Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-0nel1 Structured version   Visualization version   GIF version

Theorem bj-0nel1 36976
Description: The empty set does not belong to {1o}. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-0nel1 ∅ ∉ {1o}

Proof of Theorem bj-0nel1
StepHypRef Expression
1 1n0 8505 . . . 4 1o ≠ ∅
21nesymi 2990 . . 3 ¬ ∅ = 1o
3 0ex 5282 . . . 4 ∅ ∈ V
43elsn 4621 . . 3 (∅ ∈ {1o} ↔ ∅ = 1o)
52, 4mtbir 323 . 2 ¬ ∅ ∈ {1o}
65nelir 3040 1 ∅ ∉ {1o}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wnel 3037  c0 4313  {csn 4606  1oc1o 8478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-nul 5281
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-nel 3038  df-v 3466  df-dif 3934  df-un 3936  df-nul 4314  df-sn 4607  df-suc 6363  df-1o 8485
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator