HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  atcveq0 Structured version   Visualization version   GIF version

Theorem atcveq0 30124
Description: A Hilbert lattice element covered by an atom must be the zero subspace. (Contributed by NM, 11-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
atcveq0 ((𝐴C𝐵 ∈ HAtoms) → (𝐴 𝐵𝐴 = 0))

Proof of Theorem atcveq0
StepHypRef Expression
1 atelch 30120 . . . . 5 (𝐵 ∈ HAtoms → 𝐵C )
2 cvpss 30061 . . . . 5 ((𝐴C𝐵C ) → (𝐴 𝐵𝐴𝐵))
31, 2sylan2 594 . . . 4 ((𝐴C𝐵 ∈ HAtoms) → (𝐴 𝐵𝐴𝐵))
4 ch0le 29217 . . . . 5 (𝐴C → 0𝐴)
54adantr 483 . . . 4 ((𝐴C𝐵 ∈ HAtoms) → 0𝐴)
63, 5jctild 528 . . 3 ((𝐴C𝐵 ∈ HAtoms) → (𝐴 𝐵 → (0𝐴𝐴𝐵)))
7 atcv0 30118 . . . . . 6 (𝐵 ∈ HAtoms → 0 𝐵)
87adantr 483 . . . . 5 ((𝐵 ∈ HAtoms ∧ 𝐴C ) → 0 𝐵)
9 h0elch 29031 . . . . . . 7 0C
10 cvnbtwn3 30064 . . . . . . 7 ((0C𝐵C𝐴C ) → (0 𝐵 → ((0𝐴𝐴𝐵) → 𝐴 = 0)))
119, 10mp3an1 1444 . . . . . 6 ((𝐵C𝐴C ) → (0 𝐵 → ((0𝐴𝐴𝐵) → 𝐴 = 0)))
121, 11sylan 582 . . . . 5 ((𝐵 ∈ HAtoms ∧ 𝐴C ) → (0 𝐵 → ((0𝐴𝐴𝐵) → 𝐴 = 0)))
138, 12mpd 15 . . . 4 ((𝐵 ∈ HAtoms ∧ 𝐴C ) → ((0𝐴𝐴𝐵) → 𝐴 = 0))
1413ancoms 461 . . 3 ((𝐴C𝐵 ∈ HAtoms) → ((0𝐴𝐴𝐵) → 𝐴 = 0))
156, 14syld 47 . 2 ((𝐴C𝐵 ∈ HAtoms) → (𝐴 𝐵𝐴 = 0))
16 breq1 5068 . . . 4 (𝐴 = 0 → (𝐴 𝐵 ↔ 0 𝐵))
177, 16syl5ibrcom 249 . . 3 (𝐵 ∈ HAtoms → (𝐴 = 0𝐴 𝐵))
1817adantl 484 . 2 ((𝐴C𝐵 ∈ HAtoms) → (𝐴 = 0𝐴 𝐵))
1915, 18impbid 214 1 ((𝐴C𝐵 ∈ HAtoms) → (𝐴 𝐵𝐴 = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wss 3935  wpss 3936   class class class wbr 5065   C cch 28705  0c0h 28711   ccv 28740  HAtomscat 28741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616  ax-hilex 28775  ax-hfvadd 28776  ax-hvcom 28777  ax-hvass 28778  ax-hv0cl 28779  ax-hvaddid 28780  ax-hfvmul 28781  ax-hvmulid 28782  ax-hvmulass 28783  ax-hvdistr1 28784  ax-hvdistr2 28785  ax-hvmul0 28786  ax-hfi 28855  ax-his1 28858  ax-his2 28859  ax-his3 28860  ax-his4 28861
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-map 8407  df-pm 8408  df-en 8509  df-dom 8510  df-sdom 8511  df-sup 8905  df-inf 8906  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-n0 11897  df-z 11981  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-icc 12744  df-seq 13369  df-exp 13429  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-topgen 16716  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-top 21501  df-topon 21518  df-bases 21553  df-lm 21836  df-haus 21922  df-grpo 28269  df-gid 28270  df-ginv 28271  df-gdiv 28272  df-ablo 28321  df-vc 28335  df-nv 28368  df-va 28371  df-ba 28372  df-sm 28373  df-0v 28374  df-vs 28375  df-nmcv 28376  df-ims 28377  df-hnorm 28744  df-hvsub 28747  df-hlim 28748  df-sh 28983  df-ch 28997  df-ch0 29029  df-cv 30055  df-at 30114
This theorem is referenced by:  cvp  30151  atcv1  30156
  Copyright terms: Public domain W3C validator