![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-0nel1 | Structured version Visualization version GIF version |
Description: The empty set does not belong to {1o}. (Contributed by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
bj-0nel1 | ⊢ ∅ ∉ {1o} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1n0 8492 | . . . 4 ⊢ 1o ≠ ∅ | |
2 | 1 | nesymi 2997 | . . 3 ⊢ ¬ ∅ = 1o |
3 | 0ex 5307 | . . . 4 ⊢ ∅ ∈ V | |
4 | 3 | elsn 4643 | . . 3 ⊢ (∅ ∈ {1o} ↔ ∅ = 1o) |
5 | 2, 4 | mtbir 323 | . 2 ⊢ ¬ ∅ ∈ {1o} |
6 | 5 | nelir 3048 | 1 ⊢ ∅ ∉ {1o} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 ∉ wnel 3045 ∅c0 4322 {csn 4628 1oc1o 8463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-nel 3046 df-v 3475 df-dif 3951 df-un 3953 df-nul 4323 df-sn 4629 df-suc 6370 df-1o 8470 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |