| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-xpimasn | Structured version Visualization version GIF version | ||
| Description: The image of a singleton, general case. [Change and relabel xpimasn 6166 accordingly, maybe to xpima2sn.] (Contributed by BJ, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| bj-xpimasn | ⊢ ((𝐴 × 𝐵) “ {𝑋}) = if(𝑋 ∈ 𝐴, 𝐵, ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpima 6163 | . 2 ⊢ ((𝐴 × 𝐵) “ {𝑋}) = if((𝐴 ∩ {𝑋}) = ∅, ∅, 𝐵) | |
| 2 | disjsn 4683 | . . 3 ⊢ ((𝐴 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ 𝐴) | |
| 3 | eqid 2730 | . . 3 ⊢ 𝐵 = 𝐵 | |
| 4 | 2, 3 | ifbieq2i 4522 | . 2 ⊢ if((𝐴 ∩ {𝑋}) = ∅, ∅, 𝐵) = if(¬ 𝑋 ∈ 𝐴, ∅, 𝐵) |
| 5 | ifnot 4549 | . 2 ⊢ if(¬ 𝑋 ∈ 𝐴, ∅, 𝐵) = if(𝑋 ∈ 𝐴, 𝐵, ∅) | |
| 6 | 1, 4, 5 | 3eqtri 2757 | 1 ⊢ ((𝐴 × 𝐵) “ {𝑋}) = if(𝑋 ∈ 𝐴, 𝐵, ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 ∩ cin 3921 ∅c0 4304 ifcif 4496 {csn 4597 × cxp 5644 “ cima 5649 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-br 5116 df-opab 5178 df-xp 5652 df-rel 5653 df-cnv 5654 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 |
| This theorem is referenced by: bj-xpima1sn 36941 bj-xpima2sn 36943 |
| Copyright terms: Public domain | W3C validator |