Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-1o | Structured version Visualization version GIF version |
Description: Define the ordinal number 1. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
df-1o | ⊢ 1o = suc ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c1o 8279 | . 2 class 1o | |
2 | c0 4258 | . . 3 class ∅ | |
3 | 2 | csuc 6263 | . 2 class suc ∅ |
4 | 1, 3 | wceq 1539 | 1 wff 1o = suc ∅ |
Colors of variables: wff setvar class |
This definition is referenced by: df1o2 8293 1on 8298 1onOLD 8299 ordgt0ge1 8312 oa1suc 8350 o2p2e4 8360 om1 8362 oe1 8364 oelim2 8415 nnecl 8433 1onnALT 8460 omabs 8470 nnm1 8471 0sdom1dom 9009 brttrcl2 9461 ssttrcl 9462 ttrcltr 9463 ttrclss 9467 dmttrcl 9468 rnttrcl 9469 ttrclselem2 9473 ackbij1lem14 9978 aleph1 10316 cfpwsdom 10329 nlt1pi 10651 indpi 10652 hash1 14108 aleph1re 15943 bnj168 32696 satfv1 33312 fmla1 33336 sltval2 33846 sltsolem1 33865 nosepnelem 33869 nolt02o 33885 bday1s 34012 rankeq1o 34460 finxp1o 35550 finxpreclem4 35552 finxp00 35560 aleph1min 41124 clsk1indlem1 41615 |
Copyright terms: Public domain | W3C validator |