Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-xpimasn Structured version   Visualization version   GIF version

Theorem bj-xpimasn 33518
Description: The image of a singleton, general case. [Change and relabel xpimasn 5835 accordingly, maybe to xpima2sn.] (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-xpimasn ((𝐴 × 𝐵) “ {𝑋}) = if(𝑋𝐴, 𝐵, ∅)

Proof of Theorem bj-xpimasn
StepHypRef Expression
1 xpima 5832 . 2 ((𝐴 × 𝐵) “ {𝑋}) = if((𝐴 ∩ {𝑋}) = ∅, ∅, 𝐵)
2 disjsn 4478 . . 3 ((𝐴 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋𝐴)
3 eqid 2778 . . 3 𝐵 = 𝐵
42, 3ifbieq2i 4331 . 2 if((𝐴 ∩ {𝑋}) = ∅, ∅, 𝐵) = if(¬ 𝑋𝐴, ∅, 𝐵)
5 ifnot 4357 . 2 if(¬ 𝑋𝐴, ∅, 𝐵) = if(𝑋𝐴, 𝐵, ∅)
61, 4, 53eqtri 2806 1 ((𝐴 × 𝐵) “ {𝑋}) = if(𝑋𝐴, 𝐵, ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1601  wcel 2107  cin 3791  c0 4141  ifcif 4307  {csn 4398   × cxp 5355  cima 5360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pr 5140
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-br 4889  df-opab 4951  df-xp 5363  df-rel 5364  df-cnv 5365  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370
This theorem is referenced by:  bj-xpima1sn  33519  bj-xpima2sn  33521
  Copyright terms: Public domain W3C validator