| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-0nel1 | Structured version Visualization version GIF version | ||
| Description: The empty set does not belong to {1o}. (Contributed by BJ, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| bj-0nel1 | ⊢ ∅ ∉ {1o} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1n0 8505 | . . . 4 ⊢ 1o ≠ ∅ | |
| 2 | 1 | nesymi 2990 | . . 3 ⊢ ¬ ∅ = 1o |
| 3 | 0ex 5282 | . . . 4 ⊢ ∅ ∈ V | |
| 4 | 3 | elsn 4621 | . . 3 ⊢ (∅ ∈ {1o} ↔ ∅ = 1o) |
| 5 | 2, 4 | mtbir 323 | . 2 ⊢ ¬ ∅ ∈ {1o} |
| 6 | 5 | nelir 3040 | 1 ⊢ ∅ ∉ {1o} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∉ wnel 3037 ∅c0 4313 {csn 4606 1oc1o 8478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-nul 5281 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-nel 3038 df-v 3466 df-dif 3934 df-un 3936 df-nul 4314 df-sn 4607 df-suc 6363 df-1o 8485 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |