Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjxp1 Structured version   Visualization version   GIF version

Theorem disjxp1 41405
Description: The sets of a cartesian product are disjoint if the sets in the first argument are disjoint. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypothesis
Ref Expression
disjxp1.1 (𝜑Disj 𝑥𝐴 𝐵)
Assertion
Ref Expression
disjxp1 (𝜑Disj 𝑥𝐴 (𝐵 × 𝐶))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem disjxp1
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 animorrl 977 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦 = 𝑧) → (𝑦 = 𝑧 ∨ (𝑦 / 𝑥(𝐵 × 𝐶) ∩ 𝑧 / 𝑥(𝐵 × 𝐶)) = ∅))
2 csbxp 5643 . . . . . . 7 𝑦 / 𝑥(𝐵 × 𝐶) = (𝑦 / 𝑥𝐵 × 𝑦 / 𝑥𝐶)
3 csbxp 5643 . . . . . . 7 𝑧 / 𝑥(𝐵 × 𝐶) = (𝑧 / 𝑥𝐵 × 𝑧 / 𝑥𝐶)
42, 3ineq12i 4180 . . . . . 6 (𝑦 / 𝑥(𝐵 × 𝐶) ∩ 𝑧 / 𝑥(𝐵 × 𝐶)) = ((𝑦 / 𝑥𝐵 × 𝑦 / 𝑥𝐶) ∩ (𝑧 / 𝑥𝐵 × 𝑧 / 𝑥𝐶))
5 simpll 765 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦𝑧) → 𝜑)
6 simplrl 775 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦𝑧) → 𝑦𝐴)
7 simplrr 776 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦𝑧) → 𝑧𝐴)
85, 6, 7jca31 517 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦𝑧) → ((𝜑𝑦𝐴) ∧ 𝑧𝐴))
9 simpr 487 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦𝑧) → 𝑦𝑧)
109neneqd 3020 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦𝑧) → ¬ 𝑦 = 𝑧)
11 disjxp1.1 . . . . . . . . . . . 12 (𝜑Disj 𝑥𝐴 𝐵)
12 disjors 5040 . . . . . . . . . . . 12 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑦𝐴𝑧𝐴 (𝑦 = 𝑧 ∨ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅))
1311, 12sylib 220 . . . . . . . . . . 11 (𝜑 → ∀𝑦𝐴𝑧𝐴 (𝑦 = 𝑧 ∨ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅))
1413r19.21bi 3207 . . . . . . . . . 10 ((𝜑𝑦𝐴) → ∀𝑧𝐴 (𝑦 = 𝑧 ∨ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅))
1514r19.21bi 3207 . . . . . . . . 9 (((𝜑𝑦𝐴) ∧ 𝑧𝐴) → (𝑦 = 𝑧 ∨ (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅))
1615ord 860 . . . . . . . 8 (((𝜑𝑦𝐴) ∧ 𝑧𝐴) → (¬ 𝑦 = 𝑧 → (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅))
178, 10, 16sylc 65 . . . . . . 7 (((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦𝑧) → (𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅)
18 xpdisj1 6011 . . . . . . 7 ((𝑦 / 𝑥𝐵𝑧 / 𝑥𝐵) = ∅ → ((𝑦 / 𝑥𝐵 × 𝑦 / 𝑥𝐶) ∩ (𝑧 / 𝑥𝐵 × 𝑧 / 𝑥𝐶)) = ∅)
1917, 18syl 17 . . . . . 6 (((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦𝑧) → ((𝑦 / 𝑥𝐵 × 𝑦 / 𝑥𝐶) ∩ (𝑧 / 𝑥𝐵 × 𝑧 / 𝑥𝐶)) = ∅)
204, 19syl5eq 2867 . . . . 5 (((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦𝑧) → (𝑦 / 𝑥(𝐵 × 𝐶) ∩ 𝑧 / 𝑥(𝐵 × 𝐶)) = ∅)
2120olcd 870 . . . 4 (((𝜑 ∧ (𝑦𝐴𝑧𝐴)) ∧ 𝑦𝑧) → (𝑦 = 𝑧 ∨ (𝑦 / 𝑥(𝐵 × 𝐶) ∩ 𝑧 / 𝑥(𝐵 × 𝐶)) = ∅))
221, 21pm2.61dane 3103 . . 3 ((𝜑 ∧ (𝑦𝐴𝑧𝐴)) → (𝑦 = 𝑧 ∨ (𝑦 / 𝑥(𝐵 × 𝐶) ∩ 𝑧 / 𝑥(𝐵 × 𝐶)) = ∅))
2322ralrimivva 3190 . 2 (𝜑 → ∀𝑦𝐴𝑧𝐴 (𝑦 = 𝑧 ∨ (𝑦 / 𝑥(𝐵 × 𝐶) ∩ 𝑧 / 𝑥(𝐵 × 𝐶)) = ∅))
24 disjors 5040 . 2 (Disj 𝑥𝐴 (𝐵 × 𝐶) ↔ ∀𝑦𝐴𝑧𝐴 (𝑦 = 𝑧 ∨ (𝑦 / 𝑥(𝐵 × 𝐶) ∩ 𝑧 / 𝑥(𝐵 × 𝐶)) = ∅))
2523, 24sylibr 236 1 (𝜑Disj 𝑥𝐴 (𝐵 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1536  wcel 2113  wne 3015  wral 3137  csb 3876  cin 3928  c0 4284  Disj wdisj 5024   × cxp 5546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pr 5323
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-sn 4561  df-pr 4563  df-op 4567  df-disj 5025  df-opab 5122  df-xp 5554  df-rel 5555
This theorem is referenced by:  disjsnxp  41406
  Copyright terms: Public domain W3C validator