![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-0nel1 | Structured version Visualization version GIF version |
Description: The empty set does not belong to {1o}. (Contributed by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
bj-0nel1 | ⊢ ∅ ∉ {1o} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1n0 8525 | . . . 4 ⊢ 1o ≠ ∅ | |
2 | 1 | nesymi 2996 | . . 3 ⊢ ¬ ∅ = 1o |
3 | 0ex 5313 | . . . 4 ⊢ ∅ ∈ V | |
4 | 3 | elsn 4646 | . . 3 ⊢ (∅ ∈ {1o} ↔ ∅ = 1o) |
5 | 2, 4 | mtbir 323 | . 2 ⊢ ¬ ∅ ∈ {1o} |
6 | 5 | nelir 3047 | 1 ⊢ ∅ ∉ {1o} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 ∉ wnel 3044 ∅c0 4339 {csn 4631 1oc1o 8498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-nel 3045 df-v 3480 df-dif 3966 df-un 3968 df-nul 4340 df-sn 4632 df-suc 6392 df-1o 8505 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |