![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-1o | Structured version Visualization version GIF version |
Description: Define the ordinal number 1. Definition 2.1 of [Schloeder] p. 4. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
df-1o | ⊢ 1o = suc ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c1o 8515 | . 2 class 1o | |
2 | c0 4352 | . . 3 class ∅ | |
3 | 2 | csuc 6397 | . 2 class suc ∅ |
4 | 1, 3 | wceq 1537 | 1 wff 1o = suc ∅ |
Colors of variables: wff setvar class |
This definition is referenced by: df1o2 8529 1on 8534 1onOLD 8535 ordgt0ge1 8549 oa1suc 8587 o2p2e4 8597 om1 8598 oe1 8600 oelim2 8651 nnecl 8669 1onnALT 8697 omabs 8707 nnm1 8708 0sdom1domALT 9302 brttrcl2 9783 ssttrcl 9784 ttrcltr 9785 ttrclss 9789 dmttrcl 9790 rnttrcl 9791 ttrclselem2 9795 ackbij1lem14 10301 aleph1 10640 cfpwsdom 10653 nlt1pi 10975 indpi 10976 hash1 14453 aleph1re 16293 sltval2 27719 sltsolem1 27738 nosepnelem 27742 nolt02o 27758 bday1s 27894 cuteq1 27896 om2noseqlt 28323 bnj168 34706 satfv1 35331 fmla1 35355 rankeq1o 36135 finxp1o 37358 finxpreclem4 37360 finxp00 37368 ordeldif1o 43222 onov0suclim 43236 omabs2 43294 tfsconcatb0 43306 nlim1NEW 43404 aleph1min 43519 clsk1indlem1 44007 |
Copyright terms: Public domain | W3C validator |