| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-1o | Structured version Visualization version GIF version | ||
| Description: Define the ordinal number 1. Definition 2.1 of [Schloeder] p. 4. (Contributed by NM, 29-Oct-1995.) |
| Ref | Expression |
|---|---|
| df-1o | ⊢ 1o = suc ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c1o 8427 | . 2 class 1o | |
| 2 | c0 4296 | . . 3 class ∅ | |
| 3 | 2 | csuc 6334 | . 2 class suc ∅ |
| 4 | 1, 3 | wceq 1540 | 1 wff 1o = suc ∅ |
| Colors of variables: wff setvar class |
| This definition is referenced by: df1o2 8441 1on 8446 ordgt0ge1 8457 oa1suc 8495 o2p2e4 8505 om1 8506 oe1 8508 oelim2 8559 nnecl 8577 1onnALT 8605 omabs 8615 nnm1 8616 0sdom1domALT 9186 brttrcl2 9667 ssttrcl 9668 ttrcltr 9669 ttrclss 9673 dmttrcl 9674 rnttrcl 9675 ttrclselem2 9679 ackbij1lem14 10185 aleph1 10524 cfpwsdom 10537 nlt1pi 10859 indpi 10860 hash1 14369 aleph1re 16213 sltval2 27568 sltsolem1 27587 nosepnelem 27591 nolt02o 27607 bday1s 27743 cuteq1 27746 om2noseqlt 28193 bnj168 34720 satfv1 35350 fmla1 35374 rankeq1o 36159 finxp1o 37380 finxpreclem4 37382 finxp00 37390 ordeldif1o 43249 onov0suclim 43263 omabs2 43321 tfsconcatb0 43333 nlim1NEW 43431 aleph1min 43546 clsk1indlem1 44034 |
| Copyright terms: Public domain | W3C validator |