Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-0nel1 Structured version   Visualization version   GIF version

Theorem bj-0nel1 36936
Description: The empty set does not belong to {1o}. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-0nel1 ∅ ∉ {1o}

Proof of Theorem bj-0nel1
StepHypRef Expression
1 1n0 8525 . . . 4 1o ≠ ∅
21nesymi 2996 . . 3 ¬ ∅ = 1o
3 0ex 5313 . . . 4 ∅ ∈ V
43elsn 4646 . . 3 (∅ ∈ {1o} ↔ ∅ = 1o)
52, 4mtbir 323 . 2 ¬ ∅ ∈ {1o}
65nelir 3047 1 ∅ ∉ {1o}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2106  wnel 3044  c0 4339  {csn 4631  1oc1o 8498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-nul 5312
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-nel 3045  df-v 3480  df-dif 3966  df-un 3968  df-nul 4340  df-sn 4632  df-suc 6392  df-1o 8505
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator