HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  atcveq0 Structured version   Visualization version   GIF version

Theorem atcveq0 31332
Description: A Hilbert lattice element covered by an atom must be the zero subspace. (Contributed by NM, 11-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
atcveq0 ((𝐴C𝐵 ∈ HAtoms) → (𝐴 𝐵𝐴 = 0))

Proof of Theorem atcveq0
StepHypRef Expression
1 atelch 31328 . . . . 5 (𝐵 ∈ HAtoms → 𝐵C )
2 cvpss 31269 . . . . 5 ((𝐴C𝐵C ) → (𝐴 𝐵𝐴𝐵))
31, 2sylan2 594 . . . 4 ((𝐴C𝐵 ∈ HAtoms) → (𝐴 𝐵𝐴𝐵))
4 ch0le 30425 . . . . 5 (𝐴C → 0𝐴)
54adantr 482 . . . 4 ((𝐴C𝐵 ∈ HAtoms) → 0𝐴)
63, 5jctild 527 . . 3 ((𝐴C𝐵 ∈ HAtoms) → (𝐴 𝐵 → (0𝐴𝐴𝐵)))
7 atcv0 31326 . . . . . 6 (𝐵 ∈ HAtoms → 0 𝐵)
87adantr 482 . . . . 5 ((𝐵 ∈ HAtoms ∧ 𝐴C ) → 0 𝐵)
9 h0elch 30239 . . . . . . 7 0C
10 cvnbtwn3 31272 . . . . . . 7 ((0C𝐵C𝐴C ) → (0 𝐵 → ((0𝐴𝐴𝐵) → 𝐴 = 0)))
119, 10mp3an1 1449 . . . . . 6 ((𝐵C𝐴C ) → (0 𝐵 → ((0𝐴𝐴𝐵) → 𝐴 = 0)))
121, 11sylan 581 . . . . 5 ((𝐵 ∈ HAtoms ∧ 𝐴C ) → (0 𝐵 → ((0𝐴𝐴𝐵) → 𝐴 = 0)))
138, 12mpd 15 . . . 4 ((𝐵 ∈ HAtoms ∧ 𝐴C ) → ((0𝐴𝐴𝐵) → 𝐴 = 0))
1413ancoms 460 . . 3 ((𝐴C𝐵 ∈ HAtoms) → ((0𝐴𝐴𝐵) → 𝐴 = 0))
156, 14syld 47 . 2 ((𝐴C𝐵 ∈ HAtoms) → (𝐴 𝐵𝐴 = 0))
16 breq1 5113 . . . 4 (𝐴 = 0 → (𝐴 𝐵 ↔ 0 𝐵))
177, 16syl5ibrcom 247 . . 3 (𝐵 ∈ HAtoms → (𝐴 = 0𝐴 𝐵))
1817adantl 483 . 2 ((𝐴C𝐵 ∈ HAtoms) → (𝐴 = 0𝐴 𝐵))
1915, 18impbid 211 1 ((𝐴C𝐵 ∈ HAtoms) → (𝐴 𝐵𝐴 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wss 3915  wpss 3916   class class class wbr 5110   C cch 29913  0c0h 29919   ccv 29948  HAtomscat 29949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-pre-sup 11136  ax-addf 11137  ax-mulf 11138  ax-hilex 29983  ax-hfvadd 29984  ax-hvcom 29985  ax-hvass 29986  ax-hv0cl 29987  ax-hvaddid 29988  ax-hfvmul 29989  ax-hvmulid 29990  ax-hvmulass 29991  ax-hvdistr1 29992  ax-hvdistr2 29993  ax-hvmul0 29994  ax-hfi 30063  ax-his1 30066  ax-his2 30067  ax-his3 30068  ax-his4 30069
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-map 8774  df-pm 8775  df-en 8891  df-dom 8892  df-sdom 8893  df-sup 9385  df-inf 9386  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-div 11820  df-nn 12161  df-2 12223  df-3 12224  df-4 12225  df-n0 12421  df-z 12507  df-uz 12771  df-q 12881  df-rp 12923  df-xneg 13040  df-xadd 13041  df-xmul 13042  df-icc 13278  df-seq 13914  df-exp 13975  df-cj 14991  df-re 14992  df-im 14993  df-sqrt 15127  df-abs 15128  df-topgen 17332  df-psmet 20804  df-xmet 20805  df-met 20806  df-bl 20807  df-mopn 20808  df-top 22259  df-topon 22276  df-bases 22312  df-lm 22596  df-haus 22682  df-grpo 29477  df-gid 29478  df-ginv 29479  df-gdiv 29480  df-ablo 29529  df-vc 29543  df-nv 29576  df-va 29579  df-ba 29580  df-sm 29581  df-0v 29582  df-vs 29583  df-nmcv 29584  df-ims 29585  df-hnorm 29952  df-hvsub 29955  df-hlim 29956  df-sh 30191  df-ch 30205  df-ch0 30237  df-cv 31263  df-at 31322
This theorem is referenced by:  cvp  31359  atcv1  31364
  Copyright terms: Public domain W3C validator