Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-xpimasn Structured version   Visualization version   GIF version

Theorem bj-xpimasn 36950
Description: The image of a singleton, general case. [Change and relabel xpimasn 6213 accordingly, maybe to xpima2sn.] (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-xpimasn ((𝐴 × 𝐵) “ {𝑋}) = if(𝑋𝐴, 𝐵, ∅)

Proof of Theorem bj-xpimasn
StepHypRef Expression
1 xpima 6210 . 2 ((𝐴 × 𝐵) “ {𝑋}) = if((𝐴 ∩ {𝑋}) = ∅, ∅, 𝐵)
2 disjsn 4719 . . 3 ((𝐴 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋𝐴)
3 eqid 2737 . . 3 𝐵 = 𝐵
42, 3ifbieq2i 4559 . 2 if((𝐴 ∩ {𝑋}) = ∅, ∅, 𝐵) = if(¬ 𝑋𝐴, ∅, 𝐵)
5 ifnot 4586 . 2 if(¬ 𝑋𝐴, ∅, 𝐵) = if(𝑋𝐴, 𝐵, ∅)
61, 4, 53eqtri 2769 1 ((𝐴 × 𝐵) “ {𝑋}) = if(𝑋𝐴, 𝐵, ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2108  cin 3965  c0 4342  ifcif 4534  {csn 4634   × cxp 5691  cima 5696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-br 5152  df-opab 5214  df-xp 5699  df-rel 5700  df-cnv 5701  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706
This theorem is referenced by:  bj-xpima1sn  36951  bj-xpima2sn  36953
  Copyright terms: Public domain W3C validator