Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-0nel1 | Structured version Visualization version GIF version |
Description: The empty set does not belong to {1o}. (Contributed by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
bj-0nel1 | ⊢ ∅ ∉ {1o} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1n0 8286 | . . . 4 ⊢ 1o ≠ ∅ | |
2 | 1 | nesymi 3000 | . . 3 ⊢ ¬ ∅ = 1o |
3 | 0ex 5226 | . . . 4 ⊢ ∅ ∈ V | |
4 | 3 | elsn 4573 | . . 3 ⊢ (∅ ∈ {1o} ↔ ∅ = 1o) |
5 | 2, 4 | mtbir 322 | . 2 ⊢ ¬ ∅ ∈ {1o} |
6 | 5 | nelir 3051 | 1 ⊢ ∅ ∉ {1o} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 ∉ wnel 3048 ∅c0 4253 {csn 4558 1oc1o 8260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-nel 3049 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-sn 4559 df-suc 6257 df-1o 8267 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |