| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-xpimasn | Structured version Visualization version GIF version | ||
| Description: The image of a singleton, general case. [Change and relabel xpimasn 6140 accordingly, maybe to xpima2sn.] (Contributed by BJ, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| bj-xpimasn | ⊢ ((𝐴 × 𝐵) “ {𝑋}) = if(𝑋 ∈ 𝐴, 𝐵, ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpima 6137 | . 2 ⊢ ((𝐴 × 𝐵) “ {𝑋}) = if((𝐴 ∩ {𝑋}) = ∅, ∅, 𝐵) | |
| 2 | disjsn 4665 | . . 3 ⊢ ((𝐴 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ 𝐴) | |
| 3 | eqid 2733 | . . 3 ⊢ 𝐵 = 𝐵 | |
| 4 | 2, 3 | ifbieq2i 4502 | . 2 ⊢ if((𝐴 ∩ {𝑋}) = ∅, ∅, 𝐵) = if(¬ 𝑋 ∈ 𝐴, ∅, 𝐵) |
| 5 | ifnot 4529 | . 2 ⊢ if(¬ 𝑋 ∈ 𝐴, ∅, 𝐵) = if(𝑋 ∈ 𝐴, 𝐵, ∅) | |
| 6 | 1, 4, 5 | 3eqtri 2760 | 1 ⊢ ((𝐴 × 𝐵) “ {𝑋}) = if(𝑋 ∈ 𝐴, 𝐵, ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2113 ∩ cin 3898 ∅c0 4284 ifcif 4476 {csn 4577 × cxp 5619 “ cima 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-11 2162 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 |
| This theorem is referenced by: bj-xpima1sn 37011 bj-xpima2sn 37013 |
| Copyright terms: Public domain | W3C validator |