| Step | Hyp | Ref
| Expression |
| 1 | | animorrl 982 |
. . . 4
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑦 = 𝑧) → (𝑦 = 𝑧 ∨ (⦋𝑦 / 𝑥⦌(𝐵 × 𝐶) ∩ ⦋𝑧 / 𝑥⦌(𝐵 × 𝐶)) = ∅)) |
| 2 | | csbxp 5759 |
. . . . . . 7
⊢
⦋𝑦 /
𝑥⦌(𝐵 × 𝐶) = (⦋𝑦 / 𝑥⦌𝐵 × ⦋𝑦 / 𝑥⦌𝐶) |
| 3 | | csbxp 5759 |
. . . . . . 7
⊢
⦋𝑧 /
𝑥⦌(𝐵 × 𝐶) = (⦋𝑧 / 𝑥⦌𝐵 × ⦋𝑧 / 𝑥⦌𝐶) |
| 4 | 2, 3 | ineq12i 4198 |
. . . . . 6
⊢
(⦋𝑦 /
𝑥⦌(𝐵 × 𝐶) ∩ ⦋𝑧 / 𝑥⦌(𝐵 × 𝐶)) = ((⦋𝑦 / 𝑥⦌𝐵 × ⦋𝑦 / 𝑥⦌𝐶) ∩ (⦋𝑧 / 𝑥⦌𝐵 × ⦋𝑧 / 𝑥⦌𝐶)) |
| 5 | | simpll 766 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑦 ≠ 𝑧) → 𝜑) |
| 6 | | simplrl 776 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑦 ≠ 𝑧) → 𝑦 ∈ 𝐴) |
| 7 | | simplrr 777 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑦 ≠ 𝑧) → 𝑧 ∈ 𝐴) |
| 8 | 5, 6, 7 | jca31 514 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑦 ≠ 𝑧) → ((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴)) |
| 9 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑦 ≠ 𝑧) → 𝑦 ≠ 𝑧) |
| 10 | 9 | neneqd 2938 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑦 ≠ 𝑧) → ¬ 𝑦 = 𝑧) |
| 11 | | disjxp1.1 |
. . . . . . . . . . . 12
⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) |
| 12 | | disjors 5107 |
. . . . . . . . . . . 12
⊢
(Disj 𝑥
∈ 𝐴 𝐵 ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦 = 𝑧 ∨ (⦋𝑦 / 𝑥⦌𝐵 ∩ ⦋𝑧 / 𝑥⦌𝐵) = ∅)) |
| 13 | 11, 12 | sylib 218 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦 = 𝑧 ∨ (⦋𝑦 / 𝑥⦌𝐵 ∩ ⦋𝑧 / 𝑥⦌𝐵) = ∅)) |
| 14 | 13 | r19.21bi 3238 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ∀𝑧 ∈ 𝐴 (𝑦 = 𝑧 ∨ (⦋𝑦 / 𝑥⦌𝐵 ∩ ⦋𝑧 / 𝑥⦌𝐵) = ∅)) |
| 15 | 14 | r19.21bi 3238 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) → (𝑦 = 𝑧 ∨ (⦋𝑦 / 𝑥⦌𝐵 ∩ ⦋𝑧 / 𝑥⦌𝐵) = ∅)) |
| 16 | 15 | ord 864 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) → (¬ 𝑦 = 𝑧 → (⦋𝑦 / 𝑥⦌𝐵 ∩ ⦋𝑧 / 𝑥⦌𝐵) = ∅)) |
| 17 | 8, 10, 16 | sylc 65 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑦 ≠ 𝑧) → (⦋𝑦 / 𝑥⦌𝐵 ∩ ⦋𝑧 / 𝑥⦌𝐵) = ∅) |
| 18 | | xpdisj1 6155 |
. . . . . . 7
⊢
((⦋𝑦 /
𝑥⦌𝐵 ∩ ⦋𝑧 / 𝑥⦌𝐵) = ∅ → ((⦋𝑦 / 𝑥⦌𝐵 × ⦋𝑦 / 𝑥⦌𝐶) ∩ (⦋𝑧 / 𝑥⦌𝐵 × ⦋𝑧 / 𝑥⦌𝐶)) = ∅) |
| 19 | 17, 18 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑦 ≠ 𝑧) → ((⦋𝑦 / 𝑥⦌𝐵 × ⦋𝑦 / 𝑥⦌𝐶) ∩ (⦋𝑧 / 𝑥⦌𝐵 × ⦋𝑧 / 𝑥⦌𝐶)) = ∅) |
| 20 | 4, 19 | eqtrid 2783 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑦 ≠ 𝑧) → (⦋𝑦 / 𝑥⦌(𝐵 × 𝐶) ∩ ⦋𝑧 / 𝑥⦌(𝐵 × 𝐶)) = ∅) |
| 21 | 20 | olcd 874 |
. . . 4
⊢ (((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ 𝑦 ≠ 𝑧) → (𝑦 = 𝑧 ∨ (⦋𝑦 / 𝑥⦌(𝐵 × 𝐶) ∩ ⦋𝑧 / 𝑥⦌(𝐵 × 𝐶)) = ∅)) |
| 22 | 1, 21 | pm2.61dane 3020 |
. . 3
⊢ ((𝜑 ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑦 = 𝑧 ∨ (⦋𝑦 / 𝑥⦌(𝐵 × 𝐶) ∩ ⦋𝑧 / 𝑥⦌(𝐵 × 𝐶)) = ∅)) |
| 23 | 22 | ralrimivva 3188 |
. 2
⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦 = 𝑧 ∨ (⦋𝑦 / 𝑥⦌(𝐵 × 𝐶) ∩ ⦋𝑧 / 𝑥⦌(𝐵 × 𝐶)) = ∅)) |
| 24 | | disjors 5107 |
. 2
⊢
(Disj 𝑥
∈ 𝐴 (𝐵 × 𝐶) ↔ ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 (𝑦 = 𝑧 ∨ (⦋𝑦 / 𝑥⦌(𝐵 × 𝐶) ∩ ⦋𝑧 / 𝑥⦌(𝐵 × 𝐶)) = ∅)) |
| 25 | 23, 24 | sylibr 234 |
1
⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 (𝐵 × 𝐶)) |