Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > atcveq0 | Structured version Visualization version GIF version |
Description: A Hilbert lattice element covered by an atom must be the zero subspace. (Contributed by NM, 11-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
atcveq0 | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (𝐴 ⋖ℋ 𝐵 ↔ 𝐴 = 0ℋ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atelch 30692 | . . . . 5 ⊢ (𝐵 ∈ HAtoms → 𝐵 ∈ Cℋ ) | |
2 | cvpss 30633 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 → 𝐴 ⊊ 𝐵)) | |
3 | 1, 2 | sylan2 593 | . . . 4 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (𝐴 ⋖ℋ 𝐵 → 𝐴 ⊊ 𝐵)) |
4 | ch0le 29789 | . . . . 5 ⊢ (𝐴 ∈ Cℋ → 0ℋ ⊆ 𝐴) | |
5 | 4 | adantr 481 | . . . 4 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → 0ℋ ⊆ 𝐴) |
6 | 3, 5 | jctild 526 | . . 3 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (𝐴 ⋖ℋ 𝐵 → (0ℋ ⊆ 𝐴 ∧ 𝐴 ⊊ 𝐵))) |
7 | atcv0 30690 | . . . . . 6 ⊢ (𝐵 ∈ HAtoms → 0ℋ ⋖ℋ 𝐵) | |
8 | 7 | adantr 481 | . . . . 5 ⊢ ((𝐵 ∈ HAtoms ∧ 𝐴 ∈ Cℋ ) → 0ℋ ⋖ℋ 𝐵) |
9 | h0elch 29603 | . . . . . . 7 ⊢ 0ℋ ∈ Cℋ | |
10 | cvnbtwn3 30636 | . . . . . . 7 ⊢ ((0ℋ ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → (0ℋ ⋖ℋ 𝐵 → ((0ℋ ⊆ 𝐴 ∧ 𝐴 ⊊ 𝐵) → 𝐴 = 0ℋ))) | |
11 | 9, 10 | mp3an1 1447 | . . . . . 6 ⊢ ((𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → (0ℋ ⋖ℋ 𝐵 → ((0ℋ ⊆ 𝐴 ∧ 𝐴 ⊊ 𝐵) → 𝐴 = 0ℋ))) |
12 | 1, 11 | sylan 580 | . . . . 5 ⊢ ((𝐵 ∈ HAtoms ∧ 𝐴 ∈ Cℋ ) → (0ℋ ⋖ℋ 𝐵 → ((0ℋ ⊆ 𝐴 ∧ 𝐴 ⊊ 𝐵) → 𝐴 = 0ℋ))) |
13 | 8, 12 | mpd 15 | . . . 4 ⊢ ((𝐵 ∈ HAtoms ∧ 𝐴 ∈ Cℋ ) → ((0ℋ ⊆ 𝐴 ∧ 𝐴 ⊊ 𝐵) → 𝐴 = 0ℋ)) |
14 | 13 | ancoms 459 | . . 3 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → ((0ℋ ⊆ 𝐴 ∧ 𝐴 ⊊ 𝐵) → 𝐴 = 0ℋ)) |
15 | 6, 14 | syld 47 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (𝐴 ⋖ℋ 𝐵 → 𝐴 = 0ℋ)) |
16 | breq1 5077 | . . . 4 ⊢ (𝐴 = 0ℋ → (𝐴 ⋖ℋ 𝐵 ↔ 0ℋ ⋖ℋ 𝐵)) | |
17 | 7, 16 | syl5ibrcom 246 | . . 3 ⊢ (𝐵 ∈ HAtoms → (𝐴 = 0ℋ → 𝐴 ⋖ℋ 𝐵)) |
18 | 17 | adantl 482 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (𝐴 = 0ℋ → 𝐴 ⋖ℋ 𝐵)) |
19 | 15, 18 | impbid 211 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ HAtoms) → (𝐴 ⋖ℋ 𝐵 ↔ 𝐴 = 0ℋ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ⊊ wpss 3888 class class class wbr 5074 Cℋ cch 29277 0ℋc0h 29283 ⋖ℋ ccv 29312 HAtomscat 29313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5222 ax-nul 5229 ax-pow 5287 ax-pr 5351 ax-un 7579 ax-cnex 10915 ax-resscn 10916 ax-1cn 10917 ax-icn 10918 ax-addcl 10919 ax-addrcl 10920 ax-mulcl 10921 ax-mulrcl 10922 ax-mulcom 10923 ax-addass 10924 ax-mulass 10925 ax-distr 10926 ax-i2m1 10927 ax-1ne0 10928 ax-1rid 10929 ax-rnegex 10930 ax-rrecex 10931 ax-cnre 10932 ax-pre-lttri 10933 ax-pre-lttrn 10934 ax-pre-ltadd 10935 ax-pre-mulgt0 10936 ax-pre-sup 10937 ax-addf 10938 ax-mulf 10939 ax-hilex 29347 ax-hfvadd 29348 ax-hvcom 29349 ax-hvass 29350 ax-hv0cl 29351 ax-hvaddid 29352 ax-hfvmul 29353 ax-hvmulid 29354 ax-hvmulass 29355 ax-hvdistr1 29356 ax-hvdistr2 29357 ax-hvmul0 29358 ax-hfi 29427 ax-his1 29430 ax-his2 29431 ax-his3 29432 ax-his4 29433 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6263 df-on 6264 df-lim 6265 df-suc 6266 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7704 df-1st 7821 df-2nd 7822 df-frecs 8085 df-wrecs 8116 df-recs 8190 df-rdg 8229 df-er 8486 df-map 8605 df-pm 8606 df-en 8722 df-dom 8723 df-sdom 8724 df-sup 9189 df-inf 9190 df-pnf 10999 df-mnf 11000 df-xr 11001 df-ltxr 11002 df-le 11003 df-sub 11195 df-neg 11196 df-div 11621 df-nn 11962 df-2 12024 df-3 12025 df-4 12026 df-n0 12222 df-z 12308 df-uz 12571 df-q 12677 df-rp 12719 df-xneg 12836 df-xadd 12837 df-xmul 12838 df-icc 13074 df-seq 13710 df-exp 13771 df-cj 14798 df-re 14799 df-im 14800 df-sqrt 14934 df-abs 14935 df-topgen 17142 df-psmet 20577 df-xmet 20578 df-met 20579 df-bl 20580 df-mopn 20581 df-top 22031 df-topon 22048 df-bases 22084 df-lm 22368 df-haus 22454 df-grpo 28841 df-gid 28842 df-ginv 28843 df-gdiv 28844 df-ablo 28893 df-vc 28907 df-nv 28940 df-va 28943 df-ba 28944 df-sm 28945 df-0v 28946 df-vs 28947 df-nmcv 28948 df-ims 28949 df-hnorm 29316 df-hvsub 29319 df-hlim 29320 df-sh 29555 df-ch 29569 df-ch0 29601 df-cv 30627 df-at 30686 |
This theorem is referenced by: cvp 30723 atcv1 30728 |
Copyright terms: Public domain | W3C validator |