Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-xpimasn Structured version   Visualization version   GIF version

Theorem bj-xpimasn 36940
Description: The image of a singleton, general case. [Change and relabel xpimasn 6166 accordingly, maybe to xpima2sn.] (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-xpimasn ((𝐴 × 𝐵) “ {𝑋}) = if(𝑋𝐴, 𝐵, ∅)

Proof of Theorem bj-xpimasn
StepHypRef Expression
1 xpima 6163 . 2 ((𝐴 × 𝐵) “ {𝑋}) = if((𝐴 ∩ {𝑋}) = ∅, ∅, 𝐵)
2 disjsn 4683 . . 3 ((𝐴 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋𝐴)
3 eqid 2730 . . 3 𝐵 = 𝐵
42, 3ifbieq2i 4522 . 2 if((𝐴 ∩ {𝑋}) = ∅, ∅, 𝐵) = if(¬ 𝑋𝐴, ∅, 𝐵)
5 ifnot 4549 . 2 if(¬ 𝑋𝐴, ∅, 𝐵) = if(𝑋𝐴, 𝐵, ∅)
61, 4, 53eqtri 2757 1 ((𝐴 × 𝐵) “ {𝑋}) = if(𝑋𝐴, 𝐵, ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  cin 3921  c0 4304  ifcif 4496  {csn 4597   × cxp 5644  cima 5649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-br 5116  df-opab 5178  df-xp 5652  df-rel 5653  df-cnv 5654  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659
This theorem is referenced by:  bj-xpima1sn  36941  bj-xpima2sn  36943
  Copyright terms: Public domain W3C validator