Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-1nel0 | Structured version Visualization version GIF version |
Description: 1o does not belong to {∅}. (Contributed by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
bj-1nel0 | ⊢ 1o ∉ {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1n0 8286 | . . . 4 ⊢ 1o ≠ ∅ | |
2 | 1 | neii 2944 | . . 3 ⊢ ¬ 1o = ∅ |
3 | elsni 4575 | . . 3 ⊢ (1o ∈ {∅} → 1o = ∅) | |
4 | 2, 3 | mto 196 | . 2 ⊢ ¬ 1o ∈ {∅} |
5 | 4 | nelir 3051 | 1 ⊢ 1o ∉ {∅} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 ∉ wnel 3048 ∅c0 4253 {csn 4558 1oc1o 8260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-nel 3049 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-sn 4559 df-suc 6257 df-1o 8267 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |