Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-0nel1 Structured version   Visualization version   GIF version

Theorem bj-0nel1 35070
Description: The empty set does not belong to {1o}. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-0nel1 ∅ ∉ {1o}

Proof of Theorem bj-0nel1
StepHypRef Expression
1 1n0 8286 . . . 4 1o ≠ ∅
21nesymi 3000 . . 3 ¬ ∅ = 1o
3 0ex 5226 . . . 4 ∅ ∈ V
43elsn 4573 . . 3 (∅ ∈ {1o} ↔ ∅ = 1o)
52, 4mtbir 322 . 2 ¬ ∅ ∈ {1o}
65nelir 3051 1 ∅ ∉ {1o}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  wnel 3048  c0 4253  {csn 4558  1oc1o 8260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-nel 3049  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-sn 4559  df-suc 6257  df-1o 8267
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator