| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-1o | Structured version Visualization version GIF version | ||
| Description: Define the ordinal number 1. Definition 2.1 of [Schloeder] p. 4. (Contributed by NM, 29-Oct-1995.) |
| Ref | Expression |
|---|---|
| df-1o | ⊢ 1o = suc ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c1o 8378 | . 2 class 1o | |
| 2 | c0 4280 | . . 3 class ∅ | |
| 3 | 2 | csuc 6308 | . 2 class suc ∅ |
| 4 | 1, 3 | wceq 1541 | 1 wff 1o = suc ∅ |
| Colors of variables: wff setvar class |
| This definition is referenced by: df1o2 8392 1on 8397 ordgt0ge1 8408 oa1suc 8446 o2p2e4 8456 om1 8457 oe1 8459 oelim2 8510 nnecl 8528 1onnALT 8556 omabs 8566 nnm1 8567 0sdom1domALT 9131 brttrcl2 9604 ssttrcl 9605 ttrcltr 9606 ttrclss 9610 dmttrcl 9611 rnttrcl 9612 ttrclselem2 9616 ackbij1lem14 10123 aleph1 10462 cfpwsdom 10475 nlt1pi 10797 indpi 10798 hash1 14311 aleph1re 16154 sltval2 27595 sltsolem1 27614 nosepnelem 27618 nolt02o 27634 bday1s 27775 cuteq1 27778 om2noseqlt 28229 bnj168 34742 r11 35105 satfv1 35407 fmla1 35431 rankeq1o 36213 finxp1o 37434 finxpreclem4 37436 finxp00 37444 ordeldif1o 43301 onov0suclim 43315 omabs2 43373 tfsconcatb0 43385 nlim1NEW 43483 aleph1min 43598 clsk1indlem1 44086 |
| Copyright terms: Public domain | W3C validator |