Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-1o | Structured version Visualization version GIF version |
Description: Define the ordinal number 1. (Contributed by NM, 29-Oct-1995.) |
Ref | Expression |
---|---|
df-1o | ⊢ 1o = suc ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c1o 8321 | . 2 class 1o | |
2 | c0 4262 | . . 3 class ∅ | |
3 | 2 | csuc 6283 | . 2 class suc ∅ |
4 | 1, 3 | wceq 1539 | 1 wff 1o = suc ∅ |
Colors of variables: wff setvar class |
This definition is referenced by: df1o2 8335 1on 8340 1onOLD 8341 ordgt0ge1 8354 oa1suc 8392 o2p2e4 8402 om1 8404 oe1 8406 oelim2 8457 nnecl 8475 1onnALT 8502 omabs 8512 nnm1 8513 0sdom1domOLD 9060 brttrcl2 9516 ssttrcl 9517 ttrcltr 9518 ttrclss 9522 dmttrcl 9523 rnttrcl 9524 ttrclselem2 9528 ackbij1lem14 10035 aleph1 10373 cfpwsdom 10386 nlt1pi 10708 indpi 10709 hash1 14164 aleph1re 15999 bnj168 32754 satfv1 33370 fmla1 33394 sltval2 33904 sltsolem1 33923 nosepnelem 33927 nolt02o 33943 bday1s 34070 rankeq1o 34518 finxp1o 35607 finxpreclem4 35609 finxp00 35617 nlim1NEW 41087 aleph1min 41202 clsk1indlem1 41693 |
Copyright terms: Public domain | W3C validator |