Proof of Theorem axprlem3OLD
| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1914 |
. . 3
⊢
Ⅎ𝑧if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) |
| 2 | 1 | axrep4 5285 |
. 2
⊢
(∀𝑠∃𝑧∀𝑤(if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) → 𝑤 = 𝑧) → ∃𝑧∀𝑤(𝑤 ∈ 𝑧 ↔ ∃𝑠(𝑠 ∈ 𝑝 ∧ if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦)))) |
| 3 | | ax6evr 2014 |
. . . 4
⊢
∃𝑧 𝑥 = 𝑧 |
| 4 | | ifptru 1075 |
. . . . . . . . 9
⊢
(∃𝑛 𝑛 ∈ 𝑠 → (if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) ↔ 𝑤 = 𝑥)) |
| 5 | 4 | biimpd 229 |
. . . . . . . 8
⊢
(∃𝑛 𝑛 ∈ 𝑠 → (if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) → 𝑤 = 𝑥)) |
| 6 | | equtrr 2021 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑤 = 𝑥 → 𝑤 = 𝑧)) |
| 7 | 5, 6 | sylan9r 508 |
. . . . . . 7
⊢ ((𝑥 = 𝑧 ∧ ∃𝑛 𝑛 ∈ 𝑠) → (if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) → 𝑤 = 𝑧)) |
| 8 | 7 | alrimiv 1927 |
. . . . . 6
⊢ ((𝑥 = 𝑧 ∧ ∃𝑛 𝑛 ∈ 𝑠) → ∀𝑤(if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) → 𝑤 = 𝑧)) |
| 9 | 8 | expcom 413 |
. . . . 5
⊢
(∃𝑛 𝑛 ∈ 𝑠 → (𝑥 = 𝑧 → ∀𝑤(if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) → 𝑤 = 𝑧))) |
| 10 | 9 | eximdv 1917 |
. . . 4
⊢
(∃𝑛 𝑛 ∈ 𝑠 → (∃𝑧 𝑥 = 𝑧 → ∃𝑧∀𝑤(if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) → 𝑤 = 𝑧))) |
| 11 | 3, 10 | mpi 20 |
. . 3
⊢
(∃𝑛 𝑛 ∈ 𝑠 → ∃𝑧∀𝑤(if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) → 𝑤 = 𝑧)) |
| 12 | | ax6evr 2014 |
. . . 4
⊢
∃𝑧 𝑦 = 𝑧 |
| 13 | | ifpfal 1076 |
. . . . . . . . . 10
⊢ (¬
∃𝑛 𝑛 ∈ 𝑠 → (if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) ↔ 𝑤 = 𝑦)) |
| 14 | 13 | biimpd 229 |
. . . . . . . . 9
⊢ (¬
∃𝑛 𝑛 ∈ 𝑠 → (if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) → 𝑤 = 𝑦)) |
| 15 | 14 | adantl 481 |
. . . . . . . 8
⊢ ((𝑦 = 𝑧 ∧ ¬ ∃𝑛 𝑛 ∈ 𝑠) → (if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) → 𝑤 = 𝑦)) |
| 16 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑦 = 𝑧 ∧ ¬ ∃𝑛 𝑛 ∈ 𝑠) → 𝑦 = 𝑧) |
| 17 | | equtr 2020 |
. . . . . . . 8
⊢ (𝑤 = 𝑦 → (𝑦 = 𝑧 → 𝑤 = 𝑧)) |
| 18 | 15, 16, 17 | syl6ci 71 |
. . . . . . 7
⊢ ((𝑦 = 𝑧 ∧ ¬ ∃𝑛 𝑛 ∈ 𝑠) → (if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) → 𝑤 = 𝑧)) |
| 19 | 18 | alrimiv 1927 |
. . . . . 6
⊢ ((𝑦 = 𝑧 ∧ ¬ ∃𝑛 𝑛 ∈ 𝑠) → ∀𝑤(if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) → 𝑤 = 𝑧)) |
| 20 | 19 | expcom 413 |
. . . . 5
⊢ (¬
∃𝑛 𝑛 ∈ 𝑠 → (𝑦 = 𝑧 → ∀𝑤(if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) → 𝑤 = 𝑧))) |
| 21 | 20 | eximdv 1917 |
. . . 4
⊢ (¬
∃𝑛 𝑛 ∈ 𝑠 → (∃𝑧 𝑦 = 𝑧 → ∃𝑧∀𝑤(if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) → 𝑤 = 𝑧))) |
| 22 | 12, 21 | mpi 20 |
. . 3
⊢ (¬
∃𝑛 𝑛 ∈ 𝑠 → ∃𝑧∀𝑤(if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) → 𝑤 = 𝑧)) |
| 23 | 11, 22 | pm2.61i 182 |
. 2
⊢
∃𝑧∀𝑤(if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦) → 𝑤 = 𝑧) |
| 24 | 2, 23 | mpg 1797 |
1
⊢
∃𝑧∀𝑤(𝑤 ∈ 𝑧 ↔ ∃𝑠(𝑠 ∈ 𝑝 ∧ if-(∃𝑛 𝑛 ∈ 𝑠, 𝑤 = 𝑥, 𝑤 = 𝑦))) |