Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-0nel1 Structured version   Visualization version   GIF version

Theorem bj-0nel1 36919
Description: The empty set does not belong to {1o}. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-0nel1 ∅ ∉ {1o}

Proof of Theorem bj-0nel1
StepHypRef Expression
1 1n0 8544 . . . 4 1o ≠ ∅
21nesymi 3004 . . 3 ¬ ∅ = 1o
3 0ex 5325 . . . 4 ∅ ∈ V
43elsn 4663 . . 3 (∅ ∈ {1o} ↔ ∅ = 1o)
52, 4mtbir 323 . 2 ¬ ∅ ∈ {1o}
65nelir 3055 1 ∅ ∉ {1o}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  wnel 3052  c0 4352  {csn 4648  1oc1o 8515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-nul 5324
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-nel 3053  df-v 3490  df-dif 3979  df-un 3981  df-nul 4353  df-sn 4649  df-suc 6401  df-1o 8522
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator