| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-xpimasn | Structured version Visualization version GIF version | ||
| Description: The image of a singleton, general case. [Change and relabel xpimasn 6129 accordingly, maybe to xpima2sn.] (Contributed by BJ, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| bj-xpimasn | ⊢ ((𝐴 × 𝐵) “ {𝑋}) = if(𝑋 ∈ 𝐴, 𝐵, ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpima 6126 | . 2 ⊢ ((𝐴 × 𝐵) “ {𝑋}) = if((𝐴 ∩ {𝑋}) = ∅, ∅, 𝐵) | |
| 2 | disjsn 4662 | . . 3 ⊢ ((𝐴 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ 𝐴) | |
| 3 | eqid 2730 | . . 3 ⊢ 𝐵 = 𝐵 | |
| 4 | 2, 3 | ifbieq2i 4499 | . 2 ⊢ if((𝐴 ∩ {𝑋}) = ∅, ∅, 𝐵) = if(¬ 𝑋 ∈ 𝐴, ∅, 𝐵) |
| 5 | ifnot 4526 | . 2 ⊢ if(¬ 𝑋 ∈ 𝐴, ∅, 𝐵) = if(𝑋 ∈ 𝐴, 𝐵, ∅) | |
| 6 | 1, 4, 5 | 3eqtri 2757 | 1 ⊢ ((𝐴 × 𝐵) “ {𝑋}) = if(𝑋 ∈ 𝐴, 𝐵, ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2110 ∩ cin 3899 ∅c0 4281 ifcif 4473 {csn 4574 × cxp 5612 “ cima 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 |
| This theorem is referenced by: bj-xpima1sn 36969 bj-xpima2sn 36971 |
| Copyright terms: Public domain | W3C validator |