![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-1o | Structured version Visualization version GIF version |
Description: Define the ordinal number 1. Definition 2.1 of [Schloeder] p. 4. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
df-1o | ⊢ 1o = suc ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c1o 8459 | . 2 class 1o | |
2 | c0 4323 | . . 3 class ∅ | |
3 | 2 | csuc 6367 | . 2 class suc ∅ |
4 | 1, 3 | wceq 1542 | 1 wff 1o = suc ∅ |
Colors of variables: wff setvar class |
This definition is referenced by: df1o2 8473 1on 8478 1onOLD 8479 ordgt0ge1 8493 oa1suc 8531 o2p2e4 8541 om1 8542 oe1 8544 oelim2 8595 nnecl 8613 1onnALT 8640 omabs 8650 nnm1 8651 0sdom1domALT 9239 brttrcl2 9709 ssttrcl 9710 ttrcltr 9711 ttrclss 9715 dmttrcl 9716 rnttrcl 9717 ttrclselem2 9721 ackbij1lem14 10228 aleph1 10566 cfpwsdom 10579 nlt1pi 10901 indpi 10902 hash1 14364 aleph1re 16188 sltval2 27159 sltsolem1 27178 nosepnelem 27182 nolt02o 27198 bday1s 27332 cuteq1 27334 bnj168 33741 satfv1 34354 fmla1 34378 rankeq1o 35143 finxp1o 36273 finxpreclem4 36275 finxp00 36283 ordeldif1o 42010 onov0suclim 42024 omabs2 42082 tfsconcatb0 42094 nlim1NEW 42193 aleph1min 42308 clsk1indlem1 42796 |
Copyright terms: Public domain | W3C validator |