| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-1o | Structured version Visualization version GIF version | ||
| Description: Define the ordinal number 1. Definition 2.1 of [Schloeder] p. 4. (Contributed by NM, 29-Oct-1995.) |
| Ref | Expression |
|---|---|
| df-1o | ⊢ 1o = suc ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c1o 8388 | . 2 class 1o | |
| 2 | c0 4286 | . . 3 class ∅ | |
| 3 | 2 | csuc 6313 | . 2 class suc ∅ |
| 4 | 1, 3 | wceq 1540 | 1 wff 1o = suc ∅ |
| Colors of variables: wff setvar class |
| This definition is referenced by: df1o2 8402 1on 8407 ordgt0ge1 8418 oa1suc 8456 o2p2e4 8466 om1 8467 oe1 8469 oelim2 8520 nnecl 8538 1onnALT 8566 omabs 8576 nnm1 8577 0sdom1domALT 9146 brttrcl2 9629 ssttrcl 9630 ttrcltr 9631 ttrclss 9635 dmttrcl 9636 rnttrcl 9637 ttrclselem2 9641 ackbij1lem14 10145 aleph1 10484 cfpwsdom 10497 nlt1pi 10819 indpi 10820 hash1 14329 aleph1re 16172 sltval2 27584 sltsolem1 27603 nosepnelem 27607 nolt02o 27623 bday1s 27763 cuteq1 27766 om2noseqlt 28216 bnj168 34699 satfv1 35338 fmla1 35362 rankeq1o 36147 finxp1o 37368 finxpreclem4 37370 finxp00 37378 ordeldif1o 43236 onov0suclim 43250 omabs2 43308 tfsconcatb0 43320 nlim1NEW 43418 aleph1min 43533 clsk1indlem1 44021 |
| Copyright terms: Public domain | W3C validator |