MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wilthlem2 Structured version   Visualization version   GIF version

Theorem wilthlem2 25638
Description: Lemma for wilth 25640: induction step. The "hand proof" version of this theorem works by writing out the list of all numbers from 1 to 𝑃 − 1 in pairs such that a number is paired with its inverse. Every number has a unique inverse different from itself except 1 and 𝑃 − 1, and so each pair multiplies to 1, and 1 and 𝑃 − 1≡-1 multiply to -1, so the full product is equal to -1. Here we make this precise by doing the product pair by pair.

The induction hypothesis says that every subset 𝑆 of 1...(𝑃 − 1) that is closed under inverse (i.e. all pairs are matched up) and contains 𝑃 − 1 multiplies to -1 mod 𝑃. Given such a set, we take out one element 𝑧𝑃 − 1. If there are no such elements, then 𝑆 = {𝑃 − 1} which forms the base case. Otherwise, 𝑆 ∖ {𝑧, 𝑧↑-1} is also closed under inverse and contains 𝑃 − 1, so the induction hypothesis says that this equals -1; and the remaining two elements are either equal to each other, in which case wilthlem1 25637 gives that 𝑧 = 1 or 𝑃 − 1, and we've already excluded the second case, so the product gives 1; or 𝑧𝑧↑-1 and their product is 1. In either case the accumulated product is unaffected. (Contributed by Mario Carneiro, 24-Jan-2015.) (Proof shortened by AV, 27-Jul-2019.)

Hypotheses
Ref Expression
wilthlem.t 𝑇 = (mulGrp‘ℂfld)
wilthlem.a 𝐴 = {𝑥 ∈ 𝒫 (1...(𝑃 − 1)) ∣ ((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥)}
wilthlem2.p (𝜑𝑃 ∈ ℙ)
wilthlem2.s (𝜑𝑆𝐴)
wilthlem2.r (𝜑 → ∀𝑠𝐴 (𝑠𝑆 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))
Assertion
Ref Expression
wilthlem2 (𝜑 → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (-1 mod 𝑃))
Distinct variable groups:   𝑥,𝑠,𝑦,𝐴   𝑃,𝑠,𝑥,𝑦   𝜑,𝑥,𝑦   𝑆,𝑠,𝑥,𝑦   𝑇,𝑠,𝑥,𝑦
Allowed substitution hint:   𝜑(𝑠)

Proof of Theorem wilthlem2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 487 . . . . . . . . 9 ((𝜑𝑆 ⊆ {(𝑃 − 1)}) → 𝑆 ⊆ {(𝑃 − 1)})
2 wilthlem2.s . . . . . . . . . . . . . 14 (𝜑𝑆𝐴)
3 eleq2 2899 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑆 → ((𝑃 − 1) ∈ 𝑥 ↔ (𝑃 − 1) ∈ 𝑆))
4 eleq2 2899 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑆 → (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥 ↔ ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆))
54raleqbi1dv 3402 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑆 → (∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥 ↔ ∀𝑦𝑆 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆))
63, 5anbi12d 632 . . . . . . . . . . . . . . 15 (𝑥 = 𝑆 → (((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥) ↔ ((𝑃 − 1) ∈ 𝑆 ∧ ∀𝑦𝑆 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆)))
7 wilthlem.a . . . . . . . . . . . . . . 15 𝐴 = {𝑥 ∈ 𝒫 (1...(𝑃 − 1)) ∣ ((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥)}
86, 7elrab2 3681 . . . . . . . . . . . . . 14 (𝑆𝐴 ↔ (𝑆 ∈ 𝒫 (1...(𝑃 − 1)) ∧ ((𝑃 − 1) ∈ 𝑆 ∧ ∀𝑦𝑆 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆)))
92, 8sylib 220 . . . . . . . . . . . . 13 (𝜑 → (𝑆 ∈ 𝒫 (1...(𝑃 − 1)) ∧ ((𝑃 − 1) ∈ 𝑆 ∧ ∀𝑦𝑆 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆)))
109simprd 498 . . . . . . . . . . . 12 (𝜑 → ((𝑃 − 1) ∈ 𝑆 ∧ ∀𝑦𝑆 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆))
1110simpld 497 . . . . . . . . . . 11 (𝜑 → (𝑃 − 1) ∈ 𝑆)
1211snssd 4734 . . . . . . . . . 10 (𝜑 → {(𝑃 − 1)} ⊆ 𝑆)
1312adantr 483 . . . . . . . . 9 ((𝜑𝑆 ⊆ {(𝑃 − 1)}) → {(𝑃 − 1)} ⊆ 𝑆)
141, 13eqssd 3982 . . . . . . . 8 ((𝜑𝑆 ⊆ {(𝑃 − 1)}) → 𝑆 = {(𝑃 − 1)})
1514reseq2d 5846 . . . . . . 7 ((𝜑𝑆 ⊆ {(𝑃 − 1)}) → ( I ↾ 𝑆) = ( I ↾ {(𝑃 − 1)}))
16 mptresid 5911 . . . . . . 7 ( I ↾ {(𝑃 − 1)}) = (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧)
1715, 16syl6eq 2870 . . . . . 6 ((𝜑𝑆 ⊆ {(𝑃 − 1)}) → ( I ↾ 𝑆) = (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧))
1817oveq2d 7164 . . . . 5 ((𝜑𝑆 ⊆ {(𝑃 − 1)}) → (𝑇 Σg ( I ↾ 𝑆)) = (𝑇 Σg (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧)))
1918oveq1d 7163 . . . 4 ((𝜑𝑆 ⊆ {(𝑃 − 1)}) → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = ((𝑇 Σg (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧)) mod 𝑃))
20 wilthlem2.p . . . . . . . . . . . 12 (𝜑𝑃 ∈ ℙ)
21 prmnn 16010 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
2220, 21syl 17 . . . . . . . . . . 11 (𝜑𝑃 ∈ ℕ)
2322nncnd 11646 . . . . . . . . . 10 (𝜑𝑃 ∈ ℂ)
24 ax-1cn 10587 . . . . . . . . . 10 1 ∈ ℂ
25 negsub 10926 . . . . . . . . . 10 ((𝑃 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑃 + -1) = (𝑃 − 1))
2623, 24, 25sylancl 588 . . . . . . . . 9 (𝜑 → (𝑃 + -1) = (𝑃 − 1))
27 neg1cn 11743 . . . . . . . . . 10 -1 ∈ ℂ
28 addcom 10818 . . . . . . . . . 10 ((𝑃 ∈ ℂ ∧ -1 ∈ ℂ) → (𝑃 + -1) = (-1 + 𝑃))
2923, 27, 28sylancl 588 . . . . . . . . 9 (𝜑 → (𝑃 + -1) = (-1 + 𝑃))
3026, 29eqtr3d 2856 . . . . . . . 8 (𝜑 → (𝑃 − 1) = (-1 + 𝑃))
31 cnring 20559 . . . . . . . . . 10 fld ∈ Ring
32 wilthlem.t . . . . . . . . . . 11 𝑇 = (mulGrp‘ℂfld)
3332ringmgp 19295 . . . . . . . . . 10 (ℂfld ∈ Ring → 𝑇 ∈ Mnd)
3431, 33mp1i 13 . . . . . . . . 9 (𝜑𝑇 ∈ Mnd)
35 nnm1nn0 11930 . . . . . . . . . . 11 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℕ0)
3622, 35syl 17 . . . . . . . . . 10 (𝜑 → (𝑃 − 1) ∈ ℕ0)
3736nn0cnd 11949 . . . . . . . . 9 (𝜑 → (𝑃 − 1) ∈ ℂ)
38 cnfldbas 20541 . . . . . . . . . . 11 ℂ = (Base‘ℂfld)
3932, 38mgpbas 19237 . . . . . . . . . 10 ℂ = (Base‘𝑇)
40 id 22 . . . . . . . . . 10 (𝑧 = (𝑃 − 1) → 𝑧 = (𝑃 − 1))
4139, 40gsumsn 19066 . . . . . . . . 9 ((𝑇 ∈ Mnd ∧ (𝑃 − 1) ∈ ℂ ∧ (𝑃 − 1) ∈ ℂ) → (𝑇 Σg (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧)) = (𝑃 − 1))
4234, 37, 37, 41syl3anc 1365 . . . . . . . 8 (𝜑 → (𝑇 Σg (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧)) = (𝑃 − 1))
4323mulid2d 10651 . . . . . . . . 9 (𝜑 → (1 · 𝑃) = 𝑃)
4443oveq2d 7164 . . . . . . . 8 (𝜑 → (-1 + (1 · 𝑃)) = (-1 + 𝑃))
4530, 42, 443eqtr4d 2864 . . . . . . 7 (𝜑 → (𝑇 Σg (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧)) = (-1 + (1 · 𝑃)))
4645oveq1d 7163 . . . . . 6 (𝜑 → ((𝑇 Σg (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧)) mod 𝑃) = ((-1 + (1 · 𝑃)) mod 𝑃))
47 neg1rr 11744 . . . . . . . 8 -1 ∈ ℝ
4847a1i 11 . . . . . . 7 (𝜑 → -1 ∈ ℝ)
4922nnrpd 12421 . . . . . . 7 (𝜑𝑃 ∈ ℝ+)
50 1zzd 12005 . . . . . . 7 (𝜑 → 1 ∈ ℤ)
51 modcyc 13266 . . . . . . 7 ((-1 ∈ ℝ ∧ 𝑃 ∈ ℝ+ ∧ 1 ∈ ℤ) → ((-1 + (1 · 𝑃)) mod 𝑃) = (-1 mod 𝑃))
5248, 49, 50, 51syl3anc 1365 . . . . . 6 (𝜑 → ((-1 + (1 · 𝑃)) mod 𝑃) = (-1 mod 𝑃))
5346, 52eqtrd 2854 . . . . 5 (𝜑 → ((𝑇 Σg (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧)) mod 𝑃) = (-1 mod 𝑃))
5453adantr 483 . . . 4 ((𝜑𝑆 ⊆ {(𝑃 − 1)}) → ((𝑇 Σg (𝑧 ∈ {(𝑃 − 1)} ↦ 𝑧)) mod 𝑃) = (-1 mod 𝑃))
5519, 54eqtrd 2854 . . 3 ((𝜑𝑆 ⊆ {(𝑃 − 1)}) → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (-1 mod 𝑃))
5655ex 415 . 2 (𝜑 → (𝑆 ⊆ {(𝑃 − 1)} → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (-1 mod 𝑃)))
57 nss 4027 . . 3 𝑆 ⊆ {(𝑃 − 1)} ↔ ∃𝑧(𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)}))
58 cnfld1 20562 . . . . . . . . . 10 1 = (1r‘ℂfld)
5932, 58ringidval 19245 . . . . . . . . 9 1 = (0g𝑇)
60 cnfldmul 20543 . . . . . . . . . 10 · = (.r‘ℂfld)
6132, 60mgpplusg 19235 . . . . . . . . 9 · = (+g𝑇)
62 cncrng 20558 . . . . . . . . . . 11 fld ∈ CRing
6332crngmgp 19297 . . . . . . . . . . 11 (ℂfld ∈ CRing → 𝑇 ∈ CMnd)
6462, 63ax-mp 5 . . . . . . . . . 10 𝑇 ∈ CMnd
6564a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑇 ∈ CMnd)
662adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑆𝐴)
67 f1oi 6645 . . . . . . . . . . . 12 ( I ↾ 𝑆):𝑆1-1-onto𝑆
68 f1of 6608 . . . . . . . . . . . 12 (( I ↾ 𝑆):𝑆1-1-onto𝑆 → ( I ↾ 𝑆):𝑆𝑆)
6967, 68ax-mp 5 . . . . . . . . . . 11 ( I ↾ 𝑆):𝑆𝑆
709simpld 497 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ 𝒫 (1...(𝑃 − 1)))
7170elpwid 4551 . . . . . . . . . . . . 13 (𝜑𝑆 ⊆ (1...(𝑃 − 1)))
72 fzssz 12901 . . . . . . . . . . . . 13 (1...(𝑃 − 1)) ⊆ ℤ
7371, 72sstrdi 3977 . . . . . . . . . . . 12 (𝜑𝑆 ⊆ ℤ)
74 zsscn 11981 . . . . . . . . . . . 12 ℤ ⊆ ℂ
7573, 74sstrdi 3977 . . . . . . . . . . 11 (𝜑𝑆 ⊆ ℂ)
76 fss 6520 . . . . . . . . . . 11 ((( I ↾ 𝑆):𝑆𝑆𝑆 ⊆ ℂ) → ( I ↾ 𝑆):𝑆⟶ℂ)
7769, 75, 76sylancr 589 . . . . . . . . . 10 (𝜑 → ( I ↾ 𝑆):𝑆⟶ℂ)
7877adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ( I ↾ 𝑆):𝑆⟶ℂ)
79 fzfi 13332 . . . . . . . . . . . 12 (1...(𝑃 − 1)) ∈ Fin
80 ssfi 8730 . . . . . . . . . . . 12 (((1...(𝑃 − 1)) ∈ Fin ∧ 𝑆 ⊆ (1...(𝑃 − 1))) → 𝑆 ∈ Fin)
8179, 71, 80sylancr 589 . . . . . . . . . . 11 (𝜑𝑆 ∈ Fin)
82 1ex 10629 . . . . . . . . . . . 12 1 ∈ V
8382a1i 11 . . . . . . . . . . 11 (𝜑 → 1 ∈ V)
8477, 81, 83fdmfifsupp 8835 . . . . . . . . . 10 (𝜑 → ( I ↾ 𝑆) finSupp 1)
8584adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ( I ↾ 𝑆) finSupp 1)
86 disjdif 4419 . . . . . . . . . 10 ({𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∩ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = ∅
8786a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ({𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∩ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = ∅)
88 undif2 4423 . . . . . . . . . 10 ({𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∪ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = ({𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∪ 𝑆)
89 simprl 769 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑧𝑆)
90 oveq1 7155 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → (𝑦↑(𝑃 − 2)) = (𝑧↑(𝑃 − 2)))
9190oveq1d 7163 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → ((𝑦↑(𝑃 − 2)) mod 𝑃) = ((𝑧↑(𝑃 − 2)) mod 𝑃))
9291eleq1d 2895 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆 ↔ ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆))
9310simprd 498 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑦𝑆 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆)
9493adantr 483 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ∀𝑦𝑆 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆)
9592, 94, 89rspcdva 3623 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆)
9689, 95prssd 4747 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ⊆ 𝑆)
97 ssequn1 4154 . . . . . . . . . . 11 ({𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ⊆ 𝑆 ↔ ({𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∪ 𝑆) = 𝑆)
9896, 97sylib 220 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ({𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∪ 𝑆) = 𝑆)
9988, 98syl5req 2867 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑆 = ({𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∪ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
10039, 59, 61, 65, 66, 78, 85, 87, 99gsumsplit 19040 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑇 Σg ( I ↾ 𝑆)) = ((𝑇 Σg (( I ↾ 𝑆) ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) · (𝑇 Σg (( I ↾ 𝑆) ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))))
10196resabs1d 5877 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (( I ↾ 𝑆) ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) = ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
102101oveq2d 7164 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑇 Σg (( I ↾ 𝑆) ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = (𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
103 difss 4106 . . . . . . . . . . . 12 (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊆ 𝑆
104 resabs1 5876 . . . . . . . . . . . 12 ((𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊆ 𝑆 → (( I ↾ 𝑆) ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
105103, 104ax-mp 5 . . . . . . . . . . 11 (( I ↾ 𝑆) ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
106105oveq2i 7159 . . . . . . . . . 10 (𝑇 Σg (( I ↾ 𝑆) ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) = (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
107106a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑇 Σg (( I ↾ 𝑆) ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) = (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))))
108102, 107oveq12d 7166 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑇 Σg (( I ↾ 𝑆) ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) · (𝑇 Σg (( I ↾ 𝑆) ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))) = ((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))))
109100, 108eqtrd 2854 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑇 Σg ( I ↾ 𝑆)) = ((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))))
110109oveq1d 7163 . . . . . 6 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))) mod 𝑃))
111 prfi 8785 . . . . . . . . . 10 {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∈ Fin
112111a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∈ Fin)
113 zsubrg 20590 . . . . . . . . . 10 ℤ ∈ (SubRing‘ℂfld)
11432subrgsubm 19540 . . . . . . . . . 10 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubMnd‘𝑇))
115113, 114mp1i 13 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ℤ ∈ (SubMnd‘𝑇))
116 f1oi 6645 . . . . . . . . . . 11 ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}):{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}–1-1-onto→{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}
117 f1of 6608 . . . . . . . . . . 11 (( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}):{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}–1-1-onto→{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} → ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}):{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}⟶{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
118116, 117ax-mp 5 . . . . . . . . . 10 ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}):{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}⟶{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}
11973adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑆 ⊆ ℤ)
12096, 119sstrd 3975 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ⊆ ℤ)
121 fss 6520 . . . . . . . . . 10 ((( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}):{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}⟶{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ∧ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ⊆ ℤ) → ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}):{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}⟶ℤ)
122118, 120, 121sylancr 589 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}):{𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}⟶ℤ)
12382a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 1 ∈ V)
124122, 112, 123fdmfifsupp 8835 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) finSupp 1)
12559, 65, 112, 115, 122, 124gsumsubmcl 19031 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) ∈ ℤ)
126125zred 12079 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) ∈ ℝ)
127 1red 10634 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 1 ∈ ℝ)
12871adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑆 ⊆ (1...(𝑃 − 1)))
129128ssdifssd 4117 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊆ (1...(𝑃 − 1)))
130 ssfi 8730 . . . . . . . . 9 (((1...(𝑃 − 1)) ∈ Fin ∧ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊆ (1...(𝑃 − 1))) → (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∈ Fin)
13179, 129, 130sylancr 589 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∈ Fin)
132 f1oi 6645 . . . . . . . . . 10 ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})):(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})–1-1-onto→(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
133 f1of 6608 . . . . . . . . . 10 (( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})):(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})–1-1-onto→(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})):(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})⟶(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
134132, 133ax-mp 5 . . . . . . . . 9 ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})):(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})⟶(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
135119ssdifssd 4117 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊆ ℤ)
136 fss 6520 . . . . . . . . 9 ((( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})):(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})⟶(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∧ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊆ ℤ) → ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})):(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})⟶ℤ)
137134, 135, 136sylancr 589 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})):(𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})⟶ℤ)
138137, 131, 123fdmfifsupp 8835 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) finSupp 1)
13959, 65, 131, 115, 137, 138gsumsubmcl 19031 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) ∈ ℤ)
14049adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑃 ∈ ℝ+)
14134adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑇 ∈ Mnd)
14275adantr 483 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑆 ⊆ ℂ)
143142, 89sseldd 3966 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑧 ∈ ℂ)
144 id 22 . . . . . . . . . . . . 13 (𝑤 = 𝑧𝑤 = 𝑧)
14539, 144gsumsn 19066 . . . . . . . . . . . 12 ((𝑇 ∈ Mnd ∧ 𝑧 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑇 Σg (𝑤 ∈ {𝑧} ↦ 𝑤)) = 𝑧)
146141, 143, 143, 145syl3anc 1365 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑇 Σg (𝑤 ∈ {𝑧} ↦ 𝑤)) = 𝑧)
147146adantr 483 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → (𝑇 Σg (𝑤 ∈ {𝑧} ↦ 𝑤)) = 𝑧)
148 mptresid 5911 . . . . . . . . . . . 12 ( I ↾ {𝑧}) = (𝑤 ∈ {𝑧} ↦ 𝑤)
149 dfsn2 4572 . . . . . . . . . . . . . 14 {𝑧} = {𝑧, 𝑧}
150 animorrl 976 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → (𝑧 = 1 ∨ 𝑧 = (𝑃 − 1)))
15120adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑃 ∈ ℙ)
152128, 89sseldd 3966 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑧 ∈ (1...(𝑃 − 1)))
153 wilthlem1 25637 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℙ ∧ 𝑧 ∈ (1...(𝑃 − 1))) → (𝑧 = ((𝑧↑(𝑃 − 2)) mod 𝑃) ↔ (𝑧 = 1 ∨ 𝑧 = (𝑃 − 1))))
154151, 152, 153syl2anc 586 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑧 = ((𝑧↑(𝑃 − 2)) mod 𝑃) ↔ (𝑧 = 1 ∨ 𝑧 = (𝑃 − 1))))
155154biimpar 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ (𝑧 = 1 ∨ 𝑧 = (𝑃 − 1))) → 𝑧 = ((𝑧↑(𝑃 − 2)) mod 𝑃))
156150, 155syldan 593 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → 𝑧 = ((𝑧↑(𝑃 − 2)) mod 𝑃))
157156preq2d 4668 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → {𝑧, 𝑧} = {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
158149, 157syl5eq 2866 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → {𝑧} = {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
159158reseq2d 5846 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → ( I ↾ {𝑧}) = ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
160148, 159syl5eqr 2868 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → (𝑤 ∈ {𝑧} ↦ 𝑤) = ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
161160oveq2d 7164 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → (𝑇 Σg (𝑤 ∈ {𝑧} ↦ 𝑤)) = (𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
162 simpr 487 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → 𝑧 = 1)
163147, 161, 1623eqtr3d 2862 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → (𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = 1)
164163oveq1d 7163 . . . . . . . 8 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 = 1) → ((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) mod 𝑃) = (1 mod 𝑃))
165 df-pr 4562 . . . . . . . . . . . . . . 15 {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} = ({𝑧} ∪ {((𝑧↑(𝑃 − 2)) mod 𝑃)})
166165reseq2i 5843 . . . . . . . . . . . . . 14 ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) = ( I ↾ ({𝑧} ∪ {((𝑧↑(𝑃 − 2)) mod 𝑃)}))
167 mptresid 5911 . . . . . . . . . . . . . 14 ( I ↾ ({𝑧} ∪ {((𝑧↑(𝑃 − 2)) mod 𝑃)})) = (𝑤 ∈ ({𝑧} ∪ {((𝑧↑(𝑃 − 2)) mod 𝑃)}) ↦ 𝑤)
168166, 167eqtri 2842 . . . . . . . . . . . . 13 ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) = (𝑤 ∈ ({𝑧} ∪ {((𝑧↑(𝑃 − 2)) mod 𝑃)}) ↦ 𝑤)
169168oveq2i 7159 . . . . . . . . . . . 12 (𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = (𝑇 Σg (𝑤 ∈ ({𝑧} ∪ {((𝑧↑(𝑃 − 2)) mod 𝑃)}) ↦ 𝑤))
17064a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → 𝑇 ∈ CMnd)
171 snfi 8586 . . . . . . . . . . . . . 14 {𝑧} ∈ Fin
172171a1i 11 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → {𝑧} ∈ Fin)
173 elsni 4576 . . . . . . . . . . . . . . . 16 (𝑤 ∈ {𝑧} → 𝑤 = 𝑧)
174173adantl 484 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑤 ∈ {𝑧}) → 𝑤 = 𝑧)
175143adantr 483 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑤 ∈ {𝑧}) → 𝑧 ∈ ℂ)
176174, 175eqeltrd 2911 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑤 ∈ {𝑧}) → 𝑤 ∈ ℂ)
177176adantlr 713 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) ∧ 𝑤 ∈ {𝑧}) → 𝑤 ∈ ℂ)
178142, 95sseldd 3966 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ ℂ)
179178adantr 483 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ ℂ)
180 simprr 771 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ¬ 𝑧 ∈ {(𝑃 − 1)})
181 velsn 4575 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ {(𝑃 − 1)} ↔ 𝑧 = (𝑃 − 1))
182180, 181sylnib 330 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ¬ 𝑧 = (𝑃 − 1))
183 biorf 932 . . . . . . . . . . . . . . . . 17 𝑧 = (𝑃 − 1) → (𝑧 = 1 ↔ (𝑧 = (𝑃 − 1) ∨ 𝑧 = 1)))
184182, 183syl 17 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑧 = 1 ↔ (𝑧 = (𝑃 − 1) ∨ 𝑧 = 1)))
185 ovex 7181 . . . . . . . . . . . . . . . . . . 19 ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ V
186185elsn 4574 . . . . . . . . . . . . . . . . . 18 (((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧} ↔ ((𝑧↑(𝑃 − 2)) mod 𝑃) = 𝑧)
187 eqcom 2826 . . . . . . . . . . . . . . . . . 18 (((𝑧↑(𝑃 − 2)) mod 𝑃) = 𝑧𝑧 = ((𝑧↑(𝑃 − 2)) mod 𝑃))
188186, 187bitri 277 . . . . . . . . . . . . . . . . 17 (((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧} ↔ 𝑧 = ((𝑧↑(𝑃 − 2)) mod 𝑃))
189 orcom 866 . . . . . . . . . . . . . . . . 17 ((𝑧 = (𝑃 − 1) ∨ 𝑧 = 1) ↔ (𝑧 = 1 ∨ 𝑧 = (𝑃 − 1)))
190154, 188, 1893bitr4g 316 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧} ↔ (𝑧 = (𝑃 − 1) ∨ 𝑧 = 1)))
191184, 190bitr4d 284 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑧 = 1 ↔ ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧}))
192191necon3abid 3050 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑧 ≠ 1 ↔ ¬ ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧}))
193192biimpa 479 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → ¬ ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧})
194 id 22 . . . . . . . . . . . . 13 (𝑤 = ((𝑧↑(𝑃 − 2)) mod 𝑃) → 𝑤 = ((𝑧↑(𝑃 − 2)) mod 𝑃))
19539, 61, 170, 172, 177, 179, 193, 179, 194gsumunsn 19072 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → (𝑇 Σg (𝑤 ∈ ({𝑧} ∪ {((𝑧↑(𝑃 − 2)) mod 𝑃)}) ↦ 𝑤)) = ((𝑇 Σg (𝑤 ∈ {𝑧} ↦ 𝑤)) · ((𝑧↑(𝑃 − 2)) mod 𝑃)))
196169, 195syl5eq 2866 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → (𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = ((𝑇 Σg (𝑤 ∈ {𝑧} ↦ 𝑤)) · ((𝑧↑(𝑃 − 2)) mod 𝑃)))
197146adantr 483 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → (𝑇 Σg (𝑤 ∈ {𝑧} ↦ 𝑤)) = 𝑧)
198197oveq1d 7163 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → ((𝑇 Σg (𝑤 ∈ {𝑧} ↦ 𝑤)) · ((𝑧↑(𝑃 − 2)) mod 𝑃)) = (𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)))
199196, 198eqtrd 2854 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → (𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) = (𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)))
200199oveq1d 7163 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → ((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) mod 𝑃) = ((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) mod 𝑃))
201 elfzelz 12900 . . . . . . . . . . . . . 14 (𝑧 ∈ (1...(𝑃 − 1)) → 𝑧 ∈ ℤ)
202152, 201syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑧 ∈ ℤ)
20322adantr 483 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑃 ∈ ℕ)
204 fzm1ndvds 15664 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℕ ∧ 𝑧 ∈ (1...(𝑃 − 1))) → ¬ 𝑃𝑧)
205203, 152, 204syl2anc 586 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ¬ 𝑃𝑧)
206 eqid 2819 . . . . . . . . . . . . . 14 ((𝑧↑(𝑃 − 2)) mod 𝑃) = ((𝑧↑(𝑃 − 2)) mod 𝑃)
207206prmdiv 16114 . . . . . . . . . . . . 13 ((𝑃 ∈ ℙ ∧ 𝑧 ∈ ℤ ∧ ¬ 𝑃𝑧) → (((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) − 1)))
208151, 202, 205, 207syl3anc 1365 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) ∧ 𝑃 ∥ ((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) − 1)))
209208simprd 498 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑃 ∥ ((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) − 1))
210 elfznn 12928 . . . . . . . . . . . . . . 15 (𝑧 ∈ (1...(𝑃 − 1)) → 𝑧 ∈ ℕ)
211152, 210syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑧 ∈ ℕ)
212128, 95sseldd 3966 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)))
213 elfznn 12928 . . . . . . . . . . . . . . 15 (((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ (1...(𝑃 − 1)) → ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ ℕ)
214212, 213syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑧↑(𝑃 − 2)) mod 𝑃) ∈ ℕ)
215211, 214nnmulcld 11682 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) ∈ ℕ)
216215nnzd 12078 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) ∈ ℤ)
217 1zzd 12005 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 1 ∈ ℤ)
218 moddvds 15610 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ ∧ (𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) ∈ ℤ ∧ 1 ∈ ℤ) → (((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) − 1)))
219203, 216, 217, 218syl3anc 1365 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = (1 mod 𝑃) ↔ 𝑃 ∥ ((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) − 1)))
220209, 219mpbird 259 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = (1 mod 𝑃))
221220adantr 483 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → ((𝑧 · ((𝑧↑(𝑃 − 2)) mod 𝑃)) mod 𝑃) = (1 mod 𝑃))
222200, 221eqtrd 2854 . . . . . . . 8 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑧 ≠ 1) → ((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) mod 𝑃) = (1 mod 𝑃))
223164, 222pm2.61dane 3102 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) mod 𝑃) = (1 mod 𝑃))
224 modmul1 13284 . . . . . . 7 ((((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) ∈ ℝ ∧ 1 ∈ ℝ) ∧ ((𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) ∈ ℤ ∧ 𝑃 ∈ ℝ+) ∧ ((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) mod 𝑃) = (1 mod 𝑃)) → (((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))) mod 𝑃) = ((1 · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))) mod 𝑃))
225126, 127, 139, 140, 223, 224syl221anc 1375 . . . . . 6 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (((𝑇 Σg ( I ↾ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))) mod 𝑃) = ((1 · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))) mod 𝑃))
226139zcnd 12080 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) ∈ ℂ)
227226mulid2d 10651 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (1 · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))) = (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))))
228227oveq1d 7163 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((1 · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))) mod 𝑃) = ((𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) mod 𝑃))
229 sseqin2 4190 . . . . . . . . . . 11 ({𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ⊆ 𝑆 ↔ (𝑆 ∩ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) = {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
23096, 229sylib 220 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑆 ∩ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) = {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
231 vex 3496 . . . . . . . . . . . 12 𝑧 ∈ V
232231prnz 4704 . . . . . . . . . . 11 {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ≠ ∅
233232a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ≠ ∅)
234230, 233eqnetrd 3081 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑆 ∩ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ≠ ∅)
235 disj4 4406 . . . . . . . . . 10 ((𝑆 ∩ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) = ∅ ↔ ¬ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊊ 𝑆)
236235necon2abii 3064 . . . . . . . . 9 ((𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊊ 𝑆 ↔ (𝑆 ∩ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ≠ ∅)
237234, 236sylibr 236 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊊ 𝑆)
238 psseq1 4062 . . . . . . . . . 10 (𝑠 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → (𝑠𝑆 ↔ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊊ 𝑆))
239 reseq2 5841 . . . . . . . . . . . . 13 (𝑠 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → ( I ↾ 𝑠) = ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
240239oveq2d 7164 . . . . . . . . . . . 12 (𝑠 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → (𝑇 Σg ( I ↾ 𝑠)) = (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))))
241240oveq1d 7163 . . . . . . . . . . 11 (𝑠 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = ((𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) mod 𝑃))
242241eqeq1d 2821 . . . . . . . . . 10 (𝑠 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → (((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃) ↔ ((𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) mod 𝑃) = (-1 mod 𝑃)))
243238, 242imbi12d 347 . . . . . . . . 9 (𝑠 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → ((𝑠𝑆 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)) ↔ ((𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊊ 𝑆 → ((𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) mod 𝑃) = (-1 mod 𝑃))))
244 wilthlem2.r . . . . . . . . . 10 (𝜑 → ∀𝑠𝐴 (𝑠𝑆 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))
245244adantr 483 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ∀𝑠𝐴 (𝑠𝑆 → ((𝑇 Σg ( I ↾ 𝑠)) mod 𝑃) = (-1 mod 𝑃)))
246 ovex 7181 . . . . . . . . . . . 12 (1...(𝑃 − 1)) ∈ V
247246elpw2 5239 . . . . . . . . . . 11 ((𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∈ 𝒫 (1...(𝑃 − 1)) ↔ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊆ (1...(𝑃 − 1)))
248129, 247sylibr 236 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∈ 𝒫 (1...(𝑃 − 1)))
24911adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 − 1) ∈ 𝑆)
250 eqcom 2826 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑃 − 1) ↔ (𝑃 − 1) = 𝑧)
251181, 250bitri 277 . . . . . . . . . . . . . . 15 (𝑧 ∈ {(𝑃 − 1)} ↔ (𝑃 − 1) = 𝑧)
252180, 251sylnib 330 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ¬ (𝑃 − 1) = 𝑧)
253 oveq1 7155 . . . . . . . . . . . . . . . . 17 ((𝑃 − 1) = ((𝑧↑(𝑃 − 2)) mod 𝑃) → ((𝑃 − 1)↑(𝑃 − 2)) = (((𝑧↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)))
254253oveq1d 7163 . . . . . . . . . . . . . . . 16 ((𝑃 − 1) = ((𝑧↑(𝑃 − 2)) mod 𝑃) → (((𝑃 − 1)↑(𝑃 − 2)) mod 𝑃) = ((((𝑧↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃))
255203, 35syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 − 1) ∈ ℕ0)
256 nn0uz 12272 . . . . . . . . . . . . . . . . . . . 20 0 = (ℤ‘0)
257255, 256eleqtrdi 2921 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 − 1) ∈ (ℤ‘0))
258 eluzfz2 12907 . . . . . . . . . . . . . . . . . . 19 ((𝑃 − 1) ∈ (ℤ‘0) → (𝑃 − 1) ∈ (0...(𝑃 − 1)))
259257, 258syl 17 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 − 1) ∈ (0...(𝑃 − 1)))
260 prmz 16011 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
261151, 260syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑃 ∈ ℤ)
262119, 249sseldd 3966 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 − 1) ∈ ℤ)
263 1z 12004 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℤ
264 zsubcl 12016 . . . . . . . . . . . . . . . . . . . . 21 (((𝑃 − 1) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝑃 − 1) − 1) ∈ ℤ)
265262, 263, 264sylancl 588 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 − 1) − 1) ∈ ℤ)
266 dvdsmul1 15623 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℤ ∧ ((𝑃 − 1) − 1) ∈ ℤ) → 𝑃 ∥ (𝑃 · ((𝑃 − 1) − 1)))
267261, 265, 266syl2anc 586 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑃 ∥ (𝑃 · ((𝑃 − 1) − 1)))
268203nncnd 11646 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑃 ∈ ℂ)
269265zcnd 12080 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 − 1) − 1) ∈ ℂ)
270268, 269mulcld 10653 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 · ((𝑃 − 1) − 1)) ∈ ℂ)
271 1cnd 10628 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 1 ∈ ℂ)
272255nn0cnd 11949 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 − 1) ∈ ℂ)
273268, 271, 272subdird 11089 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 − 1) · (𝑃 − 1)) = ((𝑃 · (𝑃 − 1)) − (1 · (𝑃 − 1))))
274268, 272mulcld 10653 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 · (𝑃 − 1)) ∈ ℂ)
275274, 268, 271subsubd 11017 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 · (𝑃 − 1)) − (𝑃 − 1)) = (((𝑃 · (𝑃 − 1)) − 𝑃) + 1))
276272mulid2d 10651 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (1 · (𝑃 − 1)) = (𝑃 − 1))
277276oveq2d 7164 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 · (𝑃 − 1)) − (1 · (𝑃 − 1))) = ((𝑃 · (𝑃 − 1)) − (𝑃 − 1)))
278268, 272muls1d 11092 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 · ((𝑃 − 1) − 1)) = ((𝑃 · (𝑃 − 1)) − 𝑃))
279278oveq1d 7163 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 · ((𝑃 − 1) − 1)) + 1) = (((𝑃 · (𝑃 − 1)) − 𝑃) + 1))
280275, 277, 2793eqtr4d 2864 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 · (𝑃 − 1)) − (1 · (𝑃 − 1))) = ((𝑃 · ((𝑃 − 1) − 1)) + 1))
281273, 280eqtrd 2854 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 − 1) · (𝑃 − 1)) = ((𝑃 · ((𝑃 − 1) − 1)) + 1))
282270, 271, 281mvrraddd 11044 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (((𝑃 − 1) · (𝑃 − 1)) − 1) = (𝑃 · ((𝑃 − 1) − 1)))
283267, 282breqtrrd 5085 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑃 ∥ (((𝑃 − 1) · (𝑃 − 1)) − 1))
284128, 249sseldd 3966 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 − 1) ∈ (1...(𝑃 − 1)))
285 fzm1ndvds 15664 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℕ ∧ (𝑃 − 1) ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ (𝑃 − 1))
286203, 284, 285syl2anc 586 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ¬ 𝑃 ∥ (𝑃 − 1))
287 eqid 2819 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 − 1)↑(𝑃 − 2)) mod 𝑃) = (((𝑃 − 1)↑(𝑃 − 2)) mod 𝑃)
288287prmdiveq 16115 . . . . . . . . . . . . . . . . . . 19 ((𝑃 ∈ ℙ ∧ (𝑃 − 1) ∈ ℤ ∧ ¬ 𝑃 ∥ (𝑃 − 1)) → (((𝑃 − 1) ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ (((𝑃 − 1) · (𝑃 − 1)) − 1)) ↔ (𝑃 − 1) = (((𝑃 − 1)↑(𝑃 − 2)) mod 𝑃)))
289151, 262, 286, 288syl3anc 1365 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (((𝑃 − 1) ∈ (0...(𝑃 − 1)) ∧ 𝑃 ∥ (((𝑃 − 1) · (𝑃 − 1)) − 1)) ↔ (𝑃 − 1) = (((𝑃 − 1)↑(𝑃 − 2)) mod 𝑃)))
290259, 283, 289mpbi2and 710 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 − 1) = (((𝑃 − 1)↑(𝑃 − 2)) mod 𝑃))
291206prmdivdiv 16116 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℙ ∧ 𝑧 ∈ (1...(𝑃 − 1))) → 𝑧 = ((((𝑧↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃))
292151, 152, 291syl2anc 586 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → 𝑧 = ((((𝑧↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃))
293290, 292eqeq12d 2835 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 − 1) = 𝑧 ↔ (((𝑃 − 1)↑(𝑃 − 2)) mod 𝑃) = ((((𝑧↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃)))
294254, 293syl5ibr 248 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 − 1) = ((𝑧↑(𝑃 − 2)) mod 𝑃) → (𝑃 − 1) = 𝑧))
295252, 294mtod 200 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ¬ (𝑃 − 1) = ((𝑧↑(𝑃 − 2)) mod 𝑃))
296 ioran 979 . . . . . . . . . . . . . 14 (¬ ((𝑃 − 1) = 𝑧 ∨ (𝑃 − 1) = ((𝑧↑(𝑃 − 2)) mod 𝑃)) ↔ (¬ (𝑃 − 1) = 𝑧 ∧ ¬ (𝑃 − 1) = ((𝑧↑(𝑃 − 2)) mod 𝑃)))
297252, 295, 296sylanbrc 585 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ¬ ((𝑃 − 1) = 𝑧 ∨ (𝑃 − 1) = ((𝑧↑(𝑃 − 2)) mod 𝑃)))
298 ovex 7181 . . . . . . . . . . . . . 14 (𝑃 − 1) ∈ V
299298elpr 4582 . . . . . . . . . . . . 13 ((𝑃 − 1) ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ↔ ((𝑃 − 1) = 𝑧 ∨ (𝑃 − 1) = ((𝑧↑(𝑃 − 2)) mod 𝑃)))
300297, 299sylnibr 331 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ¬ (𝑃 − 1) ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
301249, 300eldifd 3945 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑃 − 1) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
302 eldifi 4101 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → 𝑦𝑆)
30394r19.21bi 3206 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆)
304302, 303sylan2 594 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) → ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑆)
305 eldif 3944 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ↔ (𝑦𝑆 ∧ ¬ 𝑦 ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
306151adantr 483 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → 𝑃 ∈ ℙ)
307128sselda 3965 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → 𝑦 ∈ (1...(𝑃 − 1)))
308 eqid 2819 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦↑(𝑃 − 2)) mod 𝑃) = ((𝑦↑(𝑃 − 2)) mod 𝑃)
309308prmdivdiv 16116 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ ℙ ∧ 𝑦 ∈ (1...(𝑃 − 1))) → 𝑦 = ((((𝑦↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃))
310306, 307, 309syl2anc 586 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → 𝑦 = ((((𝑦↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃))
311 oveq1 7155 . . . . . . . . . . . . . . . . . . . . 21 (((𝑦↑(𝑃 − 2)) mod 𝑃) = 𝑧 → (((𝑦↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) = (𝑧↑(𝑃 − 2)))
312311oveq1d 7163 . . . . . . . . . . . . . . . . . . . 20 (((𝑦↑(𝑃 − 2)) mod 𝑃) = 𝑧 → ((((𝑦↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃) = ((𝑧↑(𝑃 − 2)) mod 𝑃))
313312eqeq2d 2830 . . . . . . . . . . . . . . . . . . 19 (((𝑦↑(𝑃 − 2)) mod 𝑃) = 𝑧 → (𝑦 = ((((𝑦↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃) ↔ 𝑦 = ((𝑧↑(𝑃 − 2)) mod 𝑃)))
314310, 313syl5ibcom 247 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → (((𝑦↑(𝑃 − 2)) mod 𝑃) = 𝑧𝑦 = ((𝑧↑(𝑃 − 2)) mod 𝑃)))
315 oveq1 7155 . . . . . . . . . . . . . . . . . . . 20 (((𝑦↑(𝑃 − 2)) mod 𝑃) = ((𝑧↑(𝑃 − 2)) mod 𝑃) → (((𝑦↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) = (((𝑧↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)))
316315oveq1d 7163 . . . . . . . . . . . . . . . . . . 19 (((𝑦↑(𝑃 − 2)) mod 𝑃) = ((𝑧↑(𝑃 − 2)) mod 𝑃) → ((((𝑦↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃) = ((((𝑧↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃))
317292adantr 483 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → 𝑧 = ((((𝑧↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃))
318310, 317eqeq12d 2835 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → (𝑦 = 𝑧 ↔ ((((𝑦↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃) = ((((𝑧↑(𝑃 − 2)) mod 𝑃)↑(𝑃 − 2)) mod 𝑃)))
319316, 318syl5ibr 248 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → (((𝑦↑(𝑃 − 2)) mod 𝑃) = ((𝑧↑(𝑃 − 2)) mod 𝑃) → 𝑦 = 𝑧))
320314, 319orim12d 960 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → ((((𝑦↑(𝑃 − 2)) mod 𝑃) = 𝑧 ∨ ((𝑦↑(𝑃 − 2)) mod 𝑃) = ((𝑧↑(𝑃 − 2)) mod 𝑃)) → (𝑦 = ((𝑧↑(𝑃 − 2)) mod 𝑃) ∨ 𝑦 = 𝑧)))
321 ovex 7181 . . . . . . . . . . . . . . . . . 18 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ V
322321elpr 4582 . . . . . . . . . . . . . . . . 17 (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ↔ (((𝑦↑(𝑃 − 2)) mod 𝑃) = 𝑧 ∨ ((𝑦↑(𝑃 − 2)) mod 𝑃) = ((𝑧↑(𝑃 − 2)) mod 𝑃)))
323 vex 3496 . . . . . . . . . . . . . . . . . . 19 𝑦 ∈ V
324323elpr 4582 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ↔ (𝑦 = 𝑧𝑦 = ((𝑧↑(𝑃 − 2)) mod 𝑃)))
325 orcom 866 . . . . . . . . . . . . . . . . . 18 ((𝑦 = 𝑧𝑦 = ((𝑧↑(𝑃 − 2)) mod 𝑃)) ↔ (𝑦 = ((𝑧↑(𝑃 − 2)) mod 𝑃) ∨ 𝑦 = 𝑧))
326324, 325bitri 277 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} ↔ (𝑦 = ((𝑧↑(𝑃 − 2)) mod 𝑃) ∨ 𝑦 = 𝑧))
327320, 322, 3263imtr4g 298 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} → 𝑦 ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
328327con3d 155 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦𝑆) → (¬ 𝑦 ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)} → ¬ ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
329328impr 457 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ (𝑦𝑆 ∧ ¬ 𝑦 ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) → ¬ ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
330305, 329sylan2b 595 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) → ¬ ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})
331304, 330eldifd 3945 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) ∧ 𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})) → ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
332331ralrimiva 3180 . . . . . . . . . . 11 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ∀𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))
333301, 332jca 514 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑃 − 1) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∧ ∀𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
334 eleq2 2899 . . . . . . . . . . . 12 (𝑥 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → ((𝑃 − 1) ∈ 𝑥 ↔ (𝑃 − 1) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
335 eleq2 2899 . . . . . . . . . . . . 13 (𝑥 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → (((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥 ↔ ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
336335raleqbi1dv 3402 . . . . . . . . . . . 12 (𝑥 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → (∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥 ↔ ∀𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))
337334, 336anbi12d 632 . . . . . . . . . . 11 (𝑥 = (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) → (((𝑃 − 1) ∈ 𝑥 ∧ ∀𝑦𝑥 ((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ 𝑥) ↔ ((𝑃 − 1) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∧ ∀𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))))
338337, 7elrab2 3681 . . . . . . . . . 10 ((𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∈ 𝐴 ↔ ((𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∈ 𝒫 (1...(𝑃 − 1)) ∧ ((𝑃 − 1) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∧ ∀𝑦 ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})((𝑦↑(𝑃 − 2)) mod 𝑃) ∈ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))))
339248, 333, 338sylanbrc 585 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ∈ 𝐴)
340243, 245, 339rspcdva 3623 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}) ⊊ 𝑆 → ((𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) mod 𝑃) = (-1 mod 𝑃)))
341237, 340mpd 15 . . . . . . 7 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)}))) mod 𝑃) = (-1 mod 𝑃))
342228, 341eqtrd 2854 . . . . . 6 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((1 · (𝑇 Σg ( I ↾ (𝑆 ∖ {𝑧, ((𝑧↑(𝑃 − 2)) mod 𝑃)})))) mod 𝑃) = (-1 mod 𝑃))
343110, 225, 3423eqtrd 2858 . . . . 5 ((𝜑 ∧ (𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)})) → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (-1 mod 𝑃))
344343ex 415 . . . 4 (𝜑 → ((𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)}) → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (-1 mod 𝑃)))
345344exlimdv 1927 . . 3 (𝜑 → (∃𝑧(𝑧𝑆 ∧ ¬ 𝑧 ∈ {(𝑃 − 1)}) → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (-1 mod 𝑃)))
34657, 345syl5bi 244 . 2 (𝜑 → (¬ 𝑆 ⊆ {(𝑃 − 1)} → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (-1 mod 𝑃)))
34756, 346pm2.61d 181 1 (𝜑 → ((𝑇 Σg ( I ↾ 𝑆)) mod 𝑃) = (-1 mod 𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1530  wex 1773  wcel 2107  wne 3014  wral 3136  {crab 3140  Vcvv 3493  cdif 3931  cun 3932  cin 3933  wss 3934  wpss 3935  c0 4289  𝒫 cpw 4537  {csn 4559  {cpr 4561   class class class wbr 5057  cmpt 5137   I cid 5452  cres 5550  wf 6344  1-1-ontowf1o 6347  cfv 6348  (class class class)co 7148  Fincfn 8501   finSupp cfsupp 8825  cc 10527  cr 10528  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534  cmin 10862  -cneg 10863  cn 11630  2c2 11684  0cn0 11889  cz 11973  cuz 12235  +crp 12381  ...cfz 12884   mod cmo 13229  cexp 13421  cdvds 15599  cprime 16007   Σg cgsu 16706  Mndcmnd 17903  SubMndcsubmnd 17947  CMndccmn 18898  mulGrpcmgp 19231  Ringcrg 19289  CRingccrg 19290  SubRingcsubrg 19523  fldccnfld 20537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607  ax-addf 10608  ax-mulf 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-sup 8898  df-inf 8899  df-oi 8966  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-xnn0 11960  df-z 11974  df-dec 12091  df-uz 12236  df-rp 12382  df-fz 12885  df-fzo 13026  df-fl 13154  df-mod 13230  df-seq 13362  df-exp 13422  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-gcd 15836  df-prm 16008  df-phi 16095  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-gsum 16708  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-mulg 18217  df-subg 18268  df-cntz 18439  df-cmn 18900  df-mgp 19232  df-ur 19244  df-ring 19291  df-cring 19292  df-subrg 19525  df-cnfld 20538
This theorem is referenced by:  wilthlem3  25639
  Copyright terms: Public domain W3C validator