221 . . . . . . . . . . . . 13 (𝜑 → (𝑆 ∈ 𝒫 (1...(𝑃 − 1)) ∧ ((𝑃 − 1) ∈ 𝑆 ∧ ∀𝑦𝑆 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆)))
109simprd 499 . . . . . . . . . . . 12 (𝜑 → ((𝑃 − 1) ∈ 𝑆 ∧ ∀𝑦𝑆 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆))
1110simpld 498 . . . . . . . . . . 11 (𝜑 → (𝑃 − 1) ∈ 𝑆)
1211snssd 4702 . . . . . . . . . 10 (𝜑 → {(𝑃 − 1)} ⊆ 𝑆)
1312adantr 484 . . . . . . . . 9 ((𝜑𝑆 ⊆ {(𝑃 − 1)}) → {(𝑃 − 1)} ⊆ 𝑆)
141, 13eqssd 3932 . . . . . . . 8 ((𝜑𝑆 ⊆ {(𝑃 − 1)}) → 𝑆 = {(𝑃 − 1)})
1514reseq2d 5818 . . . . . . 7 ((𝜑𝑆 ⊆ {(𝑃 − 1)}) → ( I ↾ 𝑆) = ( I ↾ {(𝑃 − 1)}))
16 mptresid 5885 . . . . . . 7 ( I ↾ {(𝑃 − 1)}) = (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧)
1715, 16eqtrdi 2849 . . . . . 6 ((𝜑𝑆 ⊆ {(𝑃 − 1)}) → ( I ↾ 𝑆) = (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧))
1817oveq2d 7151 . . . . 5 ((𝜑𝑆 ⊆ {(𝑃 − 1)}) → (𝑇 Σg ( I ↾ 𝑆)) = (𝑇 Σg (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧)))
1918oveq1d 7150 . . . 4 ((𝜑𝑆 ⊆ {(𝑃 − 1)}) → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = ((𝑇 Σg (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧)) mod 𝑃))
20 wilthlem2.p . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℙ)
21 prmnn 16008 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2220, 21syl 17 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℕ)
2322nncnd 11641 . . . . . . . . . 10 (𝜑𝑃 ∈ ℂ)
24 ax-1cn 10584 . . . . . . . . . 10 1 ∈ ℂ
25 negsub 10923 . . . . . . . . . 10 ((𝑃 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑃 + -1) = (𝑃 − 1))
2623, 24, 25sylancl 589 . . . . . . . . 9 (𝜑 → (𝑃 + -1) = (𝑃 − 1))
27 neg1cn 11739 . . . . . . . . . 10 -1 ∈ ℂ
28 addcom 10815 . . . . . . . . . 10 ((𝑃 ∈ ℂ ∧ -1 ∈ ℂ) → (𝑃 + -1) = (-1 + 𝑃))
2923, 27, 28sylancl 589 . . . . . . . . 9 (𝜑 → (𝑃 + -1) = (-1 + 𝑃))
3026, 29eqtr3d 2835 . . . . . . . 8 (𝜑 → (𝑃 − 1) = (-1 + 𝑃))
31 cnring 20113 . . . . . . . . . 10 fld ∈ Ring
32 wilthlem.t . . . . . . . . . . 11 𝑇 = (mulGrp‘ℂfld)
3332ringmgp 19296 . . . . . . . . . 10 (ℂfld ∈ Ring → 𝑇 ∈ Mnd)
3431, 33mp1i 13 . . . . . . . . 9 (𝜑𝑇 ∈ Mnd)
35 nnm1nn0 11926 . . . . . . . . . . 11 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
3622, 35syl 17 . . . . . . . . . 10 (𝜑 → (𝑃 − 1) ∈ ℕ0)
3736nn0cnd 11945 . . . . . . . . 9 (𝜑 → (𝑃 − 1) ∈ ℂ)
38 cnfldbas 20095 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
3932, 38mgpbas 19238 . . . . . . . . . 10 ℂ = (Base‘𝑇)
40 id 22 . . . . . . . . . 10 (𝑧 = (𝑃 − 1) → 𝑧 = (𝑃 − 1))
4139, 40gsumsn 19067 . . . . . . . . 9 ((𝑇 ∈ Mnd ∧ (𝑃 − 1) ∈ ℂ ∧ (𝑃 − 1) ∈ ℂ) → (𝑇 Σg (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧)) = (𝑃 − 1))
4234, 37, 37, 41syl3anc 1368 . . . . . . . 8 (𝜑 → (𝑇 Σg (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧)) = (𝑃 − 1))
4323mulid2d 10648 . . . . . . . . 9 (𝜑 → (1 · 𝑃) = 𝑃)
4443oveq2d 7151 . . . . . . . 8 (𝜑 → (-1 + (1 · 𝑃)) = (-1 + 𝑃))
4530, 42, 443eqtr4d 2843 . . . . . . 7 (𝜑 → (𝑇 Σg (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧)) = (-1 + (1 · 𝑃)))
4645oveq1d 7150 . . . . . 6 (𝜑 → ((𝑇 Σg (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧)) mod 𝑃) = ((-1 + (1 · 𝑃)) mod 𝑃))
47 neg1rr 11740 . . . . . . . 8 -1 ∈ ℝ
4847a1i 11 . . . . . . 7 (𝜑 → -1 ∈ ℝ)
4922nnrpd 12417 . . . . . . 7 (𝜑𝑃 ∈ ℝ+)
50 1zzd 12001 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
51 modcyc 13269 . . . . . . 7 ((-1 ∈ ℝ ∧ 𝑃 ∈ ℝ+ ∧ 1 ∈ ℤ) → ((-1 + (1 · 𝑃)) mod 𝑃) = (-1 mod 𝑃))
5248, 49, 50, 51syl3anc 1368 . . . . . 6 (𝜑 → ((-1 + (1 · 𝑃)) mod 𝑃) = (-1 mod 𝑃))
5346, 52eqtrd 2833 . . . . 5 (𝜑 → ((𝑇 Σg (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧)) mod 𝑃) = (-1 mod 𝑃))
5453adantr 484 . . . 4 ((𝜑𝑆 ⊆ {(𝑃 − 1)}) → ((𝑇 Σg (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧)) mod 𝑃) = (-1 mod 𝑃))
5519, 54eqtrd 2833 . . 3 ((𝜑𝑆 ⊆ {(𝑃 − 1)}) → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (-1 mod 𝑃))
5655ex 416 . 2 (𝜑 → (𝑆 ⊆ {(𝑃 − 1)} → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (-1 mod 𝑃)))
57 nss 3977 . . 3 𝑆 ⊆ {(𝑃 − 1)} ↔ ∃𝑧(𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)}))
58 cnfld1 20116 . . . . . . . . . 10 1 = (1r‘ℂfld)
5932, 58ringidval 19246 . . . . . . . . 9 1 = (0g𝑇)
60 cnfldmul 20097 . . . . . . . . . 10 · = (.r‘ℂfld)
6132, 60mgpplusg 19236 . . . . . . . . 9 · = (+g𝑇)
62 cncrng 20112 . . . . . . . . . . 11 fld ∈ CRing
6332crngmgp 19298 . . . . . . . . . . 11 (ℂfld ∈ CRing → 𝑇 ∈ CMnd)
6462, 63ax-mp 5 . . . . . . . . . 10 𝑇 ∈ CMnd
6564a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑇 ∈ CMnd)
662adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑆𝐴)
67 f1oi 6627 . . . . . . . . . . . 12 ( I ↾ 𝑆):𝑆1-1-onto𝑆
68 f1of 6590 . . . . . . . . . . . 12 (( I ↾ 𝑆):𝑆1-1-onto𝑆 → ( I ↾ 𝑆):𝑆𝑆)
6967, 68ax-mp 5 . . . . . . . . . . 11 ( I ↾ 𝑆):𝑆𝑆
709simpld 498 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ 𝒫 (1...(𝑃 − 1)))
7170elpwid 4508 . . . . . . . . . . . . 13 (𝜑𝑆 ⊆ (1...(𝑃 − 1)))
72 fzssz 12904 . . . . . . . . . . . . 13 (1...(𝑃 − 1)) ⊆ ℤ
7371, 72sstrdi 3927 . . . . . . . . . . . 12 (𝜑𝑆 ⊆ ℤ)
74 zsscn 11977 . . . . . . . . . . . 12 ℤ ⊆ ℂ
7573, 74sstrdi 3927 . . . . . . . . . . 11 (𝜑𝑆 ⊆ ℂ)
76 fss 6501 . . . . . . . . . . 11 ((( I ↾ 𝑆):𝑆𝑆𝑆 ⊆ ℂ) → ( I ↾ 𝑆):𝑆⟶ℂ)
7769, 75, 76sylancr 590 . . . . . . . . . 10 (𝜑 → ( I ↾ 𝑆):𝑆⟶ℂ)
7877adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ( I ↾ 𝑆):𝑆⟶ℂ)
79 fzfi 13335 . . . . . . . . . . . 12 (1...(𝑃 − 1)) ∈ Fin
80 ssfi 8722 . . . . . . . . . . . 12 (((1...(𝑃 − 1)) ∈ Fin ∧ 𝑆 ⊆ (1...(𝑃 − 1))) → 𝑆 ∈ Fin)
8179, 71, 80sylancr 590 . . . . . . . . . . 11 (𝜑𝑆 ∈ Fin)
82 1ex 10626 . . . . . . . . . . . 12 1 ∈ V
8382a1i 11 . . . . . . . . . . 11 (𝜑 → 1 ∈ V)
8477, 81, 83fdmfifsupp 8827 . . . . . . . . . 10 (𝜑 → ( I ↾ 𝑆) finSupp 1)
8584adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ( I ↾ 𝑆) finSupp 1)
86 disjdif 4379 . . . . . . . . . 10 ({𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∩ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = ∅
8786a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ({𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∩ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = ∅)
88 undif2 4383 . . . . . . . . . 10 ({𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∪ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = ({𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∪ 𝑆)
89 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑧𝑆)
90 oveq1 7142 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → (𝑦↑(𝑃 − 2)) = (𝑧↑(𝑃 − 2)))
9190oveq1d 7150 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → ((𝑦↑(𝑃 − 2)) mod 𝑃) = ((𝑧↑(𝑃 − 2)) mod 𝑃))
9291eleq1d 2874 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆 ↔ ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆))
9310simprd 499 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑦𝑆 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆)
9493adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ∀𝑦𝑆 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆)
9592, 94, 89rspcdva 3573 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆)
9689, 95prssd 4715 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ⊆ 𝑆)
97 ssequn1 4107 . . . . . . . . . . 11 ({𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ⊆ 𝑆 ↔ ({𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∪ 𝑆) = 𝑆)
9896, 97sylib 221 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ({𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∪ 𝑆) = 𝑆)
9988, 98syl5req 2846 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑆 = ({𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∪ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
10039, 59, 61, 65, 66, 78, 85, 87, 99gsumsplit 19041 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑇 Σg ( I ↾ 𝑆)) = ((𝑇 Σg (( I ↾ 𝑆) ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) · (𝑇 Σg (( I ↾ 𝑆) ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))))
10196resabs1d 5849 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (( I ↾ 𝑆) ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) = ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
102101oveq2d 7151 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑇 Σg (( I ↾ 𝑆) ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = (𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
103 difss 4059 . . . . . . . . . . . 12 (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊆ 𝑆
104 resabs1 5848 . . . . . . . . . . . 12 ((𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊆ 𝑆 → (( I ↾ 𝑆) ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
105103, 104ax-mp 5 . . . . . . . . . . 11 (( I ↾ 𝑆) ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
106105oveq2i 7146 . . . . . . . . . 10 (𝑇 Σg (( I ↾ 𝑆) ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) = (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
107106a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑇 Σg (( I ↾ 𝑆) ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) = (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))))
108102, 107oveq12d 7153 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑇 Σg (( I ↾ 𝑆) ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) · (𝑇 Σg (( I ↾ 𝑆) ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))) = ((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))))
109100, 108eqtrd 2833 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑇 Σg ( I ↾ 𝑆)) = ((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))))
110109oveq1d 7150 . . . . . 6 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))) mod 𝑃))
111 prfi 8777 . . . . . . . . . 10 {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∈ Fin
112111a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∈ Fin)
113 zsubrg 20144 . . . . . . . . . 10 ℤ ∈ (SubRing‘ℂfld)
11432subrgsubm 19541 . . . . . . . . . 10 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubMnd‘𝑇))
115113, 114mp1i 13 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ℤ ∈ (SubMnd‘𝑇))
116 f1oi 6627 . . . . . . . . . . 11 ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}):{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}–1-1-onto→{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}
117 f1of 6590 . . . . . . . . . . 11 (( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}):{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}–1-1-onto→{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} → ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}):{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}⟶{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
118116, 117ax-mp 5 . . . . . . . . . 10 ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}):{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}⟶{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}
11973adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑆 ⊆ ℤ)
12096, 119sstrd 3925 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ⊆ ℤ)
121 fss 6501 . . . . . . . . . 10 ((( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}):{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}⟶{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∧ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ⊆ ℤ) → ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}):{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}⟶ℤ)
122118, 120, 121sylancr 590 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}):{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}⟶ℤ)
12382a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 1 ∈ V)
124122, 112, 123fdmfifsupp 8827 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) finSupp 1)
12559, 65, 112, 115, 122, 124gsumsubmcl 19032 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) ∈ ℤ)
126125zred 12075 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) ∈ ℝ)
127 1red 10631 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 1 ∈ ℝ)
12871adantr 484 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑆 ⊆ (1...(𝑃 − 1)))
129128ssdifssd 4070 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊆ (1...(𝑃 − 1)))
130 ssfi 8722 . . . . . . . . 9 (((1...(𝑃 − 1)) ∈ Fin ∧ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊆ (1...(𝑃 − 1))) → (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∈ Fin)
13179, 129, 130sylancr 590 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∈ Fin)
132 f1oi 6627 . . . . . . . . . 10 ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})):(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})–1-1-onto→(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
133 f1of 6590 . . . . . . . . . 10 (( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})):(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})–1-1-onto→(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})):(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})⟶(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
134132, 133ax-mp 5 . . . . . . . . 9 ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})):(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})⟶(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
135119ssdifssd 4070 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊆ ℤ)
136 fss 6501 . . . . . . . . 9 ((( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})):(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})⟶(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∧ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊆ ℤ) → ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})):(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})⟶ℤ)
137134, 135, 136sylancr 590 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})):(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})⟶ℤ)
138137, 131, 123fdmfifsupp 8827 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) finSupp 1)
13959, 65, 131, 115, 137, 138gsumsubmcl 19032 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) ∈ ℤ)
14049adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑃 ∈ ℝ+)
14134adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑇 ∈ Mnd)
14275adantr 484 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑆 ⊆ ℂ)
143142, 89sseldd 3916 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑧 ∈ ℂ)
144 id 22 . . . . . . . . . . . . 13 (𝑤 = 𝑧𝑤 = 𝑧)
14539, 144gsumsn 19067 . . . . . . . . . . . 12 ((𝑇 ∈ Mnd ∧ 𝑧 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑇 Σg (𝑤 ∈ {𝑧} ↦ 𝑤)) = 𝑧)
146141, 143, 143, 145syl3anc 1368 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑇 Σg (𝑤 ∈ {𝑧} ↦ 𝑤)) = 𝑧)
147146adantr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → (𝑇 Σg (𝑤 ∈ {𝑧} ↦ 𝑤)) = 𝑧)
148 mptresid 5885 . . . . . . . . . . . 12 ( I ↾ {𝑧}) = (𝑤 ∈ {𝑧} ↦ 𝑤)
149 dfsn2 4538 . . . . . . . . . . . . . 14 {𝑧} = {𝑧, 𝑧}
150 animorrl 978 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → (𝑧 = 1 ∨ 𝑧 = (𝑃 − 1)))
15120adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑃 ∈ ℙ)
152128, 89sseldd 3916 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑧 ∈ (1...(𝑃 − 1)))
153 wilthlem1 25653 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℙ ∧ 𝑧 ∈ (1...(𝑃 − 1))) → (𝑧 = ((𝑧↑(𝑃 − 2)) mod 𝑃) ↔ (𝑧 = 1 ∨ 𝑧 = (𝑃 − 1))))
154151, 152, 153syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑧 = ((𝑧↑(𝑃 − 2)) mod 𝑃) ↔ (𝑧 = 1 ∨ 𝑧 = (𝑃 − 1))))
155154biimpar 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ (𝑧 = 1 ∨ 𝑧 = (𝑃 − 1))) → 𝑧 = ((𝑧↑(𝑃 − 2)) mod 𝑃))
156150, 155syldan 594 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → 𝑧 = ((𝑧↑(𝑃 − 2)) mod 𝑃))
157156preq2d 4636 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → {𝑧, 𝑧} = {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
158149, 157syl5eq 2845 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → {𝑧} = {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
159158reseq2d 5818 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → ( I ↾ {𝑧}) = ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
160148, 159syl5eqr 2847 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → (𝑤 ∈ {𝑧} ↦ 𝑤) = ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
161160oveq2d 7151 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → (𝑇 Σg (𝑤 ∈ {𝑧} ↦ 𝑤)) = (𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
162 simpr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → 𝑧 = 1)
163147, 161, 1623eqtr3d 2841 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → (𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = 1)
164163oveq1d 7150 . . . . . . . 8 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → ((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) mod 𝑃) = (1 mod 𝑃))
165 df-pr 4528 . . . . . . . . . . . . . . 15 {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} = ({𝑧} ∪ {((𝑧↑(𝑃 − 2)) mod 𝑃)})
166165reseq2i 5815 . . . . . . . . . . . . . 14 ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) = ( I ↾ ({𝑧} ∪ {((𝑧↑(𝑃 − 2)) mod 𝑃)}))
167 mptresid 5885 . . . . . . . . . . . . . 14 ( I ↾ ({𝑧} ∪ {((𝑧↑(𝑃 − 2)) mod 𝑃)})) = (𝑤 ∈ ({𝑧} ∪ {((𝑧↑(𝑃 − 2)) mod 𝑃)}) ↦ 𝑤)
168166, 167eqtri 2821 . . . . . . . . . . . . 13 ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) = (𝑤 ∈ ({𝑧} ∪ {((𝑧↑(𝑃 − 2)) mod 𝑃)}) ↦ 𝑤)
169168oveq2i 7146 . . . . . . . . . . . 12 (𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = (𝑇 Σg (𝑤 ∈ ({𝑧} ∪ {((𝑧↑(𝑃 − 2)) mod 𝑃)}) ↦ 𝑤))
17064a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → 𝑇 ∈ CMnd)
171 snfi 8577 . . . . . . . . . . . . . 14 {𝑧} ∈ Fin
172171a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → {𝑧} ∈ Fin)
173 elsni 4542 . . . . . . . . . . . . . . . 16 (𝑤 ∈ {𝑧} → 𝑤 = 𝑧)
174173adantl 485 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑤 ∈ {𝑧}) → 𝑤 = 𝑧)
175143adantr 484 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑤 ∈ {𝑧}) → 𝑧 ∈ ℂ)
176174, 175eqeltrd 2890 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑤 ∈ {𝑧}) → 𝑤 ∈ ℂ)
177176adantlr 714 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) ∧ 𝑤 ∈ {𝑧}) → 𝑤 ∈ ℂ)
178142, 95sseldd 3916 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ ℂ)
179178adantr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ ℂ)
180 simprr 772 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ¬ 𝑧 ∈ {(𝑃 − 1)})
181 velsn 4541 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ {(𝑃 − 1)} ↔ 𝑧 = (𝑃 − 1))
182180, 181sylnib 331 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ¬ 𝑧 = (𝑃 − 1))
183 biorf 934 . . . . . . . . . . . . . . . . 17 𝑧 = (𝑃 − 1) → (𝑧 = 1 ↔ (𝑧 = (𝑃 − 1) ∨ 𝑧 = 1)))
184182, 183syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑧 = 1 ↔ (𝑧 = (𝑃 − 1) ∨ 𝑧 = 1)))
185 ovex 7168 . . . . . . . . . . . . . . . . . . 19 ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ V
186185elsn 4540 . . . . . . . . . . . . . . . . . 18 (((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧} ↔ ((𝑧↑(𝑃 − 2)) mod 𝑃) = 𝑧)
187 eqcom 2805 . . . . . . . . . . . . . . . . . 18 (((𝑧↑(𝑃 − 2)) mod 𝑃) = 𝑧𝑧 = ((𝑧↑(𝑃 − 2)) mod 𝑃))
188186, 187bitri 278 . . . . . . . . . . . . . . . . 17 (((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧} ↔ 𝑧 = ((𝑧↑(𝑃 − 2)) mod 𝑃))
189 orcom 867 . . . . . . . . . . . . . . . . 17 ((𝑧 = (𝑃 − 1) ∨ 𝑧 = 1) ↔ (𝑧 = 1 ∨ 𝑧 = (𝑃 − 1)))
190154, 188, 1893bitr4g 317 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧} ↔ (𝑧 = (𝑃 − 1) ∨ 𝑧 = 1)))
191184, 190bitr4d 285 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑧 = 1 ↔ ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧}))
192191necon3abid 3023 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑧 ≠ 1 ↔ ¬ ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧}))
193192biimpa 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → ¬ ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧})
194 id 22 . . . . . . . . . . . . 13 (𝑤 = ((𝑧↑(𝑃 − 2)) mod 𝑃) → 𝑤 = ((𝑧↑(𝑃 − 2)) mod 𝑃))
19539, 61, 170, 172, 177, 179, 193, 179, 194gsumunsn 19073 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → (𝑇 Σg (𝑤 ∈ ({𝑧} ∪ {((𝑧↑(𝑃 − 2)) mod 𝑃)}) ↦ 𝑤)) = ((𝑇 Σg (𝑤 ∈ {𝑧} ↦ 𝑤)) · ((𝑧↑(𝑃 − 2)) mod 𝑃)))
196169, 195syl5eq 2845 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → (𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = ((𝑇 Σg (𝑤 ∈ {𝑧} ↦ 𝑤)) · ((𝑧↑(𝑃 − 2)) mod 𝑃)))
197146adantr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → (𝑇 Σg (𝑤 ∈ {𝑧} ↦ 𝑤)) = 𝑧)
198197oveq1d 7150 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → ((𝑇 Σg (𝑤 ∈ {𝑧} ↦ 𝑤)) · ((𝑧↑(𝑃 − 2)) mod 𝑃)) = (𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)))
199196, 198eqtrd 2833 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → (𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = (𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)))
200199oveq1d 7150 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → ((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) mod 𝑃) = ((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
201 elfzelz 12902 . . . . . . . . . . . . . 14 (𝑧 ∈ (1...(𝑃 − 1)) → 𝑧 ∈ ℤ)
202152, 201syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑧 ∈ ℤ)
20322adantr 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑃 ∈ ℕ)
204 fzm1ndvds 15664 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℕ ∧ 𝑧 ∈ (1...(𝑃 − 1))) → ¬ 𝑃𝑧)
205203, 152, 204syl2anc 587 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ¬ 𝑃𝑧)
206 eqid 2798 . . . . . . . . . . . . . 14 ((𝑧↑(𝑃 − 2)) mod 𝑃) = ((𝑧↑(𝑃 − 2)) mod 𝑃)
207206prmdiv 16112 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑧 ∈ ℤ ∧ ¬ 𝑃𝑧) → (((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) − 1)))
208151, 202, 205, 207syl3anc 1368 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) − 1)))
209208simprd 499 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑃 ∥ ((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) − 1))
210 elfznn 12931 . . . . . . . . . . . . . . 15 (𝑧 ∈ (1...(𝑃 − 1)) → 𝑧 ∈ ℕ)
211152, 210syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑧 ∈ ℕ)
212128, 95sseldd 3916 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)))
213 elfznn 12931 . . . . . . . . . . . . . . 15 (((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) → ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ ℕ)
214212, 213syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ ℕ)
215211, 214nnmulcld 11678 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) ∈ ℕ)
216215nnzd 12074 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) ∈ ℤ)
217 1zzd 12001 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 1 ∈ ℤ)
218 moddvds 15610 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ ∧ (𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) − 1)))
219203, 216, 217, 218syl3anc 1368 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) − 1)))
220209, 219mpbird 260 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = (1 mod 𝑃))
221220adantr 484 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → ((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = (1 mod 𝑃))
222200, 221eqtrd 2833 . . . . . . . 8 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → ((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) mod 𝑃) = (1 mod 𝑃))
223164, 222pm2.61dane 3074 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) mod 𝑃) = (1 mod 𝑃))
224 modmul1 13287 . . . . . . 7 ((((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) ∈ ℝ ∧ 1 ∈ ℝ) ∧ ((𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) ∈ ℤ ∧ 𝑃 ∈ ℝ+) ∧ ((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) mod 𝑃) = (1 mod 𝑃)) → (((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))) mod 𝑃) = ((1 · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))) mod 𝑃))
225126, 127, 139, 140, 223, 224syl221anc 1378 . . . . . 6 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))) mod 𝑃) = ((1 · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))) mod 𝑃))
226139zcnd 12076 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) ∈ ℂ)
227226mulid2d 10648 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (1 · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))) = (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))))
228227oveq1d 7150 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((1 · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))) mod 𝑃) = ((𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) mod 𝑃))
229 sseqin2 4142 . . . . . . . . . . 11 ({𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ⊆ 𝑆 ↔ (𝑆 ∩ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) = {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
23096, 229sylib 221 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑆 ∩ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) = {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
231 vex 3444 . . . . . . . . . . . 12 𝑧 ∈ V
232231prnz 4673 . . . . . . . . . . 11 {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ≠ ∅
233232a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ≠ ∅)
234230, 233eqnetrd 3054 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑆 ∩ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ≠ ∅)
235 disj4 4366 . . . . . . . . . 10 ((𝑆 ∩ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) = ∅ ↔ ¬ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊊ 𝑆)
236235necon2abii 3037 . . . . . . . . 9 ((𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊊ 𝑆 ↔ (𝑆 ∩ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ≠ ∅)
237234, 236sylibr 237 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊊ 𝑆)
238 psseq1 4015 . . . . . . . . . 10 (𝑠 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → (𝑠𝑆 ↔ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊊ 𝑆))
239 reseq2 5813 . . . . . . . . . . . . 13 (𝑠 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → ( I ↾ 𝑠) = ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
240239oveq2d 7151 . . . . . . . . . . . 12 (𝑠 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → (𝑇 Σg ( I ↾ 𝑠)) = (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))))
241240oveq1d 7150 . . . . . . . . . . 11 (𝑠 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = ((𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) mod 𝑃))
242241eqeq1d 2800 . . . . . . . . . 10 (𝑠 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → (((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃) ↔ ((𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) mod 𝑃) = (-1 mod 𝑃)))
243238, 242imbi12d 348 . . . . . . . . 9 (𝑠 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → ((𝑠𝑆 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ↔ ((𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊊ 𝑆 → ((𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) mod 𝑃) = (-1 mod 𝑃))))
244 wilthlem2.r . . . . . . . . . 10 (𝜑 → ∀𝑠𝐴 (𝑠𝑆 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))
245244adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ∀𝑠𝐴 (𝑠𝑆 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))
246 ovex 7168 . . . . . . . . . . . 12 (1...(𝑃 − 1)) ∈ V
247246elpw2 5212 . . . . . . . . . . 11 ((𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∈ 𝒫 (1...(𝑃 − 1)) ↔ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊆ (1...(𝑃 − 1)))
248129, 247sylibr 237 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∈ 𝒫 (1...(𝑃 − 1)))
24911adantr 484 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 − 1) ∈ 𝑆)
250 eqcom 2805 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑃 − 1) ↔ (𝑃 − 1) = 𝑧)
251181, 250bitri 278 . . . . . . . . . . . . . . 15 (𝑧 ∈ {(𝑃 − 1)} ↔ (𝑃 − 1) = 𝑧)
252180, 251sylnib 331 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ¬ (𝑃 − 1) = 𝑧)
253 oveq1 7142 . . . . . . . . . . . . . . . . 17 ((𝑃 − 1) = ((𝑧↑(𝑃 − 2)) mod 𝑃) → ((𝑃 − 1)↑(𝑃 − 2)) = (((𝑧↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)))
254253oveq1d 7150 . . . . . . . . . . . . . . . 16 ((𝑃 − 1) = ((𝑧↑(𝑃 − 2)) mod 𝑃) → (((𝑃 − 1)↑(𝑃 − 2)) mod 𝑃) = ((((𝑧↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃))
255203, 35syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 − 1) ∈ ℕ0)
256 nn0uz 12268 . . . . . . . . . . . . . . . . . . . 20 0 = (ℤ‘0)
257255, 256eleqtrdi 2900 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 − 1) ∈ (ℤ‘0))
258 eluzfz2 12910 . . . . . . . . . . . . . . . . . . 19 ((𝑃 − 1) ∈ (ℤ‘0) → (𝑃 − 1) ∈ (0...(𝑃 − 1)))
259257, 258syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 − 1) ∈ (0...(𝑃 − 1)))
260 prmz 16009 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
261151, 260syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑃 ∈ ℤ)
262119, 249sseldd 3916 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 − 1) ∈ ℤ)
263 1z 12000 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℤ
264 zsubcl 12012 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃 − 1) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝑃 − 1) − 1) ∈ ℤ)
265262, 263, 264sylancl 589 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 − 1) − 1) ∈ ℤ)
266 dvdsmul1 15623 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℤ ∧ ((𝑃 − 1) − 1) ∈ ℤ) → 𝑃 ∥ (𝑃 · ((𝑃 − 1) − 1)))
267261, 265, 266syl2anc 587 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑃 ∥ (𝑃 · ((𝑃 − 1) − 1)))
268203nncnd 11641 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑃 ∈ ℂ)
269265zcnd 12076 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 − 1) − 1) ∈ ℂ)
270268, 269mulcld 10650 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 · ((𝑃 − 1) − 1)) ∈ ℂ)
271 1cnd 10625 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 1 ∈ ℂ)
272255nn0cnd 11945 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 − 1) ∈ ℂ)
273268, 271, 272subdird 11086 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 − 1) · (𝑃 − 1)) = ((𝑃 · (𝑃 − 1)) − (1 · (𝑃 − 1))))
274268, 272mulcld 10650 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 · (𝑃 − 1)) ∈ ℂ)
275274, 268, 271subsubd 11014 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 · (𝑃 − 1)) − (𝑃 − 1)) = (((𝑃 · (𝑃 − 1)) − 𝑃) + 1))
276272mulid2d 10648 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (1 · (𝑃 − 1)) = (𝑃 − 1))
277276oveq2d 7151 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 · (𝑃 − 1)) − (1 · (𝑃 − 1))) = ((𝑃 · (𝑃 − 1)) − (𝑃 − 1)))
278268, 272muls1d 11089 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 · ((𝑃 − 1) − 1)) = ((𝑃 · (𝑃 − 1)) − 𝑃))
279278oveq1d 7150 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 · ((𝑃 − 1) − 1)) + 1) = (((𝑃 · (𝑃 − 1)) − 𝑃) + 1))
280275, 277, 2793eqtr4d 2843 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 · (𝑃 − 1)) − (1 · (𝑃 − 1))) = ((𝑃 · ((𝑃 − 1) − 1)) + 1))
281273, 280eqtrd 2833 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 − 1) · (𝑃 − 1)) = ((𝑃 · ((𝑃 − 1) − 1)) + 1))
282270, 271, 281mvrraddd 11041 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (((𝑃 − 1) · (𝑃 − 1)) − 1) = (𝑃 · ((𝑃 − 1) − 1)))
283267, 282breqtrrd 5058 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑃 ∥ (((𝑃 − 1) · (𝑃 − 1)) − 1))
284128, 249sseldd 3916 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 − 1) ∈ (1...(𝑃 − 1)))
285 fzm1ndvds 15664 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℕ ∧ (𝑃 − 1) ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ (𝑃 − 1))
286203, 284, 285syl2anc 587 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ¬ 𝑃 ∥ (𝑃 − 1))
287 eqid 2798 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 − 1)↑(𝑃 − 2)) mod 𝑃) = (((𝑃 − 1)↑(𝑃 − 2)) mod 𝑃)
288287prmdiveq 16113 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℙ ∧ (𝑃 − 1) ∈ ℤ ∧ ¬ 𝑃 ∥ (𝑃 − 1)) → (((𝑃 − 1) ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ (((𝑃 − 1) · (𝑃 − 1)) − 1)) ↔ (𝑃 − 1) = (((𝑃 − 1)↑(𝑃 − 2)) mod 𝑃)))
289151, 262, 286, 288syl3anc 1368 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (((𝑃 − 1) ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ (((𝑃 − 1) · (𝑃 − 1)) − 1)) ↔ (𝑃 − 1) = (((𝑃 − 1)↑(𝑃 − 2)) mod 𝑃)))
290259, 283, 289mpbi2and 711 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 − 1) = (((𝑃 − 1)↑(𝑃 − 2)) mod 𝑃))
291206prmdivdiv 16114 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℙ ∧ 𝑧 ∈ (1...(𝑃 − 1))) → 𝑧 = ((((𝑧↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃))
292151, 152, 291syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑧 = ((((𝑧↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃))
293290, 292eqeq12d 2814 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 − 1) = 𝑧 ↔ (((𝑃 − 1)↑(𝑃 − 2)) mod 𝑃) = ((((𝑧↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃)))
294254, 293syl5ibr 249 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 − 1) = ((𝑧↑(𝑃 − 2)) mod 𝑃) → (𝑃 − 1) = 𝑧))
295252, 294mtod 201 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ¬ (𝑃 − 1) = ((𝑧↑(𝑃 − 2)) mod 𝑃))
296 ioran 981 . . . . . . . . . . . . . 14 (¬ ((𝑃 − 1) = 𝑧 ∨ (𝑃 − 1) = ((𝑧↑(𝑃 − 2)) mod 𝑃)) ↔ (¬ (𝑃 − 1) = 𝑧 ∧ ¬ (𝑃 − 1) = ((𝑧↑(𝑃 − 2)) mod 𝑃)))
297252, 295, 296sylanbrc 586 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ¬ ((𝑃 − 1) = 𝑧 ∨ (𝑃 − 1) = ((𝑧↑(𝑃 − 2)) mod 𝑃)))
298 ovex 7168 . . . . . . . . . . . . . 14 (𝑃 − 1) ∈ V
299298elpr 4548 . . . . . . . . . . . . 13 ((𝑃 − 1) ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ↔ ((𝑃 − 1) = 𝑧 ∨ (𝑃 − 1) = ((𝑧↑(𝑃 − 2)) mod 𝑃)))
300297, 299sylnibr 332 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ¬ (𝑃 − 1) ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
301249, 300eldifd 3892 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 − 1) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
302 eldifi 4054 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → 𝑦𝑆)
30394r19.21bi 3173 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆)
304302, 303sylan2 595 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) → ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆)
305 eldif 3891 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ↔ (𝑦𝑆 ∧ ¬ 𝑦 ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
306151adantr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → 𝑃 ∈ ℙ)
307128sselda 3915 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → 𝑦 ∈ (1...(𝑃 − 1)))
308 eqid 2798 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦↑(𝑃 − 2)) mod 𝑃) = ((𝑦↑(𝑃 − 2)) mod 𝑃)
309308prmdivdiv 16114 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → 𝑦 = ((((𝑦↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃))
310306, 307, 309syl2anc 587 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → 𝑦 = ((((𝑦↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃))
311 oveq1 7142 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦↑(𝑃 − 2)) mod 𝑃) = 𝑧 → (((𝑦↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) = (𝑧↑(𝑃 − 2)))
312311oveq1d 7150 . . . . . . . . . . . . . . . . . . . 20 (((𝑦↑(𝑃 − 2)) mod 𝑃) = 𝑧 → ((((𝑦↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃) = ((𝑧↑(𝑃 − 2)) mod 𝑃))
313312eqeq2d 2809 . . . . . . . . . . . . . . . . . . 19 (((𝑦↑(𝑃 − 2)) mod 𝑃) = 𝑧 → (𝑦 = ((((𝑦↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃) ↔ 𝑦 = ((𝑧↑(𝑃 − 2)) mod 𝑃)))
314310, 313syl5ibcom 248 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → (((𝑦↑(𝑃 − 2)) mod 𝑃) = 𝑧𝑦 = ((𝑧↑(𝑃 − 2)) mod 𝑃)))
315 oveq1 7142 . . . . . . . . . . . . . . . . . . . 20 (((𝑦↑(𝑃 − 2)) mod 𝑃) = ((𝑧↑(𝑃 − 2)) mod 𝑃) → (((𝑦↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) = (((𝑧↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)))
316315oveq1d 7150 . . . . . . . . . . . . . . . . . . 19 (((𝑦↑(𝑃 − 2)) mod 𝑃) = ((𝑧↑(𝑃 − 2)) mod 𝑃) → ((((𝑦↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃) = ((((𝑧↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃))
317292adantr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → 𝑧 = ((((𝑧↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃))
318310, 317eqeq12d 2814 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → (𝑦 = 𝑧 ↔ ((((𝑦↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃) = ((((𝑧↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃)))
319316, 318syl5ibr 249 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → (((𝑦↑(𝑃 − 2)) mod 𝑃) = ((𝑧↑(𝑃 − 2)) mod 𝑃) → 𝑦 = 𝑧))
320314, 319orim12d 962 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → ((((𝑦↑(𝑃 − 2)) mod 𝑃) = 𝑧 ∨ ((𝑦↑(𝑃 − 2)) mod 𝑃) = ((𝑧↑(𝑃 − 2)) mod 𝑃)) → (𝑦 = ((𝑧↑(𝑃 − 2)) mod 𝑃) ∨ 𝑦 = 𝑧)))
321 ovex 7168 . . . . . . . . . . . . . . . . . 18 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ V
322321elpr 4548 . . . . . . . . . . . . . . . . 17 (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ↔ (((𝑦↑(𝑃 − 2)) mod 𝑃) = 𝑧 ∨ ((𝑦↑(𝑃 − 2)) mod 𝑃) = ((𝑧↑(𝑃 − 2)) mod 𝑃)))
323 vex 3444 . . . . . . . . . . . . . . . . . . 19 𝑦 ∈ V
324323elpr 4548 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ↔ (𝑦 = 𝑧𝑦 = ((𝑧↑(𝑃 − 2)) mod 𝑃)))
325 orcom 867 . . . . . . . . . . . . . . . . . 18 ((𝑦 = 𝑧𝑦 = ((𝑧↑(𝑃 − 2)) mod 𝑃)) ↔ (𝑦 = ((𝑧↑(𝑃 − 2)) mod 𝑃) ∨ 𝑦 = 𝑧))
326324, 325bitri 278 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ↔ (𝑦 = ((𝑧↑(𝑃 − 2)) mod 𝑃) ∨ 𝑦 = 𝑧))
327320, 322, 3263imtr4g 299 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} → 𝑦 ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
328327con3d 155 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → (¬ 𝑦 ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} → ¬ ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
329328impr 458 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ (𝑦𝑆 ∧ ¬ 𝑦 ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) → ¬ ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
330305, 329sylan2b 596 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) → ¬ ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
331304, 330eldifd 3892 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) → ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
332331ralrimiva 3149 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ∀𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
333301, 332jca 515 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 − 1) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∧ ∀𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
334 eleq2 2878 . . . . . . . . . . . 12 (𝑥 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → ((𝑃 − 1) ∈ 𝑥 ↔ (𝑃 − 1) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
335 eleq2 2878 . . . . . . . . . . . . 13 (𝑥 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥 ↔ ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
336335raleqbi1dv 3356 . . . . . . . . . . . 12 (𝑥 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → (∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥 ↔ ∀𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
337334, 336anbi12d 633 . . . . . . . . . . 11 (𝑥 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → (((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥) ↔ ((𝑃 − 1) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∧ ∀𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))))
338337, 7elrab2 3631 . . . . . . . . . 10 ((𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∈ 𝐴 ↔ ((𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∈ 𝒫 (1...(𝑃 − 1)) ∧ ((𝑃 − 1) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∧ ∀𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))))
339248, 333, 338sylanbrc 586 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∈ 𝐴)
340243, 245, 339rspcdva 3573 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊊ 𝑆 → ((𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) mod 𝑃) = (-1 mod 𝑃)))
341237, 340mpd 15 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) mod 𝑃) = (-1 mod 𝑃))
342228, 341eqtrd 2833 . . . . . 6 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((1 · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))) mod 𝑃) = (-1 mod 𝑃))
343110, 225, 3423eqtrd 2837 . . . . 5 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (-1 mod 𝑃))
344343ex 416 . . . 4 (𝜑 → ((𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)}) → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (-1 mod 𝑃)))
345344exlimdv 1934 . . 3 (𝜑 → (∃𝑧(𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)}) → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (-1 mod 𝑃)))
34657, 345syl5bi 245 . 2 (𝜑 → (¬ 𝑆 ⊆ {(𝑃 − 1)} → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (-1 mod 𝑃)))
34756, 346pm2.61d 182 1 (𝜑 → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (-1 mod 𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wex 1781  wcel 2111  wne 2987  wral 3106  {crab 3110  Vcvv 3441  cdif 3878  cun 3879  cin 3880  wss 3881  wpss 3882  c0 4243  𝒫 cpw 4497  {csn 4525  {cpr 4527   class class class wbr 5030  cmpt 5110   I cid 5424  cres 5521  wf 6320  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  Fincfn 8492   finSupp cfsupp 8817  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  cmin 10859  -cneg 10860  cn 11625  2c2 11680  0cn0 11885  cz 11969  cuz 12231  +crp 12377  ...cfz 12885   mod cmo 13232  cexp 13425  cdvds 15599  cprime 16005   Σg cgsu 16706  Mndcmnd 17903  SubMndcsubmnd 17947  CMndccmn 18898  mulGrpcmgp 19232  Ringcrg 19290  CRingccrg 19291  SubRingcsubrg 19524  fldccnfld 20091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-gcd 15834  df-prm 16006  df-phi 16093  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-gsum 16708  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-mulg 18217  df-subg 18268  df-cntz 18439  df-cmn 18900  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-subrg 19526  df-cnfld 20092
This theorem is referenced by:  wilthlem3  25655
  Copyright terms: Public domain W3C validator