MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wilthlem2 Structured version   Visualization version   GIF version

Theorem wilthlem2 27126
Description: Lemma for wilth 27128: induction step. The "hand proof" version of this theorem works by writing out the list of all numbers from 1 to 𝑃 − 1 in pairs such that a number is paired with its inverse. Every number has a unique inverse different from itself except 1 and 𝑃 − 1, and so each pair multiplies to 1, and 1 and 𝑃 − 1≡-1 multiply to -1, so the full product is equal to -1. Here we make this precise by doing the product pair by pair.

The induction hypothesis says that every subset 𝑆 of 1...(𝑃 − 1) that is closed under inverse (i.e. all pairs are matched up) and contains 𝑃 − 1 multiplies to -1 mod 𝑃. Given such a set, we take out one element 𝑧𝑃 − 1. If there are no such elements, then 𝑆 = {𝑃 − 1} which forms the base case. Otherwise, 𝑆 ∖ {𝑧, 𝑧↑-1} is also closed under inverse and contains 𝑃 − 1, so the induction hypothesis says that this equals -1; and the remaining two elements are either equal to each other, in which case wilthlem1 27125 gives that 𝑧 = 1 or 𝑃 − 1, and we've already excluded the second case, so the product gives 1; or 𝑧𝑧↑-1 and their product is 1. In either case the accumulated product is unaffected. (Contributed by Mario Carneiro, 24-Jan-2015.) (Proof shortened by AV, 27-Jul-2019.)

Hypotheses
Ref Expression
wilthlem.t 𝑇 = (mulGrp‘ℂfld)
wilthlem.a 𝐴 = {𝑥 ∈ 𝒫 (1...(𝑃 − 1)) ∣ ((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥)}
wilthlem2.p (𝜑𝑃 ∈ ℙ)
wilthlem2.s (𝜑𝑆𝐴)
wilthlem2.r (𝜑 → ∀𝑠𝐴 (𝑠𝑆 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))
Assertion
Ref Expression
wilthlem2 (𝜑 → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (-1 mod 𝑃))
Distinct variable groups:   𝑥,𝑠,𝑦,𝐴   𝑃,𝑠,𝑥,𝑦   𝜑,𝑥,𝑦   𝑆,𝑠,𝑥,𝑦   𝑇,𝑠,𝑥,𝑦
Allowed substitution hint:   𝜑(𝑠)

Proof of Theorem wilthlem2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . . 9 ((𝜑𝑆 ⊆ {(𝑃 − 1)}) → 𝑆 ⊆ {(𝑃 − 1)})
2 wilthlem2.s . . . . . . . . . . . . . 14 (𝜑𝑆𝐴)
3 eleq2 2827 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑆 → ((𝑃 − 1) ∈ 𝑥 ↔ (𝑃 − 1) ∈ 𝑆))
4 eleq2 2827 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑆 → (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥 ↔ ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆))
54raleqbi1dv 3335 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑆 → (∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥 ↔ ∀𝑦𝑆 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆))
63, 5anbi12d 632 . . . . . . . . . . . . . . 15 (𝑥 = 𝑆 → (((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥) ↔ ((𝑃 − 1) ∈ 𝑆 ∧ ∀𝑦𝑆 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆)))
7 wilthlem.a . . . . . . . . . . . . . . 15 𝐴 = {𝑥 ∈ 𝒫 (1...(𝑃 − 1)) ∣ ((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥)}
86, 7elrab2 3697 . . . . . . . . . . . . . 14 (𝑆𝐴 ↔ (𝑆 ∈ 𝒫 (1...(𝑃 − 1)) ∧ ((𝑃 − 1) ∈ 𝑆 ∧ ∀𝑦𝑆 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆)))
92, 8sylib 218 . . . . . . . . . . . . 13 (𝜑 → (𝑆 ∈ 𝒫 (1...(𝑃 − 1)) ∧ ((𝑃 − 1) ∈ 𝑆 ∧ ∀𝑦𝑆 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆)))
109simprd 495 . . . . . . . . . . . 12 (𝜑 → ((𝑃 − 1) ∈ 𝑆 ∧ ∀𝑦𝑆 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆))
1110simpld 494 . . . . . . . . . . 11 (𝜑 → (𝑃 − 1) ∈ 𝑆)
1211snssd 4813 . . . . . . . . . 10 (𝜑 → {(𝑃 − 1)} ⊆ 𝑆)
1312adantr 480 . . . . . . . . 9 ((𝜑𝑆 ⊆ {(𝑃 − 1)}) → {(𝑃 − 1)} ⊆ 𝑆)
141, 13eqssd 4012 . . . . . . . 8 ((𝜑𝑆 ⊆ {(𝑃 − 1)}) → 𝑆 = {(𝑃 − 1)})
1514reseq2d 5999 . . . . . . 7 ((𝜑𝑆 ⊆ {(𝑃 − 1)}) → ( I ↾ 𝑆) = ( I ↾ {(𝑃 − 1)}))
16 mptresid 6070 . . . . . . 7 ( I ↾ {(𝑃 − 1)}) = (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧)
1715, 16eqtrdi 2790 . . . . . 6 ((𝜑𝑆 ⊆ {(𝑃 − 1)}) → ( I ↾ 𝑆) = (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧))
1817oveq2d 7446 . . . . 5 ((𝜑𝑆 ⊆ {(𝑃 − 1)}) → (𝑇 Σg ( I ↾ 𝑆)) = (𝑇 Σg (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧)))
1918oveq1d 7445 . . . 4 ((𝜑𝑆 ⊆ {(𝑃 − 1)}) → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = ((𝑇 Σg (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧)) mod 𝑃))
20 wilthlem2.p . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℙ)
21 prmnn 16707 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2220, 21syl 17 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℕ)
2322nncnd 12279 . . . . . . . . . 10 (𝜑𝑃 ∈ ℂ)
24 ax-1cn 11210 . . . . . . . . . 10 1 ∈ ℂ
25 negsub 11554 . . . . . . . . . 10 ((𝑃 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑃 + -1) = (𝑃 − 1))
2623, 24, 25sylancl 586 . . . . . . . . 9 (𝜑 → (𝑃 + -1) = (𝑃 − 1))
27 neg1cn 12377 . . . . . . . . . 10 -1 ∈ ℂ
28 addcom 11444 . . . . . . . . . 10 ((𝑃 ∈ ℂ ∧ -1 ∈ ℂ) → (𝑃 + -1) = (-1 + 𝑃))
2923, 27, 28sylancl 586 . . . . . . . . 9 (𝜑 → (𝑃 + -1) = (-1 + 𝑃))
3026, 29eqtr3d 2776 . . . . . . . 8 (𝜑 → (𝑃 − 1) = (-1 + 𝑃))
31 cnring 21420 . . . . . . . . . 10 fld ∈ Ring
32 wilthlem.t . . . . . . . . . . 11 𝑇 = (mulGrp‘ℂfld)
3332ringmgp 20256 . . . . . . . . . 10 (ℂfld ∈ Ring → 𝑇 ∈ Mnd)
3431, 33mp1i 13 . . . . . . . . 9 (𝜑𝑇 ∈ Mnd)
35 nnm1nn0 12564 . . . . . . . . . . 11 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
3622, 35syl 17 . . . . . . . . . 10 (𝜑 → (𝑃 − 1) ∈ ℕ0)
3736nn0cnd 12586 . . . . . . . . 9 (𝜑 → (𝑃 − 1) ∈ ℂ)
38 cnfldbas 21385 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
3932, 38mgpbas 20157 . . . . . . . . . 10 ℂ = (Base‘𝑇)
40 id 22 . . . . . . . . . 10 (𝑧 = (𝑃 − 1) → 𝑧 = (𝑃 − 1))
4139, 40gsumsn 19986 . . . . . . . . 9 ((𝑇 ∈ Mnd ∧ (𝑃 − 1) ∈ ℂ ∧ (𝑃 − 1) ∈ ℂ) → (𝑇 Σg (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧)) = (𝑃 − 1))
4234, 37, 37, 41syl3anc 1370 . . . . . . . 8 (𝜑 → (𝑇 Σg (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧)) = (𝑃 − 1))
4323mullidd 11276 . . . . . . . . 9 (𝜑 → (1 · 𝑃) = 𝑃)
4443oveq2d 7446 . . . . . . . 8 (𝜑 → (-1 + (1 · 𝑃)) = (-1 + 𝑃))
4530, 42, 443eqtr4d 2784 . . . . . . 7 (𝜑 → (𝑇 Σg (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧)) = (-1 + (1 · 𝑃)))
4645oveq1d 7445 . . . . . 6 (𝜑 → ((𝑇 Σg (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧)) mod 𝑃) = ((-1 + (1 · 𝑃)) mod 𝑃))
47 neg1rr 12378 . . . . . . . 8 -1 ∈ ℝ
4847a1i 11 . . . . . . 7 (𝜑 → -1 ∈ ℝ)
4922nnrpd 13072 . . . . . . 7 (𝜑𝑃 ∈ ℝ+)
50 1zzd 12645 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
51 modcyc 13942 . . . . . . 7 ((-1 ∈ ℝ ∧ 𝑃 ∈ ℝ+ ∧ 1 ∈ ℤ) → ((-1 + (1 · 𝑃)) mod 𝑃) = (-1 mod 𝑃))
5248, 49, 50, 51syl3anc 1370 . . . . . 6 (𝜑 → ((-1 + (1 · 𝑃)) mod 𝑃) = (-1 mod 𝑃))
5346, 52eqtrd 2774 . . . . 5 (𝜑 → ((𝑇 Σg (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧)) mod 𝑃) = (-1 mod 𝑃))
5453adantr 480 . . . 4 ((𝜑𝑆 ⊆ {(𝑃 − 1)}) → ((𝑇 Σg (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧)) mod 𝑃) = (-1 mod 𝑃))
5519, 54eqtrd 2774 . . 3 ((𝜑𝑆 ⊆ {(𝑃 − 1)}) → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (-1 mod 𝑃))
5655ex 412 . 2 (𝜑 → (𝑆 ⊆ {(𝑃 − 1)} → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (-1 mod 𝑃)))
57 nss 4059 . . 3 𝑆 ⊆ {(𝑃 − 1)} ↔ ∃𝑧(𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)}))
58 cnfld1 21423 . . . . . . . . . 10 1 = (1r‘ℂfld)
5932, 58ringidval 20200 . . . . . . . . 9 1 = (0g𝑇)
60 cnfldmul 21389 . . . . . . . . . 10 · = (.r‘ℂfld)
6132, 60mgpplusg 20155 . . . . . . . . 9 · = (+g𝑇)
62 cncrng 21418 . . . . . . . . . . 11 fld ∈ CRing
6332crngmgp 20258 . . . . . . . . . . 11 (ℂfld ∈ CRing → 𝑇 ∈ CMnd)
6462, 63ax-mp 5 . . . . . . . . . 10 𝑇 ∈ CMnd
6564a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑇 ∈ CMnd)
662adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑆𝐴)
67 f1oi 6886 . . . . . . . . . . . 12 ( I ↾ 𝑆):𝑆1-1-onto𝑆
68 f1of 6848 . . . . . . . . . . . 12 (( I ↾ 𝑆):𝑆1-1-onto𝑆 → ( I ↾ 𝑆):𝑆𝑆)
6967, 68ax-mp 5 . . . . . . . . . . 11 ( I ↾ 𝑆):𝑆𝑆
709simpld 494 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ 𝒫 (1...(𝑃 − 1)))
7170elpwid 4613 . . . . . . . . . . . . 13 (𝜑𝑆 ⊆ (1...(𝑃 − 1)))
72 fzssz 13562 . . . . . . . . . . . . 13 (1...(𝑃 − 1)) ⊆ ℤ
7371, 72sstrdi 4007 . . . . . . . . . . . 12 (𝜑𝑆 ⊆ ℤ)
74 zsscn 12618 . . . . . . . . . . . 12 ℤ ⊆ ℂ
7573, 74sstrdi 4007 . . . . . . . . . . 11 (𝜑𝑆 ⊆ ℂ)
76 fss 6752 . . . . . . . . . . 11 ((( I ↾ 𝑆):𝑆𝑆𝑆 ⊆ ℂ) → ( I ↾ 𝑆):𝑆⟶ℂ)
7769, 75, 76sylancr 587 . . . . . . . . . 10 (𝜑 → ( I ↾ 𝑆):𝑆⟶ℂ)
7877adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ( I ↾ 𝑆):𝑆⟶ℂ)
79 fzfi 14009 . . . . . . . . . . . 12 (1...(𝑃 − 1)) ∈ Fin
80 ssfi 9211 . . . . . . . . . . . 12 (((1...(𝑃 − 1)) ∈ Fin ∧ 𝑆 ⊆ (1...(𝑃 − 1))) → 𝑆 ∈ Fin)
8179, 71, 80sylancr 587 . . . . . . . . . . 11 (𝜑𝑆 ∈ Fin)
82 1ex 11254 . . . . . . . . . . . 12 1 ∈ V
8382a1i 11 . . . . . . . . . . 11 (𝜑 → 1 ∈ V)
8477, 81, 83fdmfifsupp 9412 . . . . . . . . . 10 (𝜑 → ( I ↾ 𝑆) finSupp 1)
8584adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ( I ↾ 𝑆) finSupp 1)
86 disjdif 4477 . . . . . . . . . 10 ({𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∩ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = ∅
8786a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ({𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∩ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = ∅)
88 undif2 4482 . . . . . . . . . 10 ({𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∪ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = ({𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∪ 𝑆)
89 simprl 771 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑧𝑆)
90 oveq1 7437 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → (𝑦↑(𝑃 − 2)) = (𝑧↑(𝑃 − 2)))
9190oveq1d 7445 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → ((𝑦↑(𝑃 − 2)) mod 𝑃) = ((𝑧↑(𝑃 − 2)) mod 𝑃))
9291eleq1d 2823 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆 ↔ ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆))
9310simprd 495 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑦𝑆 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆)
9493adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ∀𝑦𝑆 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆)
9592, 94, 89rspcdva 3622 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆)
9689, 95prssd 4826 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ⊆ 𝑆)
97 ssequn1 4195 . . . . . . . . . . 11 ({𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ⊆ 𝑆 ↔ ({𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∪ 𝑆) = 𝑆)
9896, 97sylib 218 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ({𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∪ 𝑆) = 𝑆)
9988, 98eqtr2id 2787 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑆 = ({𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∪ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
10039, 59, 61, 65, 66, 78, 85, 87, 99gsumsplit 19960 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑇 Σg ( I ↾ 𝑆)) = ((𝑇 Σg (( I ↾ 𝑆) ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) · (𝑇 Σg (( I ↾ 𝑆) ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))))
10196resabs1d 6027 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (( I ↾ 𝑆) ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) = ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
102101oveq2d 7446 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑇 Σg (( I ↾ 𝑆) ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = (𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
103 difss 4145 . . . . . . . . . . . 12 (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊆ 𝑆
104 resabs1 6026 . . . . . . . . . . . 12 ((𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊆ 𝑆 → (( I ↾ 𝑆) ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
105103, 104ax-mp 5 . . . . . . . . . . 11 (( I ↾ 𝑆) ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
106105oveq2i 7441 . . . . . . . . . 10 (𝑇 Σg (( I ↾ 𝑆) ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) = (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
107106a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑇 Σg (( I ↾ 𝑆) ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) = (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))))
108102, 107oveq12d 7448 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑇 Σg (( I ↾ 𝑆) ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) · (𝑇 Σg (( I ↾ 𝑆) ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))) = ((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))))
109100, 108eqtrd 2774 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑇 Σg ( I ↾ 𝑆)) = ((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))))
110109oveq1d 7445 . . . . . 6 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))) mod 𝑃))
111 prfi 9360 . . . . . . . . . 10 {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∈ Fin
112111a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∈ Fin)
113 zsubrg 21455 . . . . . . . . . 10 ℤ ∈ (SubRing‘ℂfld)
11432subrgsubm 20601 . . . . . . . . . 10 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubMnd‘𝑇))
115113, 114mp1i 13 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ℤ ∈ (SubMnd‘𝑇))
116 f1oi 6886 . . . . . . . . . . 11 ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}):{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}–1-1-onto→{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}
117 f1of 6848 . . . . . . . . . . 11 (( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}):{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}–1-1-onto→{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} → ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}):{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}⟶{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
118116, 117ax-mp 5 . . . . . . . . . 10 ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}):{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}⟶{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}
11973adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑆 ⊆ ℤ)
12096, 119sstrd 4005 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ⊆ ℤ)
121 fss 6752 . . . . . . . . . 10 ((( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}):{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}⟶{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∧ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ⊆ ℤ) → ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}):{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}⟶ℤ)
122118, 120, 121sylancr 587 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}):{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}⟶ℤ)
12382a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 1 ∈ V)
124122, 112, 123fdmfifsupp 9412 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) finSupp 1)
12559, 65, 112, 115, 122, 124gsumsubmcl 19951 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) ∈ ℤ)
126125zred 12719 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) ∈ ℝ)
127 1red 11259 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 1 ∈ ℝ)
12871adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑆 ⊆ (1...(𝑃 − 1)))
129128ssdifssd 4156 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊆ (1...(𝑃 − 1)))
130 ssfi 9211 . . . . . . . . 9 (((1...(𝑃 − 1)) ∈ Fin ∧ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊆ (1...(𝑃 − 1))) → (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∈ Fin)
13179, 129, 130sylancr 587 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∈ Fin)
132 f1oi 6886 . . . . . . . . . 10 ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})):(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})–1-1-onto→(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
133 f1of 6848 . . . . . . . . . 10 (( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})):(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})–1-1-onto→(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})):(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})⟶(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
134132, 133ax-mp 5 . . . . . . . . 9 ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})):(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})⟶(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
135119ssdifssd 4156 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊆ ℤ)
136 fss 6752 . . . . . . . . 9 ((( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})):(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})⟶(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∧ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊆ ℤ) → ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})):(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})⟶ℤ)
137134, 135, 136sylancr 587 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})):(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})⟶ℤ)
138137, 131, 123fdmfifsupp 9412 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) finSupp 1)
13959, 65, 131, 115, 137, 138gsumsubmcl 19951 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) ∈ ℤ)
14049adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑃 ∈ ℝ+)
14134adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑇 ∈ Mnd)
14275adantr 480 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑆 ⊆ ℂ)
143142, 89sseldd 3995 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑧 ∈ ℂ)
144 id 22 . . . . . . . . . . . . 13 (𝑤 = 𝑧𝑤 = 𝑧)
14539, 144gsumsn 19986 . . . . . . . . . . . 12 ((𝑇 ∈ Mnd ∧ 𝑧 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑇 Σg (𝑤 ∈ {𝑧} ↦ 𝑤)) = 𝑧)
146141, 143, 143, 145syl3anc 1370 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑇 Σg (𝑤 ∈ {𝑧} ↦ 𝑤)) = 𝑧)
147146adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → (𝑇 Σg (𝑤 ∈ {𝑧} ↦ 𝑤)) = 𝑧)
148 mptresid 6070 . . . . . . . . . . . 12 ( I ↾ {𝑧}) = (𝑤 ∈ {𝑧} ↦ 𝑤)
149 dfsn2 4643 . . . . . . . . . . . . . 14 {𝑧} = {𝑧, 𝑧}
150 animorrl 982 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → (𝑧 = 1 ∨ 𝑧 = (𝑃 − 1)))
15120adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑃 ∈ ℙ)
152128, 89sseldd 3995 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑧 ∈ (1...(𝑃 − 1)))
153 wilthlem1 27125 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℙ ∧ 𝑧 ∈ (1...(𝑃 − 1))) → (𝑧 = ((𝑧↑(𝑃 − 2)) mod 𝑃) ↔ (𝑧 = 1 ∨ 𝑧 = (𝑃 − 1))))
154151, 152, 153syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑧 = ((𝑧↑(𝑃 − 2)) mod 𝑃) ↔ (𝑧 = 1 ∨ 𝑧 = (𝑃 − 1))))
155154biimpar 477 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ (𝑧 = 1 ∨ 𝑧 = (𝑃 − 1))) → 𝑧 = ((𝑧↑(𝑃 − 2)) mod 𝑃))
156150, 155syldan 591 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → 𝑧 = ((𝑧↑(𝑃 − 2)) mod 𝑃))
157156preq2d 4744 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → {𝑧, 𝑧} = {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
158149, 157eqtrid 2786 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → {𝑧} = {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
159158reseq2d 5999 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → ( I ↾ {𝑧}) = ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
160148, 159eqtr3id 2788 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → (𝑤 ∈ {𝑧} ↦ 𝑤) = ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
161160oveq2d 7446 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → (𝑇 Σg (𝑤 ∈ {𝑧} ↦ 𝑤)) = (𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
162 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → 𝑧 = 1)
163147, 161, 1623eqtr3d 2782 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → (𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = 1)
164163oveq1d 7445 . . . . . . . 8 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → ((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) mod 𝑃) = (1 mod 𝑃))
165 df-pr 4633 . . . . . . . . . . . . . . 15 {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} = ({𝑧} ∪ {((𝑧↑(𝑃 − 2)) mod 𝑃)})
166165reseq2i 5996 . . . . . . . . . . . . . 14 ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) = ( I ↾ ({𝑧} ∪ {((𝑧↑(𝑃 − 2)) mod 𝑃)}))
167 mptresid 6070 . . . . . . . . . . . . . 14 ( I ↾ ({𝑧} ∪ {((𝑧↑(𝑃 − 2)) mod 𝑃)})) = (𝑤 ∈ ({𝑧} ∪ {((𝑧↑(𝑃 − 2)) mod 𝑃)}) ↦ 𝑤)
168166, 167eqtri 2762 . . . . . . . . . . . . 13 ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) = (𝑤 ∈ ({𝑧} ∪ {((𝑧↑(𝑃 − 2)) mod 𝑃)}) ↦ 𝑤)
169168oveq2i 7441 . . . . . . . . . . . 12 (𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = (𝑇 Σg (𝑤 ∈ ({𝑧} ∪ {((𝑧↑(𝑃 − 2)) mod 𝑃)}) ↦ 𝑤))
17064a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → 𝑇 ∈ CMnd)
171 snfi 9081 . . . . . . . . . . . . . 14 {𝑧} ∈ Fin
172171a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → {𝑧} ∈ Fin)
173 elsni 4647 . . . . . . . . . . . . . . . 16 (𝑤 ∈ {𝑧} → 𝑤 = 𝑧)
174173adantl 481 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑤 ∈ {𝑧}) → 𝑤 = 𝑧)
175143adantr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑤 ∈ {𝑧}) → 𝑧 ∈ ℂ)
176174, 175eqeltrd 2838 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑤 ∈ {𝑧}) → 𝑤 ∈ ℂ)
177176adantlr 715 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) ∧ 𝑤 ∈ {𝑧}) → 𝑤 ∈ ℂ)
178142, 95sseldd 3995 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ ℂ)
179178adantr 480 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ ℂ)
180 simprr 773 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ¬ 𝑧 ∈ {(𝑃 − 1)})
181 velsn 4646 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ {(𝑃 − 1)} ↔ 𝑧 = (𝑃 − 1))
182180, 181sylnib 328 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ¬ 𝑧 = (𝑃 − 1))
183 biorf 936 . . . . . . . . . . . . . . . . 17 𝑧 = (𝑃 − 1) → (𝑧 = 1 ↔ (𝑧 = (𝑃 − 1) ∨ 𝑧 = 1)))
184182, 183syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑧 = 1 ↔ (𝑧 = (𝑃 − 1) ∨ 𝑧 = 1)))
185 ovex 7463 . . . . . . . . . . . . . . . . . . 19 ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ V
186185elsn 4645 . . . . . . . . . . . . . . . . . 18 (((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧} ↔ ((𝑧↑(𝑃 − 2)) mod 𝑃) = 𝑧)
187 eqcom 2741 . . . . . . . . . . . . . . . . . 18 (((𝑧↑(𝑃 − 2)) mod 𝑃) = 𝑧𝑧 = ((𝑧↑(𝑃 − 2)) mod 𝑃))
188186, 187bitri 275 . . . . . . . . . . . . . . . . 17 (((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧} ↔ 𝑧 = ((𝑧↑(𝑃 − 2)) mod 𝑃))
189 orcom 870 . . . . . . . . . . . . . . . . 17 ((𝑧 = (𝑃 − 1) ∨ 𝑧 = 1) ↔ (𝑧 = 1 ∨ 𝑧 = (𝑃 − 1)))
190154, 188, 1893bitr4g 314 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧} ↔ (𝑧 = (𝑃 − 1) ∨ 𝑧 = 1)))
191184, 190bitr4d 282 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑧 = 1 ↔ ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧}))
192191necon3abid 2974 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑧 ≠ 1 ↔ ¬ ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧}))
193192biimpa 476 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → ¬ ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧})
194 id 22 . . . . . . . . . . . . 13 (𝑤 = ((𝑧↑(𝑃 − 2)) mod 𝑃) → 𝑤 = ((𝑧↑(𝑃 − 2)) mod 𝑃))
19539, 61, 170, 172, 177, 179, 193, 179, 194gsumunsn 19992 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → (𝑇 Σg (𝑤 ∈ ({𝑧} ∪ {((𝑧↑(𝑃 − 2)) mod 𝑃)}) ↦ 𝑤)) = ((𝑇 Σg (𝑤 ∈ {𝑧} ↦ 𝑤)) · ((𝑧↑(𝑃 − 2)) mod 𝑃)))
196169, 195eqtrid 2786 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → (𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = ((𝑇 Σg (𝑤 ∈ {𝑧} ↦ 𝑤)) · ((𝑧↑(𝑃 − 2)) mod 𝑃)))
197146adantr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → (𝑇 Σg (𝑤 ∈ {𝑧} ↦ 𝑤)) = 𝑧)
198197oveq1d 7445 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → ((𝑇 Σg (𝑤 ∈ {𝑧} ↦ 𝑤)) · ((𝑧↑(𝑃 − 2)) mod 𝑃)) = (𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)))
199196, 198eqtrd 2774 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → (𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = (𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)))
200199oveq1d 7445 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → ((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) mod 𝑃) = ((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
201152elfzelzd 13561 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑧 ∈ ℤ)
20222adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑃 ∈ ℕ)
203 fzm1ndvds 16355 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℕ ∧ 𝑧 ∈ (1...(𝑃 − 1))) → ¬ 𝑃𝑧)
204202, 152, 203syl2anc 584 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ¬ 𝑃𝑧)
205 eqid 2734 . . . . . . . . . . . . . 14 ((𝑧↑(𝑃 − 2)) mod 𝑃) = ((𝑧↑(𝑃 − 2)) mod 𝑃)
206205prmdiv 16818 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑧 ∈ ℤ ∧ ¬ 𝑃𝑧) → (((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) − 1)))
207151, 201, 204, 206syl3anc 1370 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) − 1)))
208207simprd 495 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑃 ∥ ((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) − 1))
209 elfznn 13589 . . . . . . . . . . . . . . 15 (𝑧 ∈ (1...(𝑃 − 1)) → 𝑧 ∈ ℕ)
210152, 209syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑧 ∈ ℕ)
211128, 95sseldd 3995 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)))
212 elfznn 13589 . . . . . . . . . . . . . . 15 (((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) → ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ ℕ)
213211, 212syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ ℕ)
214210, 213nnmulcld 12316 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) ∈ ℕ)
215214nnzd 12637 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) ∈ ℤ)
216 1zzd 12645 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 1 ∈ ℤ)
217 moddvds 16297 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ ∧ (𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) − 1)))
218202, 215, 216, 217syl3anc 1370 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) − 1)))
219208, 218mpbird 257 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = (1 mod 𝑃))
220219adantr 480 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → ((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = (1 mod 𝑃))
221200, 220eqtrd 2774 . . . . . . . 8 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → ((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) mod 𝑃) = (1 mod 𝑃))
222164, 221pm2.61dane 3026 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) mod 𝑃) = (1 mod 𝑃))
223 modmul1 13961 . . . . . . 7 ((((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) ∈ ℝ ∧ 1 ∈ ℝ) ∧ ((𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) ∈ ℤ ∧ 𝑃 ∈ ℝ+) ∧ ((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) mod 𝑃) = (1 mod 𝑃)) → (((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))) mod 𝑃) = ((1 · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))) mod 𝑃))
224126, 127, 139, 140, 222, 223syl221anc 1380 . . . . . 6 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))) mod 𝑃) = ((1 · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))) mod 𝑃))
225139zcnd 12720 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) ∈ ℂ)
226225mullidd 11276 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (1 · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))) = (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))))
227226oveq1d 7445 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((1 · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))) mod 𝑃) = ((𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) mod 𝑃))
228 sseqin2 4230 . . . . . . . . . . 11 ({𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ⊆ 𝑆 ↔ (𝑆 ∩ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) = {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
22996, 228sylib 218 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑆 ∩ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) = {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
230 vex 3481 . . . . . . . . . . . 12 𝑧 ∈ V
231230prnz 4781 . . . . . . . . . . 11 {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ≠ ∅
232231a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ≠ ∅)
233229, 232eqnetrd 3005 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑆 ∩ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ≠ ∅)
234 disj4 4464 . . . . . . . . . 10 ((𝑆 ∩ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) = ∅ ↔ ¬ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊊ 𝑆)
235234necon2abii 2988 . . . . . . . . 9 ((𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊊ 𝑆 ↔ (𝑆 ∩ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ≠ ∅)
236233, 235sylibr 234 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊊ 𝑆)
237 psseq1 4099 . . . . . . . . . 10 (𝑠 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → (𝑠𝑆 ↔ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊊ 𝑆))
238 reseq2 5994 . . . . . . . . . . . . 13 (𝑠 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → ( I ↾ 𝑠) = ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
239238oveq2d 7446 . . . . . . . . . . . 12 (𝑠 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → (𝑇 Σg ( I ↾ 𝑠)) = (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))))
240239oveq1d 7445 . . . . . . . . . . 11 (𝑠 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = ((𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) mod 𝑃))
241240eqeq1d 2736 . . . . . . . . . 10 (𝑠 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → (((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃) ↔ ((𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) mod 𝑃) = (-1 mod 𝑃)))
242237, 241imbi12d 344 . . . . . . . . 9 (𝑠 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → ((𝑠𝑆 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ↔ ((𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊊ 𝑆 → ((𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) mod 𝑃) = (-1 mod 𝑃))))
243 wilthlem2.r . . . . . . . . . 10 (𝜑 → ∀𝑠𝐴 (𝑠𝑆 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))
244243adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ∀𝑠𝐴 (𝑠𝑆 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))
245 ovex 7463 . . . . . . . . . . . 12 (1...(𝑃 − 1)) ∈ V
246245elpw2 5339 . . . . . . . . . . 11 ((𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∈ 𝒫 (1...(𝑃 − 1)) ↔ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊆ (1...(𝑃 − 1)))
247129, 246sylibr 234 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∈ 𝒫 (1...(𝑃 − 1)))
24811adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 − 1) ∈ 𝑆)
249 eqcom 2741 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑃 − 1) ↔ (𝑃 − 1) = 𝑧)
250181, 249bitri 275 . . . . . . . . . . . . . . 15 (𝑧 ∈ {(𝑃 − 1)} ↔ (𝑃 − 1) = 𝑧)
251180, 250sylnib 328 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ¬ (𝑃 − 1) = 𝑧)
252 oveq1 7437 . . . . . . . . . . . . . . . . 17 ((𝑃 − 1) = ((𝑧↑(𝑃 − 2)) mod 𝑃) → ((𝑃 − 1)↑(𝑃 − 2)) = (((𝑧↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)))
253252oveq1d 7445 . . . . . . . . . . . . . . . 16 ((𝑃 − 1) = ((𝑧↑(𝑃 − 2)) mod 𝑃) → (((𝑃 − 1)↑(𝑃 − 2)) mod 𝑃) = ((((𝑧↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃))
254202, 35syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 − 1) ∈ ℕ0)
255 nn0uz 12917 . . . . . . . . . . . . . . . . . . . 20 0 = (ℤ‘0)
256254, 255eleqtrdi 2848 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 − 1) ∈ (ℤ‘0))
257 eluzfz2 13568 . . . . . . . . . . . . . . . . . . 19 ((𝑃 − 1) ∈ (ℤ‘0) → (𝑃 − 1) ∈ (0...(𝑃 − 1)))
258256, 257syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 − 1) ∈ (0...(𝑃 − 1)))
259 prmz 16708 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
260151, 259syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑃 ∈ ℤ)
261119, 248sseldd 3995 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 − 1) ∈ ℤ)
262 1z 12644 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℤ
263 zsubcl 12656 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃 − 1) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝑃 − 1) − 1) ∈ ℤ)
264261, 262, 263sylancl 586 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 − 1) − 1) ∈ ℤ)
265 dvdsmul1 16311 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℤ ∧ ((𝑃 − 1) − 1) ∈ ℤ) → 𝑃 ∥ (𝑃 · ((𝑃 − 1) − 1)))
266260, 264, 265syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑃 ∥ (𝑃 · ((𝑃 − 1) − 1)))
267202nncnd 12279 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑃 ∈ ℂ)
268264zcnd 12720 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 − 1) − 1) ∈ ℂ)
269267, 268mulcld 11278 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 · ((𝑃 − 1) − 1)) ∈ ℂ)
270 1cnd 11253 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 1 ∈ ℂ)
271254nn0cnd 12586 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 − 1) ∈ ℂ)
272267, 270, 271subdird 11717 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 − 1) · (𝑃 − 1)) = ((𝑃 · (𝑃 − 1)) − (1 · (𝑃 − 1))))
273267, 271mulcld 11278 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 · (𝑃 − 1)) ∈ ℂ)
274273, 267, 270subsubd 11645 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 · (𝑃 − 1)) − (𝑃 − 1)) = (((𝑃 · (𝑃 − 1)) − 𝑃) + 1))
275271mullidd 11276 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (1 · (𝑃 − 1)) = (𝑃 − 1))
276275oveq2d 7446 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 · (𝑃 − 1)) − (1 · (𝑃 − 1))) = ((𝑃 · (𝑃 − 1)) − (𝑃 − 1)))
277267, 271muls1d 11720 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 · ((𝑃 − 1) − 1)) = ((𝑃 · (𝑃 − 1)) − 𝑃))
278277oveq1d 7445 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 · ((𝑃 − 1) − 1)) + 1) = (((𝑃 · (𝑃 − 1)) − 𝑃) + 1))
279274, 276, 2783eqtr4d 2784 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 · (𝑃 − 1)) − (1 · (𝑃 − 1))) = ((𝑃 · ((𝑃 − 1) − 1)) + 1))
280272, 279eqtrd 2774 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 − 1) · (𝑃 − 1)) = ((𝑃 · ((𝑃 − 1) − 1)) + 1))
281269, 270, 280mvrraddd 11672 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (((𝑃 − 1) · (𝑃 − 1)) − 1) = (𝑃 · ((𝑃 − 1) − 1)))
282266, 281breqtrrd 5175 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑃 ∥ (((𝑃 − 1) · (𝑃 − 1)) − 1))
283128, 248sseldd 3995 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 − 1) ∈ (1...(𝑃 − 1)))
284 fzm1ndvds 16355 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℕ ∧ (𝑃 − 1) ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ (𝑃 − 1))
285202, 283, 284syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ¬ 𝑃 ∥ (𝑃 − 1))
286 eqid 2734 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 − 1)↑(𝑃 − 2)) mod 𝑃) = (((𝑃 − 1)↑(𝑃 − 2)) mod 𝑃)
287286prmdiveq 16819 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℙ ∧ (𝑃 − 1) ∈ ℤ ∧ ¬ 𝑃 ∥ (𝑃 − 1)) → (((𝑃 − 1) ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ (((𝑃 − 1) · (𝑃 − 1)) − 1)) ↔ (𝑃 − 1) = (((𝑃 − 1)↑(𝑃 − 2)) mod 𝑃)))
288151, 261, 285, 287syl3anc 1370 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (((𝑃 − 1) ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ (((𝑃 − 1) · (𝑃 − 1)) − 1)) ↔ (𝑃 − 1) = (((𝑃 − 1)↑(𝑃 − 2)) mod 𝑃)))
289258, 282, 288mpbi2and 712 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 − 1) = (((𝑃 − 1)↑(𝑃 − 2)) mod 𝑃))
290205prmdivdiv 16820 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℙ ∧ 𝑧 ∈ (1...(𝑃 − 1))) → 𝑧 = ((((𝑧↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃))
291151, 152, 290syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑧 = ((((𝑧↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃))
292289, 291eqeq12d 2750 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 − 1) = 𝑧 ↔ (((𝑃 − 1)↑(𝑃 − 2)) mod 𝑃) = ((((𝑧↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃)))
293253, 292imbitrrid 246 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 − 1) = ((𝑧↑(𝑃 − 2)) mod 𝑃) → (𝑃 − 1) = 𝑧))
294251, 293mtod 198 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ¬ (𝑃 − 1) = ((𝑧↑(𝑃 − 2)) mod 𝑃))
295 ioran 985 . . . . . . . . . . . . . 14 (¬ ((𝑃 − 1) = 𝑧 ∨ (𝑃 − 1) = ((𝑧↑(𝑃 − 2)) mod 𝑃)) ↔ (¬ (𝑃 − 1) = 𝑧 ∧ ¬ (𝑃 − 1) = ((𝑧↑(𝑃 − 2)) mod 𝑃)))
296251, 294, 295sylanbrc 583 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ¬ ((𝑃 − 1) = 𝑧 ∨ (𝑃 − 1) = ((𝑧↑(𝑃 − 2)) mod 𝑃)))
297 ovex 7463 . . . . . . . . . . . . . 14 (𝑃 − 1) ∈ V
298297elpr 4654 . . . . . . . . . . . . 13 ((𝑃 − 1) ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ↔ ((𝑃 − 1) = 𝑧 ∨ (𝑃 − 1) = ((𝑧↑(𝑃 − 2)) mod 𝑃)))
299296, 298sylnibr 329 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ¬ (𝑃 − 1) ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
300248, 299eldifd 3973 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 − 1) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
301 eldifi 4140 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → 𝑦𝑆)
30294r19.21bi 3248 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆)
303301, 302sylan2 593 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) → ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆)
304 eldif 3972 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ↔ (𝑦𝑆 ∧ ¬ 𝑦 ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
305151adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → 𝑃 ∈ ℙ)
306128sselda 3994 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → 𝑦 ∈ (1...(𝑃 − 1)))
307 eqid 2734 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦↑(𝑃 − 2)) mod 𝑃) = ((𝑦↑(𝑃 − 2)) mod 𝑃)
308307prmdivdiv 16820 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → 𝑦 = ((((𝑦↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃))
309305, 306, 308syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → 𝑦 = ((((𝑦↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃))
310 oveq1 7437 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦↑(𝑃 − 2)) mod 𝑃) = 𝑧 → (((𝑦↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) = (𝑧↑(𝑃 − 2)))
311310oveq1d 7445 . . . . . . . . . . . . . . . . . . . 20 (((𝑦↑(𝑃 − 2)) mod 𝑃) = 𝑧 → ((((𝑦↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃) = ((𝑧↑(𝑃 − 2)) mod 𝑃))
312311eqeq2d 2745 . . . . . . . . . . . . . . . . . . 19 (((𝑦↑(𝑃 − 2)) mod 𝑃) = 𝑧 → (𝑦 = ((((𝑦↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃) ↔ 𝑦 = ((𝑧↑(𝑃 − 2)) mod 𝑃)))
313309, 312syl5ibcom 245 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → (((𝑦↑(𝑃 − 2)) mod 𝑃) = 𝑧𝑦 = ((𝑧↑(𝑃 − 2)) mod 𝑃)))
314 oveq1 7437 . . . . . . . . . . . . . . . . . . . 20 (((𝑦↑(𝑃 − 2)) mod 𝑃) = ((𝑧↑(𝑃 − 2)) mod 𝑃) → (((𝑦↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) = (((𝑧↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)))
315314oveq1d 7445 . . . . . . . . . . . . . . . . . . 19 (((𝑦↑(𝑃 − 2)) mod 𝑃) = ((𝑧↑(𝑃 − 2)) mod 𝑃) → ((((𝑦↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃) = ((((𝑧↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃))
316291adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → 𝑧 = ((((𝑧↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃))
317309, 316eqeq12d 2750 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → (𝑦 = 𝑧 ↔ ((((𝑦↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃) = ((((𝑧↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃)))
318315, 317imbitrrid 246 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → (((𝑦↑(𝑃 − 2)) mod 𝑃) = ((𝑧↑(𝑃 − 2)) mod 𝑃) → 𝑦 = 𝑧))
319313, 318orim12d 966 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → ((((𝑦↑(𝑃 − 2)) mod 𝑃) = 𝑧 ∨ ((𝑦↑(𝑃 − 2)) mod 𝑃) = ((𝑧↑(𝑃 − 2)) mod 𝑃)) → (𝑦 = ((𝑧↑(𝑃 − 2)) mod 𝑃) ∨ 𝑦 = 𝑧)))
320 ovex 7463 . . . . . . . . . . . . . . . . . 18 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ V
321320elpr 4654 . . . . . . . . . . . . . . . . 17 (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ↔ (((𝑦↑(𝑃 − 2)) mod 𝑃) = 𝑧 ∨ ((𝑦↑(𝑃 − 2)) mod 𝑃) = ((𝑧↑(𝑃 − 2)) mod 𝑃)))
322 vex 3481 . . . . . . . . . . . . . . . . . . 19 𝑦 ∈ V
323322elpr 4654 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ↔ (𝑦 = 𝑧𝑦 = ((𝑧↑(𝑃 − 2)) mod 𝑃)))
324 orcom 870 . . . . . . . . . . . . . . . . . 18 ((𝑦 = 𝑧𝑦 = ((𝑧↑(𝑃 − 2)) mod 𝑃)) ↔ (𝑦 = ((𝑧↑(𝑃 − 2)) mod 𝑃) ∨ 𝑦 = 𝑧))
325323, 324bitri 275 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ↔ (𝑦 = ((𝑧↑(𝑃 − 2)) mod 𝑃) ∨ 𝑦 = 𝑧))
326319, 321, 3253imtr4g 296 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} → 𝑦 ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
327326con3d 152 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → (¬ 𝑦 ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} → ¬ ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
328327impr 454 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ (𝑦𝑆 ∧ ¬ 𝑦 ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) → ¬ ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
329304, 328sylan2b 594 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) → ¬ ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
330303, 329eldifd 3973 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) → ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
331330ralrimiva 3143 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ∀𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
332300, 331jca 511 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 − 1) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∧ ∀𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
333 eleq2 2827 . . . . . . . . . . . 12 (𝑥 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → ((𝑃 − 1) ∈ 𝑥 ↔ (𝑃 − 1) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
334 eleq2 2827 . . . . . . . . . . . . 13 (𝑥 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥 ↔ ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
335334raleqbi1dv 3335 . . . . . . . . . . . 12 (𝑥 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → (∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥 ↔ ∀𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
336333, 335anbi12d 632 . . . . . . . . . . 11 (𝑥 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → (((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥) ↔ ((𝑃 − 1) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∧ ∀𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))))
337336, 7elrab2 3697 . . . . . . . . . 10 ((𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∈ 𝐴 ↔ ((𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∈ 𝒫 (1...(𝑃 − 1)) ∧ ((𝑃 − 1) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∧ ∀𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))))
338247, 332, 337sylanbrc 583 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∈ 𝐴)
339242, 244, 338rspcdva 3622 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊊ 𝑆 → ((𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) mod 𝑃) = (-1 mod 𝑃)))
340236, 339mpd 15 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) mod 𝑃) = (-1 mod 𝑃))
341227, 340eqtrd 2774 . . . . . 6 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((1 · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))) mod 𝑃) = (-1 mod 𝑃))
342110, 224, 3413eqtrd 2778 . . . . 5 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (-1 mod 𝑃))
343342ex 412 . . . 4 (𝜑 → ((𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)}) → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (-1 mod 𝑃)))
344343exlimdv 1930 . . 3 (𝜑 → (∃𝑧(𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)}) → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (-1 mod 𝑃)))
34557, 344biimtrid 242 . 2 (𝜑 → (¬ 𝑆 ⊆ {(𝑃 − 1)} → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (-1 mod 𝑃)))
34656, 345pm2.61d 179 1 (𝜑 → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (-1 mod 𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1536  wex 1775  wcel 2105  wne 2937  wral 3058  {crab 3432  Vcvv 3477  cdif 3959  cun 3960  cin 3961  wss 3962  wpss 3963  c0 4338  𝒫 cpw 4604  {csn 4630  {cpr 4632   class class class wbr 5147  cmpt 5230   I cid 5581  cres 5690  wf 6558  1-1-ontowf1o 6561  cfv 6562  (class class class)co 7430  Fincfn 8983   finSupp cfsupp 9398  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157  cmin 11489  -cneg 11490  cn 12263  2c2 12318  0cn0 12523  cz 12610  cuz 12875  +crp 13031  ...cfz 13543   mod cmo 13905  cexp 14098  cdvds 16286  cprime 16704   Σg cgsu 17486  Mndcmnd 18759  SubMndcsubmnd 18807  CMndccmn 19812  mulGrpcmgp 20151  Ringcrg 20250  CRingccrg 20251  SubRingcsubrg 20585  fldccnfld 21381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231  ax-mulf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-oadd 8508  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-sup 9479  df-inf 9480  df-oi 9547  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-xnn0 12597  df-z 12611  df-dec 12731  df-uz 12876  df-rp 13032  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-dvds 16287  df-gcd 16528  df-prm 16705  df-phi 16799  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-0g 17487  df-gsum 17488  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-grp 18966  df-minusg 18967  df-mulg 19098  df-subg 19153  df-cntz 19347  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-cring 20253  df-subrng 20562  df-subrg 20586  df-cnfld 21382
This theorem is referenced by:  wilthlem3  27127
  Copyright terms: Public domain W3C validator