![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-1o | Structured version Visualization version GIF version |
Description: Define the ordinal number 1. Definition 2.1 of [Schloeder] p. 4. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
df-1o | ⊢ 1o = suc ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c1o 8497 | . 2 class 1o | |
2 | c0 4338 | . . 3 class ∅ | |
3 | 2 | csuc 6387 | . 2 class suc ∅ |
4 | 1, 3 | wceq 1536 | 1 wff 1o = suc ∅ |
Colors of variables: wff setvar class |
This definition is referenced by: df1o2 8511 1on 8516 1onOLD 8517 ordgt0ge1 8529 oa1suc 8567 o2p2e4 8577 om1 8578 oe1 8580 oelim2 8631 nnecl 8649 1onnALT 8677 omabs 8687 nnm1 8688 0sdom1domALT 9272 brttrcl2 9751 ssttrcl 9752 ttrcltr 9753 ttrclss 9757 dmttrcl 9758 rnttrcl 9759 ttrclselem2 9763 ackbij1lem14 10269 aleph1 10608 cfpwsdom 10621 nlt1pi 10943 indpi 10944 hash1 14439 aleph1re 16277 sltval2 27715 sltsolem1 27734 nosepnelem 27738 nolt02o 27754 bday1s 27890 cuteq1 27892 om2noseqlt 28319 bnj168 34722 satfv1 35347 fmla1 35371 rankeq1o 36152 finxp1o 37374 finxpreclem4 37376 finxp00 37384 ordeldif1o 43249 onov0suclim 43263 omabs2 43321 tfsconcatb0 43333 nlim1NEW 43431 aleph1min 43546 clsk1indlem1 44034 |
Copyright terms: Public domain | W3C validator |