![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-0nel1 | Structured version Visualization version GIF version |
Description: The empty set does not belong to {1o}. (Contributed by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
bj-0nel1 | ⊢ ∅ ∉ {1o} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1n0 8544 | . . . 4 ⊢ 1o ≠ ∅ | |
2 | 1 | nesymi 3004 | . . 3 ⊢ ¬ ∅ = 1o |
3 | 0ex 5325 | . . . 4 ⊢ ∅ ∈ V | |
4 | 3 | elsn 4663 | . . 3 ⊢ (∅ ∈ {1o} ↔ ∅ = 1o) |
5 | 2, 4 | mtbir 323 | . 2 ⊢ ¬ ∅ ∈ {1o} |
6 | 5 | nelir 3055 | 1 ⊢ ∅ ∉ {1o} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 ∉ wnel 3052 ∅c0 4352 {csn 4648 1oc1o 8515 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-nel 3053 df-v 3490 df-dif 3979 df-un 3981 df-nul 4353 df-sn 4649 df-suc 6401 df-1o 8522 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |