MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wilthlem2 Structured version   Visualization version   GIF version

Theorem wilthlem2 27007
Description: Lemma for wilth 27009: induction step. The "hand proof" version of this theorem works by writing out the list of all numbers from 1 to 𝑃 − 1 in pairs such that a number is paired with its inverse. Every number has a unique inverse different from itself except 1 and 𝑃 − 1, and so each pair multiplies to 1, and 1 and 𝑃 − 1≡-1 multiply to -1, so the full product is equal to -1. Here we make this precise by doing the product pair by pair.

The induction hypothesis says that every subset 𝑆 of 1...(𝑃 − 1) that is closed under inverse (i.e. all pairs are matched up) and contains 𝑃 − 1 multiplies to -1 mod 𝑃. Given such a set, we take out one element 𝑧𝑃 − 1. If there are no such elements, then 𝑆 = {𝑃 − 1} which forms the base case. Otherwise, 𝑆 ∖ {𝑧, 𝑧↑-1} is also closed under inverse and contains 𝑃 − 1, so the induction hypothesis says that this equals -1; and the remaining two elements are either equal to each other, in which case wilthlem1 27006 gives that 𝑧 = 1 or 𝑃 − 1, and we've already excluded the second case, so the product gives 1; or 𝑧𝑧↑-1 and their product is 1. In either case the accumulated product is unaffected. (Contributed by Mario Carneiro, 24-Jan-2015.) (Proof shortened by AV, 27-Jul-2019.)

Hypotheses
Ref Expression
wilthlem.t 𝑇 = (mulGrp‘ℂfld)
wilthlem.a 𝐴 = {𝑥 ∈ 𝒫 (1...(𝑃 − 1)) ∣ ((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥)}
wilthlem2.p (𝜑𝑃 ∈ ℙ)
wilthlem2.s (𝜑𝑆𝐴)
wilthlem2.r (𝜑 → ∀𝑠𝐴 (𝑠𝑆 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))
Assertion
Ref Expression
wilthlem2 (𝜑 → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (-1 mod 𝑃))
Distinct variable groups:   𝑥,𝑠,𝑦,𝐴   𝑃,𝑠,𝑥,𝑦   𝜑,𝑥,𝑦   𝑆,𝑠,𝑥,𝑦   𝑇,𝑠,𝑥,𝑦
Allowed substitution hint:   𝜑(𝑠)

Proof of Theorem wilthlem2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . . 9 ((𝜑𝑆 ⊆ {(𝑃 − 1)}) → 𝑆 ⊆ {(𝑃 − 1)})
2 wilthlem2.s . . . . . . . . . . . . . 14 (𝜑𝑆𝐴)
3 eleq2 2822 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑆 → ((𝑃 − 1) ∈ 𝑥 ↔ (𝑃 − 1) ∈ 𝑆))
4 eleq2 2822 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑆 → (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥 ↔ ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆))
54raleqbi1dv 3305 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑆 → (∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥 ↔ ∀𝑦𝑆 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆))
63, 5anbi12d 632 . . . . . . . . . . . . . . 15 (𝑥 = 𝑆 → (((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥) ↔ ((𝑃 − 1) ∈ 𝑆 ∧ ∀𝑦𝑆 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆)))
7 wilthlem.a . . . . . . . . . . . . . . 15 𝐴 = {𝑥 ∈ 𝒫 (1...(𝑃 − 1)) ∣ ((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥)}
86, 7elrab2 3646 . . . . . . . . . . . . . 14 (𝑆𝐴 ↔ (𝑆 ∈ 𝒫 (1...(𝑃 − 1)) ∧ ((𝑃 − 1) ∈ 𝑆 ∧ ∀𝑦𝑆 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆)))
92, 8sylib 218 . . . . . . . . . . . . 13 (𝜑 → (𝑆 ∈ 𝒫 (1...(𝑃 − 1)) ∧ ((𝑃 − 1) ∈ 𝑆 ∧ ∀𝑦𝑆 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆)))
109simprd 495 . . . . . . . . . . . 12 (𝜑 → ((𝑃 − 1) ∈ 𝑆 ∧ ∀𝑦𝑆 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆))
1110simpld 494 . . . . . . . . . . 11 (𝜑 → (𝑃 − 1) ∈ 𝑆)
1211snssd 4760 . . . . . . . . . 10 (𝜑 → {(𝑃 − 1)} ⊆ 𝑆)
1312adantr 480 . . . . . . . . 9 ((𝜑𝑆 ⊆ {(𝑃 − 1)}) → {(𝑃 − 1)} ⊆ 𝑆)
141, 13eqssd 3948 . . . . . . . 8 ((𝜑𝑆 ⊆ {(𝑃 − 1)}) → 𝑆 = {(𝑃 − 1)})
1514reseq2d 5932 . . . . . . 7 ((𝜑𝑆 ⊆ {(𝑃 − 1)}) → ( I ↾ 𝑆) = ( I ↾ {(𝑃 − 1)}))
16 mptresid 6004 . . . . . . 7 ( I ↾ {(𝑃 − 1)}) = (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧)
1715, 16eqtrdi 2784 . . . . . 6 ((𝜑𝑆 ⊆ {(𝑃 − 1)}) → ( I ↾ 𝑆) = (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧))
1817oveq2d 7368 . . . . 5 ((𝜑𝑆 ⊆ {(𝑃 − 1)}) → (𝑇 Σg ( I ↾ 𝑆)) = (𝑇 Σg (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧)))
1918oveq1d 7367 . . . 4 ((𝜑𝑆 ⊆ {(𝑃 − 1)}) → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = ((𝑇 Σg (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧)) mod 𝑃))
20 wilthlem2.p . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℙ)
21 prmnn 16587 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2220, 21syl 17 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℕ)
2322nncnd 12148 . . . . . . . . . 10 (𝜑𝑃 ∈ ℂ)
24 ax-1cn 11071 . . . . . . . . . 10 1 ∈ ℂ
25 negsub 11416 . . . . . . . . . 10 ((𝑃 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑃 + -1) = (𝑃 − 1))
2623, 24, 25sylancl 586 . . . . . . . . 9 (𝜑 → (𝑃 + -1) = (𝑃 − 1))
27 neg1cn 12117 . . . . . . . . . 10 -1 ∈ ℂ
28 addcom 11306 . . . . . . . . . 10 ((𝑃 ∈ ℂ ∧ -1 ∈ ℂ) → (𝑃 + -1) = (-1 + 𝑃))
2923, 27, 28sylancl 586 . . . . . . . . 9 (𝜑 → (𝑃 + -1) = (-1 + 𝑃))
3026, 29eqtr3d 2770 . . . . . . . 8 (𝜑 → (𝑃 − 1) = (-1 + 𝑃))
31 cnring 21329 . . . . . . . . . 10 fld ∈ Ring
32 wilthlem.t . . . . . . . . . . 11 𝑇 = (mulGrp‘ℂfld)
3332ringmgp 20159 . . . . . . . . . 10 (ℂfld ∈ Ring → 𝑇 ∈ Mnd)
3431, 33mp1i 13 . . . . . . . . 9 (𝜑𝑇 ∈ Mnd)
35 nnm1nn0 12429 . . . . . . . . . . 11 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
3622, 35syl 17 . . . . . . . . . 10 (𝜑 → (𝑃 − 1) ∈ ℕ0)
3736nn0cnd 12451 . . . . . . . . 9 (𝜑 → (𝑃 − 1) ∈ ℂ)
38 cnfldbas 21297 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
3932, 38mgpbas 20065 . . . . . . . . . 10 ℂ = (Base‘𝑇)
40 id 22 . . . . . . . . . 10 (𝑧 = (𝑃 − 1) → 𝑧 = (𝑃 − 1))
4139, 40gsumsn 19868 . . . . . . . . 9 ((𝑇 ∈ Mnd ∧ (𝑃 − 1) ∈ ℂ ∧ (𝑃 − 1) ∈ ℂ) → (𝑇 Σg (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧)) = (𝑃 − 1))
4234, 37, 37, 41syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑇 Σg (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧)) = (𝑃 − 1))
4323mullidd 11137 . . . . . . . . 9 (𝜑 → (1 · 𝑃) = 𝑃)
4443oveq2d 7368 . . . . . . . 8 (𝜑 → (-1 + (1 · 𝑃)) = (-1 + 𝑃))
4530, 42, 443eqtr4d 2778 . . . . . . 7 (𝜑 → (𝑇 Σg (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧)) = (-1 + (1 · 𝑃)))
4645oveq1d 7367 . . . . . 6 (𝜑 → ((𝑇 Σg (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧)) mod 𝑃) = ((-1 + (1 · 𝑃)) mod 𝑃))
47 neg1rr 12118 . . . . . . . 8 -1 ∈ ℝ
4847a1i 11 . . . . . . 7 (𝜑 → -1 ∈ ℝ)
4922nnrpd 12934 . . . . . . 7 (𝜑𝑃 ∈ ℝ+)
50 1zzd 12509 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
51 modcyc 13812 . . . . . . 7 ((-1 ∈ ℝ ∧ 𝑃 ∈ ℝ+ ∧ 1 ∈ ℤ) → ((-1 + (1 · 𝑃)) mod 𝑃) = (-1 mod 𝑃))
5248, 49, 50, 51syl3anc 1373 . . . . . 6 (𝜑 → ((-1 + (1 · 𝑃)) mod 𝑃) = (-1 mod 𝑃))
5346, 52eqtrd 2768 . . . . 5 (𝜑 → ((𝑇 Σg (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧)) mod 𝑃) = (-1 mod 𝑃))
5453adantr 480 . . . 4 ((𝜑𝑆 ⊆ {(𝑃 − 1)}) → ((𝑇 Σg (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧)) mod 𝑃) = (-1 mod 𝑃))
5519, 54eqtrd 2768 . . 3 ((𝜑𝑆 ⊆ {(𝑃 − 1)}) → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (-1 mod 𝑃))
5655ex 412 . 2 (𝜑 → (𝑆 ⊆ {(𝑃 − 1)} → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (-1 mod 𝑃)))
57 nss 3995 . . 3 𝑆 ⊆ {(𝑃 − 1)} ↔ ∃𝑧(𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)}))
58 cnfld1 21332 . . . . . . . . . 10 1 = (1r‘ℂfld)
5932, 58ringidval 20103 . . . . . . . . 9 1 = (0g𝑇)
60 cnfldmul 21301 . . . . . . . . . 10 · = (.r‘ℂfld)
6132, 60mgpplusg 20064 . . . . . . . . 9 · = (+g𝑇)
62 cncrng 21327 . . . . . . . . . . 11 fld ∈ CRing
6332crngmgp 20161 . . . . . . . . . . 11 (ℂfld ∈ CRing → 𝑇 ∈ CMnd)
6462, 63ax-mp 5 . . . . . . . . . 10 𝑇 ∈ CMnd
6564a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑇 ∈ CMnd)
662adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑆𝐴)
67 f1oi 6806 . . . . . . . . . . . 12 ( I ↾ 𝑆):𝑆1-1-onto𝑆
68 f1of 6768 . . . . . . . . . . . 12 (( I ↾ 𝑆):𝑆1-1-onto𝑆 → ( I ↾ 𝑆):𝑆𝑆)
6967, 68ax-mp 5 . . . . . . . . . . 11 ( I ↾ 𝑆):𝑆𝑆
709simpld 494 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ 𝒫 (1...(𝑃 − 1)))
7170elpwid 4558 . . . . . . . . . . . . 13 (𝜑𝑆 ⊆ (1...(𝑃 − 1)))
72 fzssz 13428 . . . . . . . . . . . . 13 (1...(𝑃 − 1)) ⊆ ℤ
7371, 72sstrdi 3943 . . . . . . . . . . . 12 (𝜑𝑆 ⊆ ℤ)
74 zsscn 12483 . . . . . . . . . . . 12 ℤ ⊆ ℂ
7573, 74sstrdi 3943 . . . . . . . . . . 11 (𝜑𝑆 ⊆ ℂ)
76 fss 6672 . . . . . . . . . . 11 ((( I ↾ 𝑆):𝑆𝑆𝑆 ⊆ ℂ) → ( I ↾ 𝑆):𝑆⟶ℂ)
7769, 75, 76sylancr 587 . . . . . . . . . 10 (𝜑 → ( I ↾ 𝑆):𝑆⟶ℂ)
7877adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ( I ↾ 𝑆):𝑆⟶ℂ)
79 fzfi 13881 . . . . . . . . . . . 12 (1...(𝑃 − 1)) ∈ Fin
80 ssfi 9089 . . . . . . . . . . . 12 (((1...(𝑃 − 1)) ∈ Fin ∧ 𝑆 ⊆ (1...(𝑃 − 1))) → 𝑆 ∈ Fin)
8179, 71, 80sylancr 587 . . . . . . . . . . 11 (𝜑𝑆 ∈ Fin)
82 1ex 11115 . . . . . . . . . . . 12 1 ∈ V
8382a1i 11 . . . . . . . . . . 11 (𝜑 → 1 ∈ V)
8477, 81, 83fdmfifsupp 9266 . . . . . . . . . 10 (𝜑 → ( I ↾ 𝑆) finSupp 1)
8584adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ( I ↾ 𝑆) finSupp 1)
86 disjdif 4421 . . . . . . . . . 10 ({𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∩ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = ∅
8786a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ({𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∩ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = ∅)
88 undif2 4426 . . . . . . . . . 10 ({𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∪ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = ({𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∪ 𝑆)
89 simprl 770 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑧𝑆)
90 oveq1 7359 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → (𝑦↑(𝑃 − 2)) = (𝑧↑(𝑃 − 2)))
9190oveq1d 7367 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → ((𝑦↑(𝑃 − 2)) mod 𝑃) = ((𝑧↑(𝑃 − 2)) mod 𝑃))
9291eleq1d 2818 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆 ↔ ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆))
9310simprd 495 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑦𝑆 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆)
9493adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ∀𝑦𝑆 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆)
9592, 94, 89rspcdva 3574 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆)
9689, 95prssd 4773 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ⊆ 𝑆)
97 ssequn1 4135 . . . . . . . . . . 11 ({𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ⊆ 𝑆 ↔ ({𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∪ 𝑆) = 𝑆)
9896, 97sylib 218 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ({𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∪ 𝑆) = 𝑆)
9988, 98eqtr2id 2781 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑆 = ({𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∪ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
10039, 59, 61, 65, 66, 78, 85, 87, 99gsumsplit 19842 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑇 Σg ( I ↾ 𝑆)) = ((𝑇 Σg (( I ↾ 𝑆) ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) · (𝑇 Σg (( I ↾ 𝑆) ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))))
10196resabs1d 5961 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (( I ↾ 𝑆) ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) = ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
102101oveq2d 7368 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑇 Σg (( I ↾ 𝑆) ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = (𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
103 difss 4085 . . . . . . . . . . . 12 (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊆ 𝑆
104 resabs1 5959 . . . . . . . . . . . 12 ((𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊆ 𝑆 → (( I ↾ 𝑆) ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
105103, 104ax-mp 5 . . . . . . . . . . 11 (( I ↾ 𝑆) ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
106105oveq2i 7363 . . . . . . . . . 10 (𝑇 Σg (( I ↾ 𝑆) ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) = (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
107106a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑇 Σg (( I ↾ 𝑆) ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) = (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))))
108102, 107oveq12d 7370 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑇 Σg (( I ↾ 𝑆) ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) · (𝑇 Σg (( I ↾ 𝑆) ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))) = ((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))))
109100, 108eqtrd 2768 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑇 Σg ( I ↾ 𝑆)) = ((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))))
110109oveq1d 7367 . . . . . 6 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))) mod 𝑃))
111 prfi 9215 . . . . . . . . . 10 {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∈ Fin
112111a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∈ Fin)
113 zsubrg 21359 . . . . . . . . . 10 ℤ ∈ (SubRing‘ℂfld)
11432subrgsubm 20502 . . . . . . . . . 10 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubMnd‘𝑇))
115113, 114mp1i 13 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ℤ ∈ (SubMnd‘𝑇))
116 f1oi 6806 . . . . . . . . . . 11 ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}):{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}–1-1-onto→{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}
117 f1of 6768 . . . . . . . . . . 11 (( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}):{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}–1-1-onto→{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} → ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}):{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}⟶{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
118116, 117ax-mp 5 . . . . . . . . . 10 ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}):{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}⟶{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}
11973adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑆 ⊆ ℤ)
12096, 119sstrd 3941 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ⊆ ℤ)
121 fss 6672 . . . . . . . . . 10 ((( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}):{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}⟶{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∧ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ⊆ ℤ) → ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}):{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}⟶ℤ)
122118, 120, 121sylancr 587 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}):{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}⟶ℤ)
12382a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 1 ∈ V)
124122, 112, 123fdmfifsupp 9266 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) finSupp 1)
12559, 65, 112, 115, 122, 124gsumsubmcl 19833 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) ∈ ℤ)
126125zred 12583 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) ∈ ℝ)
127 1red 11120 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 1 ∈ ℝ)
12871adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑆 ⊆ (1...(𝑃 − 1)))
129128ssdifssd 4096 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊆ (1...(𝑃 − 1)))
130 ssfi 9089 . . . . . . . . 9 (((1...(𝑃 − 1)) ∈ Fin ∧ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊆ (1...(𝑃 − 1))) → (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∈ Fin)
13179, 129, 130sylancr 587 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∈ Fin)
132 f1oi 6806 . . . . . . . . . 10 ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})):(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})–1-1-onto→(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
133 f1of 6768 . . . . . . . . . 10 (( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})):(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})–1-1-onto→(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})):(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})⟶(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
134132, 133ax-mp 5 . . . . . . . . 9 ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})):(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})⟶(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
135119ssdifssd 4096 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊆ ℤ)
136 fss 6672 . . . . . . . . 9 ((( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})):(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})⟶(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∧ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊆ ℤ) → ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})):(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})⟶ℤ)
137134, 135, 136sylancr 587 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})):(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})⟶ℤ)
138137, 131, 123fdmfifsupp 9266 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) finSupp 1)
13959, 65, 131, 115, 137, 138gsumsubmcl 19833 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) ∈ ℤ)
14049adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑃 ∈ ℝ+)
14134adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑇 ∈ Mnd)
14275adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑆 ⊆ ℂ)
143142, 89sseldd 3931 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑧 ∈ ℂ)
144 id 22 . . . . . . . . . . . . 13 (𝑤 = 𝑧𝑤 = 𝑧)
14539, 144gsumsn 19868 . . . . . . . . . . . 12 ((𝑇 ∈ Mnd ∧ 𝑧 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑇 Σg (𝑤 ∈ {𝑧} ↦ 𝑤)) = 𝑧)
146141, 143, 143, 145syl3anc 1373 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑇 Σg (𝑤 ∈ {𝑧} ↦ 𝑤)) = 𝑧)
147146adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → (𝑇 Σg (𝑤 ∈ {𝑧} ↦ 𝑤)) = 𝑧)
148 mptresid 6004 . . . . . . . . . . . 12 ( I ↾ {𝑧}) = (𝑤 ∈ {𝑧} ↦ 𝑤)
149 dfsn2 4588 . . . . . . . . . . . . . 14 {𝑧} = {𝑧, 𝑧}
150 animorrl 982 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → (𝑧 = 1 ∨ 𝑧 = (𝑃 − 1)))
15120adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑃 ∈ ℙ)
152128, 89sseldd 3931 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑧 ∈ (1...(𝑃 − 1)))
153 wilthlem1 27006 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℙ ∧ 𝑧 ∈ (1...(𝑃 − 1))) → (𝑧 = ((𝑧↑(𝑃 − 2)) mod 𝑃) ↔ (𝑧 = 1 ∨ 𝑧 = (𝑃 − 1))))
154151, 152, 153syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑧 = ((𝑧↑(𝑃 − 2)) mod 𝑃) ↔ (𝑧 = 1 ∨ 𝑧 = (𝑃 − 1))))
155154biimpar 477 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ (𝑧 = 1 ∨ 𝑧 = (𝑃 − 1))) → 𝑧 = ((𝑧↑(𝑃 − 2)) mod 𝑃))
156150, 155syldan 591 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → 𝑧 = ((𝑧↑(𝑃 − 2)) mod 𝑃))
157156preq2d 4692 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → {𝑧, 𝑧} = {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
158149, 157eqtrid 2780 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → {𝑧} = {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
159158reseq2d 5932 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → ( I ↾ {𝑧}) = ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
160148, 159eqtr3id 2782 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → (𝑤 ∈ {𝑧} ↦ 𝑤) = ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
161160oveq2d 7368 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → (𝑇 Σg (𝑤 ∈ {𝑧} ↦ 𝑤)) = (𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
162 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → 𝑧 = 1)
163147, 161, 1623eqtr3d 2776 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → (𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = 1)
164163oveq1d 7367 . . . . . . . 8 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → ((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) mod 𝑃) = (1 mod 𝑃))
165 df-pr 4578 . . . . . . . . . . . . . . 15 {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} = ({𝑧} ∪ {((𝑧↑(𝑃 − 2)) mod 𝑃)})
166165reseq2i 5929 . . . . . . . . . . . . . 14 ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) = ( I ↾ ({𝑧} ∪ {((𝑧↑(𝑃 − 2)) mod 𝑃)}))
167 mptresid 6004 . . . . . . . . . . . . . 14 ( I ↾ ({𝑧} ∪ {((𝑧↑(𝑃 − 2)) mod 𝑃)})) = (𝑤 ∈ ({𝑧} ∪ {((𝑧↑(𝑃 − 2)) mod 𝑃)}) ↦ 𝑤)
168166, 167eqtri 2756 . . . . . . . . . . . . 13 ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) = (𝑤 ∈ ({𝑧} ∪ {((𝑧↑(𝑃 − 2)) mod 𝑃)}) ↦ 𝑤)
169168oveq2i 7363 . . . . . . . . . . . 12 (𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = (𝑇 Σg (𝑤 ∈ ({𝑧} ∪ {((𝑧↑(𝑃 − 2)) mod 𝑃)}) ↦ 𝑤))
17064a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → 𝑇 ∈ CMnd)
171 snfi 8972 . . . . . . . . . . . . . 14 {𝑧} ∈ Fin
172171a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → {𝑧} ∈ Fin)
173 elsni 4592 . . . . . . . . . . . . . . . 16 (𝑤 ∈ {𝑧} → 𝑤 = 𝑧)
174173adantl 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑤 ∈ {𝑧}) → 𝑤 = 𝑧)
175143adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑤 ∈ {𝑧}) → 𝑧 ∈ ℂ)
176174, 175eqeltrd 2833 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑤 ∈ {𝑧}) → 𝑤 ∈ ℂ)
177176adantlr 715 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) ∧ 𝑤 ∈ {𝑧}) → 𝑤 ∈ ℂ)
178142, 95sseldd 3931 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ ℂ)
179178adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ ℂ)
180 simprr 772 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ¬ 𝑧 ∈ {(𝑃 − 1)})
181 velsn 4591 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ {(𝑃 − 1)} ↔ 𝑧 = (𝑃 − 1))
182180, 181sylnib 328 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ¬ 𝑧 = (𝑃 − 1))
183 biorf 936 . . . . . . . . . . . . . . . . 17 𝑧 = (𝑃 − 1) → (𝑧 = 1 ↔ (𝑧 = (𝑃 − 1) ∨ 𝑧 = 1)))
184182, 183syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑧 = 1 ↔ (𝑧 = (𝑃 − 1) ∨ 𝑧 = 1)))
185 ovex 7385 . . . . . . . . . . . . . . . . . . 19 ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ V
186185elsn 4590 . . . . . . . . . . . . . . . . . 18 (((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧} ↔ ((𝑧↑(𝑃 − 2)) mod 𝑃) = 𝑧)
187 eqcom 2740 . . . . . . . . . . . . . . . . . 18 (((𝑧↑(𝑃 − 2)) mod 𝑃) = 𝑧𝑧 = ((𝑧↑(𝑃 − 2)) mod 𝑃))
188186, 187bitri 275 . . . . . . . . . . . . . . . . 17 (((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧} ↔ 𝑧 = ((𝑧↑(𝑃 − 2)) mod 𝑃))
189 orcom 870 . . . . . . . . . . . . . . . . 17 ((𝑧 = (𝑃 − 1) ∨ 𝑧 = 1) ↔ (𝑧 = 1 ∨ 𝑧 = (𝑃 − 1)))
190154, 188, 1893bitr4g 314 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧} ↔ (𝑧 = (𝑃 − 1) ∨ 𝑧 = 1)))
191184, 190bitr4d 282 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑧 = 1 ↔ ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧}))
192191necon3abid 2965 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑧 ≠ 1 ↔ ¬ ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧}))
193192biimpa 476 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → ¬ ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧})
194 id 22 . . . . . . . . . . . . 13 (𝑤 = ((𝑧↑(𝑃 − 2)) mod 𝑃) → 𝑤 = ((𝑧↑(𝑃 − 2)) mod 𝑃))
19539, 61, 170, 172, 177, 179, 193, 179, 194gsumunsn 19874 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → (𝑇 Σg (𝑤 ∈ ({𝑧} ∪ {((𝑧↑(𝑃 − 2)) mod 𝑃)}) ↦ 𝑤)) = ((𝑇 Σg (𝑤 ∈ {𝑧} ↦ 𝑤)) · ((𝑧↑(𝑃 − 2)) mod 𝑃)))
196169, 195eqtrid 2780 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → (𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = ((𝑇 Σg (𝑤 ∈ {𝑧} ↦ 𝑤)) · ((𝑧↑(𝑃 − 2)) mod 𝑃)))
197146adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → (𝑇 Σg (𝑤 ∈ {𝑧} ↦ 𝑤)) = 𝑧)
198197oveq1d 7367 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → ((𝑇 Σg (𝑤 ∈ {𝑧} ↦ 𝑤)) · ((𝑧↑(𝑃 − 2)) mod 𝑃)) = (𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)))
199196, 198eqtrd 2768 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → (𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = (𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)))
200199oveq1d 7367 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → ((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) mod 𝑃) = ((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
201152elfzelzd 13427 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑧 ∈ ℤ)
20222adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑃 ∈ ℕ)
203 fzm1ndvds 16235 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℕ ∧ 𝑧 ∈ (1...(𝑃 − 1))) → ¬ 𝑃𝑧)
204202, 152, 203syl2anc 584 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ¬ 𝑃𝑧)
205 eqid 2733 . . . . . . . . . . . . . 14 ((𝑧↑(𝑃 − 2)) mod 𝑃) = ((𝑧↑(𝑃 − 2)) mod 𝑃)
206205prmdiv 16698 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑧 ∈ ℤ ∧ ¬ 𝑃𝑧) → (((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) − 1)))
207151, 201, 204, 206syl3anc 1373 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) − 1)))
208207simprd 495 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑃 ∥ ((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) − 1))
209 elfznn 13455 . . . . . . . . . . . . . . 15 (𝑧 ∈ (1...(𝑃 − 1)) → 𝑧 ∈ ℕ)
210152, 209syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑧 ∈ ℕ)
211128, 95sseldd 3931 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)))
212 elfznn 13455 . . . . . . . . . . . . . . 15 (((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) → ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ ℕ)
213211, 212syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ ℕ)
214210, 213nnmulcld 12185 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) ∈ ℕ)
215214nnzd 12501 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) ∈ ℤ)
216 1zzd 12509 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 1 ∈ ℤ)
217 moddvds 16176 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ ∧ (𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) − 1)))
218202, 215, 216, 217syl3anc 1373 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) − 1)))
219208, 218mpbird 257 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = (1 mod 𝑃))
220219adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → ((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = (1 mod 𝑃))
221200, 220eqtrd 2768 . . . . . . . 8 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → ((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) mod 𝑃) = (1 mod 𝑃))
222164, 221pm2.61dane 3016 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) mod 𝑃) = (1 mod 𝑃))
223 modmul1 13833 . . . . . . 7 ((((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) ∈ ℝ ∧ 1 ∈ ℝ) ∧ ((𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) ∈ ℤ ∧ 𝑃 ∈ ℝ+) ∧ ((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) mod 𝑃) = (1 mod 𝑃)) → (((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))) mod 𝑃) = ((1 · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))) mod 𝑃))
224126, 127, 139, 140, 222, 223syl221anc 1383 . . . . . 6 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))) mod 𝑃) = ((1 · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))) mod 𝑃))
225139zcnd 12584 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) ∈ ℂ)
226225mullidd 11137 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (1 · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))) = (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))))
227226oveq1d 7367 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((1 · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))) mod 𝑃) = ((𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) mod 𝑃))
228 sseqin2 4172 . . . . . . . . . . 11 ({𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ⊆ 𝑆 ↔ (𝑆 ∩ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) = {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
22996, 228sylib 218 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑆 ∩ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) = {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
230 vex 3441 . . . . . . . . . . . 12 𝑧 ∈ V
231230prnz 4729 . . . . . . . . . . 11 {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ≠ ∅
232231a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ≠ ∅)
233229, 232eqnetrd 2996 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑆 ∩ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ≠ ∅)
234 disj4 4408 . . . . . . . . . 10 ((𝑆 ∩ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) = ∅ ↔ ¬ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊊ 𝑆)
235234necon2abii 2979 . . . . . . . . 9 ((𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊊ 𝑆 ↔ (𝑆 ∩ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ≠ ∅)
236233, 235sylibr 234 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊊ 𝑆)
237 psseq1 4039 . . . . . . . . . 10 (𝑠 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → (𝑠𝑆 ↔ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊊ 𝑆))
238 reseq2 5927 . . . . . . . . . . . . 13 (𝑠 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → ( I ↾ 𝑠) = ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
239238oveq2d 7368 . . . . . . . . . . . 12 (𝑠 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → (𝑇 Σg ( I ↾ 𝑠)) = (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))))
240239oveq1d 7367 . . . . . . . . . . 11 (𝑠 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = ((𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) mod 𝑃))
241240eqeq1d 2735 . . . . . . . . . 10 (𝑠 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → (((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃) ↔ ((𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) mod 𝑃) = (-1 mod 𝑃)))
242237, 241imbi12d 344 . . . . . . . . 9 (𝑠 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → ((𝑠𝑆 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ↔ ((𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊊ 𝑆 → ((𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) mod 𝑃) = (-1 mod 𝑃))))
243 wilthlem2.r . . . . . . . . . 10 (𝜑 → ∀𝑠𝐴 (𝑠𝑆 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))
244243adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ∀𝑠𝐴 (𝑠𝑆 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))
245 ovex 7385 . . . . . . . . . . . 12 (1...(𝑃 − 1)) ∈ V
246245elpw2 5274 . . . . . . . . . . 11 ((𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∈ 𝒫 (1...(𝑃 − 1)) ↔ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊆ (1...(𝑃 − 1)))
247129, 246sylibr 234 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∈ 𝒫 (1...(𝑃 − 1)))
24811adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 − 1) ∈ 𝑆)
249 eqcom 2740 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑃 − 1) ↔ (𝑃 − 1) = 𝑧)
250181, 249bitri 275 . . . . . . . . . . . . . . 15 (𝑧 ∈ {(𝑃 − 1)} ↔ (𝑃 − 1) = 𝑧)
251180, 250sylnib 328 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ¬ (𝑃 − 1) = 𝑧)
252 oveq1 7359 . . . . . . . . . . . . . . . . 17 ((𝑃 − 1) = ((𝑧↑(𝑃 − 2)) mod 𝑃) → ((𝑃 − 1)↑(𝑃 − 2)) = (((𝑧↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)))
253252oveq1d 7367 . . . . . . . . . . . . . . . 16 ((𝑃 − 1) = ((𝑧↑(𝑃 − 2)) mod 𝑃) → (((𝑃 − 1)↑(𝑃 − 2)) mod 𝑃) = ((((𝑧↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃))
254202, 35syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 − 1) ∈ ℕ0)
255 nn0uz 12776 . . . . . . . . . . . . . . . . . . . 20 0 = (ℤ‘0)
256254, 255eleqtrdi 2843 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 − 1) ∈ (ℤ‘0))
257 eluzfz2 13434 . . . . . . . . . . . . . . . . . . 19 ((𝑃 − 1) ∈ (ℤ‘0) → (𝑃 − 1) ∈ (0...(𝑃 − 1)))
258256, 257syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 − 1) ∈ (0...(𝑃 − 1)))
259 prmz 16588 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
260151, 259syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑃 ∈ ℤ)
261119, 248sseldd 3931 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 − 1) ∈ ℤ)
262 1z 12508 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℤ
263 zsubcl 12520 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃 − 1) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝑃 − 1) − 1) ∈ ℤ)
264261, 262, 263sylancl 586 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 − 1) − 1) ∈ ℤ)
265 dvdsmul1 16190 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℤ ∧ ((𝑃 − 1) − 1) ∈ ℤ) → 𝑃 ∥ (𝑃 · ((𝑃 − 1) − 1)))
266260, 264, 265syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑃 ∥ (𝑃 · ((𝑃 − 1) − 1)))
267202nncnd 12148 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑃 ∈ ℂ)
268264zcnd 12584 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 − 1) − 1) ∈ ℂ)
269267, 268mulcld 11139 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 · ((𝑃 − 1) − 1)) ∈ ℂ)
270 1cnd 11114 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 1 ∈ ℂ)
271254nn0cnd 12451 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 − 1) ∈ ℂ)
272267, 270, 271subdird 11581 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 − 1) · (𝑃 − 1)) = ((𝑃 · (𝑃 − 1)) − (1 · (𝑃 − 1))))
273267, 271mulcld 11139 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 · (𝑃 − 1)) ∈ ℂ)
274273, 267, 270subsubd 11507 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 · (𝑃 − 1)) − (𝑃 − 1)) = (((𝑃 · (𝑃 − 1)) − 𝑃) + 1))
275271mullidd 11137 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (1 · (𝑃 − 1)) = (𝑃 − 1))
276275oveq2d 7368 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 · (𝑃 − 1)) − (1 · (𝑃 − 1))) = ((𝑃 · (𝑃 − 1)) − (𝑃 − 1)))
277267, 271muls1d 11584 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 · ((𝑃 − 1) − 1)) = ((𝑃 · (𝑃 − 1)) − 𝑃))
278277oveq1d 7367 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 · ((𝑃 − 1) − 1)) + 1) = (((𝑃 · (𝑃 − 1)) − 𝑃) + 1))
279274, 276, 2783eqtr4d 2778 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 · (𝑃 − 1)) − (1 · (𝑃 − 1))) = ((𝑃 · ((𝑃 − 1) − 1)) + 1))
280272, 279eqtrd 2768 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 − 1) · (𝑃 − 1)) = ((𝑃 · ((𝑃 − 1) − 1)) + 1))
281269, 270, 280mvrraddd 11536 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (((𝑃 − 1) · (𝑃 − 1)) − 1) = (𝑃 · ((𝑃 − 1) − 1)))
282266, 281breqtrrd 5121 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑃 ∥ (((𝑃 − 1) · (𝑃 − 1)) − 1))
283128, 248sseldd 3931 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 − 1) ∈ (1...(𝑃 − 1)))
284 fzm1ndvds 16235 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℕ ∧ (𝑃 − 1) ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ (𝑃 − 1))
285202, 283, 284syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ¬ 𝑃 ∥ (𝑃 − 1))
286 eqid 2733 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 − 1)↑(𝑃 − 2)) mod 𝑃) = (((𝑃 − 1)↑(𝑃 − 2)) mod 𝑃)
287286prmdiveq 16699 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℙ ∧ (𝑃 − 1) ∈ ℤ ∧ ¬ 𝑃 ∥ (𝑃 − 1)) → (((𝑃 − 1) ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ (((𝑃 − 1) · (𝑃 − 1)) − 1)) ↔ (𝑃 − 1) = (((𝑃 − 1)↑(𝑃 − 2)) mod 𝑃)))
288151, 261, 285, 287syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (((𝑃 − 1) ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ (((𝑃 − 1) · (𝑃 − 1)) − 1)) ↔ (𝑃 − 1) = (((𝑃 − 1)↑(𝑃 − 2)) mod 𝑃)))
289258, 282, 288mpbi2and 712 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 − 1) = (((𝑃 − 1)↑(𝑃 − 2)) mod 𝑃))
290205prmdivdiv 16700 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℙ ∧ 𝑧 ∈ (1...(𝑃 − 1))) → 𝑧 = ((((𝑧↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃))
291151, 152, 290syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑧 = ((((𝑧↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃))
292289, 291eqeq12d 2749 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 − 1) = 𝑧 ↔ (((𝑃 − 1)↑(𝑃 − 2)) mod 𝑃) = ((((𝑧↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃)))
293253, 292imbitrrid 246 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 − 1) = ((𝑧↑(𝑃 − 2)) mod 𝑃) → (𝑃 − 1) = 𝑧))
294251, 293mtod 198 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ¬ (𝑃 − 1) = ((𝑧↑(𝑃 − 2)) mod 𝑃))
295 ioran 985 . . . . . . . . . . . . . 14 (¬ ((𝑃 − 1) = 𝑧 ∨ (𝑃 − 1) = ((𝑧↑(𝑃 − 2)) mod 𝑃)) ↔ (¬ (𝑃 − 1) = 𝑧 ∧ ¬ (𝑃 − 1) = ((𝑧↑(𝑃 − 2)) mod 𝑃)))
296251, 294, 295sylanbrc 583 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ¬ ((𝑃 − 1) = 𝑧 ∨ (𝑃 − 1) = ((𝑧↑(𝑃 − 2)) mod 𝑃)))
297 ovex 7385 . . . . . . . . . . . . . 14 (𝑃 − 1) ∈ V
298297elpr 4600 . . . . . . . . . . . . 13 ((𝑃 − 1) ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ↔ ((𝑃 − 1) = 𝑧 ∨ (𝑃 − 1) = ((𝑧↑(𝑃 − 2)) mod 𝑃)))
299296, 298sylnibr 329 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ¬ (𝑃 − 1) ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
300248, 299eldifd 3909 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 − 1) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
301 eldifi 4080 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → 𝑦𝑆)
30294r19.21bi 3225 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆)
303301, 302sylan2 593 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) → ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆)
304 eldif 3908 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ↔ (𝑦𝑆 ∧ ¬ 𝑦 ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
305151adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → 𝑃 ∈ ℙ)
306128sselda 3930 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → 𝑦 ∈ (1...(𝑃 − 1)))
307 eqid 2733 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦↑(𝑃 − 2)) mod 𝑃) = ((𝑦↑(𝑃 − 2)) mod 𝑃)
308307prmdivdiv 16700 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → 𝑦 = ((((𝑦↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃))
309305, 306, 308syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → 𝑦 = ((((𝑦↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃))
310 oveq1 7359 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦↑(𝑃 − 2)) mod 𝑃) = 𝑧 → (((𝑦↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) = (𝑧↑(𝑃 − 2)))
311310oveq1d 7367 . . . . . . . . . . . . . . . . . . . 20 (((𝑦↑(𝑃 − 2)) mod 𝑃) = 𝑧 → ((((𝑦↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃) = ((𝑧↑(𝑃 − 2)) mod 𝑃))
312311eqeq2d 2744 . . . . . . . . . . . . . . . . . . 19 (((𝑦↑(𝑃 − 2)) mod 𝑃) = 𝑧 → (𝑦 = ((((𝑦↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃) ↔ 𝑦 = ((𝑧↑(𝑃 − 2)) mod 𝑃)))
313309, 312syl5ibcom 245 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → (((𝑦↑(𝑃 − 2)) mod 𝑃) = 𝑧𝑦 = ((𝑧↑(𝑃 − 2)) mod 𝑃)))
314 oveq1 7359 . . . . . . . . . . . . . . . . . . . 20 (((𝑦↑(𝑃 − 2)) mod 𝑃) = ((𝑧↑(𝑃 − 2)) mod 𝑃) → (((𝑦↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) = (((𝑧↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)))
315314oveq1d 7367 . . . . . . . . . . . . . . . . . . 19 (((𝑦↑(𝑃 − 2)) mod 𝑃) = ((𝑧↑(𝑃 − 2)) mod 𝑃) → ((((𝑦↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃) = ((((𝑧↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃))
316291adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → 𝑧 = ((((𝑧↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃))
317309, 316eqeq12d 2749 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → (𝑦 = 𝑧 ↔ ((((𝑦↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃) = ((((𝑧↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃)))
318315, 317imbitrrid 246 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → (((𝑦↑(𝑃 − 2)) mod 𝑃) = ((𝑧↑(𝑃 − 2)) mod 𝑃) → 𝑦 = 𝑧))
319313, 318orim12d 966 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → ((((𝑦↑(𝑃 − 2)) mod 𝑃) = 𝑧 ∨ ((𝑦↑(𝑃 − 2)) mod 𝑃) = ((𝑧↑(𝑃 − 2)) mod 𝑃)) → (𝑦 = ((𝑧↑(𝑃 − 2)) mod 𝑃) ∨ 𝑦 = 𝑧)))
320 ovex 7385 . . . . . . . . . . . . . . . . . 18 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ V
321320elpr 4600 . . . . . . . . . . . . . . . . 17 (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ↔ (((𝑦↑(𝑃 − 2)) mod 𝑃) = 𝑧 ∨ ((𝑦↑(𝑃 − 2)) mod 𝑃) = ((𝑧↑(𝑃 − 2)) mod 𝑃)))
322 vex 3441 . . . . . . . . . . . . . . . . . . 19 𝑦 ∈ V
323322elpr 4600 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ↔ (𝑦 = 𝑧𝑦 = ((𝑧↑(𝑃 − 2)) mod 𝑃)))
324 orcom 870 . . . . . . . . . . . . . . . . . 18 ((𝑦 = 𝑧𝑦 = ((𝑧↑(𝑃 − 2)) mod 𝑃)) ↔ (𝑦 = ((𝑧↑(𝑃 − 2)) mod 𝑃) ∨ 𝑦 = 𝑧))
325323, 324bitri 275 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ↔ (𝑦 = ((𝑧↑(𝑃 − 2)) mod 𝑃) ∨ 𝑦 = 𝑧))
326319, 321, 3253imtr4g 296 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} → 𝑦 ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
327326con3d 152 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → (¬ 𝑦 ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} → ¬ ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
328327impr 454 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ (𝑦𝑆 ∧ ¬ 𝑦 ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) → ¬ ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
329304, 328sylan2b 594 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) → ¬ ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
330303, 329eldifd 3909 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) → ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
331330ralrimiva 3125 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ∀𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
332300, 331jca 511 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 − 1) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∧ ∀𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
333 eleq2 2822 . . . . . . . . . . . 12 (𝑥 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → ((𝑃 − 1) ∈ 𝑥 ↔ (𝑃 − 1) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
334 eleq2 2822 . . . . . . . . . . . . 13 (𝑥 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥 ↔ ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
335334raleqbi1dv 3305 . . . . . . . . . . . 12 (𝑥 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → (∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥 ↔ ∀𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
336333, 335anbi12d 632 . . . . . . . . . . 11 (𝑥 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → (((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥) ↔ ((𝑃 − 1) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∧ ∀𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))))
337336, 7elrab2 3646 . . . . . . . . . 10 ((𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∈ 𝐴 ↔ ((𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∈ 𝒫 (1...(𝑃 − 1)) ∧ ((𝑃 − 1) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∧ ∀𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))))
338247, 332, 337sylanbrc 583 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∈ 𝐴)
339242, 244, 338rspcdva 3574 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊊ 𝑆 → ((𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) mod 𝑃) = (-1 mod 𝑃)))
340236, 339mpd 15 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) mod 𝑃) = (-1 mod 𝑃))
341227, 340eqtrd 2768 . . . . . 6 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((1 · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))) mod 𝑃) = (-1 mod 𝑃))
342110, 224, 3413eqtrd 2772 . . . . 5 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (-1 mod 𝑃))
343342ex 412 . . . 4 (𝜑 → ((𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)}) → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (-1 mod 𝑃)))
344343exlimdv 1934 . . 3 (𝜑 → (∃𝑧(𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)}) → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (-1 mod 𝑃)))
34557, 344biimtrid 242 . 2 (𝜑 → (¬ 𝑆 ⊆ {(𝑃 − 1)} → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (-1 mod 𝑃)))
34656, 345pm2.61d 179 1 (𝜑 → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (-1 mod 𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wex 1780  wcel 2113  wne 2929  wral 3048  {crab 3396  Vcvv 3437  cdif 3895  cun 3896  cin 3897  wss 3898  wpss 3899  c0 4282  𝒫 cpw 4549  {csn 4575  {cpr 4577   class class class wbr 5093  cmpt 5174   I cid 5513  cres 5621  wf 6482  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7352  Fincfn 8875   finSupp cfsupp 9252  cc 11011  cr 11012  0cc0 11013  1c1 11014   + caddc 11016   · cmul 11018  cmin 11351  -cneg 11352  cn 12132  2c2 12187  0cn0 12388  cz 12475  cuz 12738  +crp 12892  ...cfz 13409   mod cmo 13775  cexp 13970  cdvds 16165  cprime 16584   Σg cgsu 17346  Mndcmnd 18644  SubMndcsubmnd 18692  CMndccmn 19694  mulGrpcmgp 20060  Ringcrg 20153  CRingccrg 20154  SubRingcsubrg 20486  fldccnfld 21293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092  ax-mulf 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-sup 9333  df-inf 9334  df-oi 9403  df-dju 9801  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-xnn0 12462  df-z 12476  df-dec 12595  df-uz 12739  df-rp 12893  df-fz 13410  df-fzo 13557  df-fl 13698  df-mod 13776  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-dvds 16166  df-gcd 16408  df-prm 16585  df-phi 16679  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-0g 17347  df-gsum 17348  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-grp 18851  df-minusg 18852  df-mulg 18983  df-subg 19038  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-subrng 20463  df-subrg 20487  df-cnfld 21294
This theorem is referenced by:  wilthlem3  27008
  Copyright terms: Public domain W3C validator