Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-1o | Structured version Visualization version GIF version |
Description: Define the ordinal number 1. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
df-1o | ⊢ 1o = suc ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c1o 8274 | . 2 class 1o | |
2 | c0 4261 | . . 3 class ∅ | |
3 | 2 | csuc 6265 | . 2 class suc ∅ |
4 | 1, 3 | wceq 1541 | 1 wff 1o = suc ∅ |
Colors of variables: wff setvar class |
This definition is referenced by: 1on 8288 df1o2 8293 ordgt0ge1 8303 oa1suc 8337 o2p2e4 8347 om1 8349 oe1 8351 oelim2 8402 nnecl 8420 1onn 8446 omabs 8455 nnm1 8456 0sdom1dom 8982 brttrcl2 9433 ssttrcl 9434 ttrcltr 9435 ttrclss 9439 dmttrcl 9440 rnttrcl 9441 ttrclselem2 9445 ackbij1lem14 9973 aleph1 10311 cfpwsdom 10324 nlt1pi 10646 indpi 10647 hash1 14100 aleph1re 15935 bnj168 32688 satfv1 33304 fmla1 33328 sltval2 33838 sltsolem1 33857 nosepnelem 33861 nolt02o 33877 bday1s 34004 rankeq1o 34452 finxp1o 35542 finxpreclem4 35544 finxp00 35552 aleph1min 41117 clsk1indlem1 41608 |
Copyright terms: Public domain | W3C validator |