| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-1o | Structured version Visualization version GIF version | ||
| Description: Define the ordinal number 1. Definition 2.1 of [Schloeder] p. 4. (Contributed by NM, 29-Oct-1995.) |
| Ref | Expression |
|---|---|
| df-1o | ⊢ 1o = suc ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c1o 8471 | . 2 class 1o | |
| 2 | c0 4308 | . . 3 class ∅ | |
| 3 | 2 | csuc 6354 | . 2 class suc ∅ |
| 4 | 1, 3 | wceq 1540 | 1 wff 1o = suc ∅ |
| Colors of variables: wff setvar class |
| This definition is referenced by: df1o2 8485 1on 8490 1onOLD 8491 ordgt0ge1 8503 oa1suc 8541 o2p2e4 8551 om1 8552 oe1 8554 oelim2 8605 nnecl 8623 1onnALT 8651 omabs 8661 nnm1 8662 0sdom1domALT 9245 brttrcl2 9726 ssttrcl 9727 ttrcltr 9728 ttrclss 9732 dmttrcl 9733 rnttrcl 9734 ttrclselem2 9738 ackbij1lem14 10244 aleph1 10583 cfpwsdom 10596 nlt1pi 10918 indpi 10919 hash1 14420 aleph1re 16261 sltval2 27618 sltsolem1 27637 nosepnelem 27641 nolt02o 27657 bday1s 27793 cuteq1 27795 om2noseqlt 28222 bnj168 34707 satfv1 35331 fmla1 35355 rankeq1o 36135 finxp1o 37356 finxpreclem4 37358 finxp00 37366 ordeldif1o 43231 onov0suclim 43245 omabs2 43303 tfsconcatb0 43315 nlim1NEW 43413 aleph1min 43528 clsk1indlem1 44016 |
| Copyright terms: Public domain | W3C validator |