Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-0nel1 Structured version   Visualization version   GIF version

Theorem bj-0nel1 36966
Description: The empty set does not belong to {1o}. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-0nel1 ∅ ∉ {1o}

Proof of Theorem bj-0nel1
StepHypRef Expression
1 1n0 8398 . . . 4 1o ≠ ∅
21nesymi 2983 . . 3 ¬ ∅ = 1o
3 0ex 5243 . . . 4 ∅ ∈ V
43elsn 4589 . . 3 (∅ ∈ {1o} ↔ ∅ = 1o)
52, 4mtbir 323 . 2 ¬ ∅ ∈ {1o}
65nelir 3033 1 ∅ ∉ {1o}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2110  wnel 3030  c0 4281  {csn 4574  1oc1o 8373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702  ax-nul 5242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-nel 3031  df-v 3436  df-dif 3903  df-un 3905  df-nul 4282  df-sn 4575  df-suc 6308  df-1o 8380
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator