Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1n0 | Structured version Visualization version GIF version |
Description: Ordinal one is not equal to ordinal zero. (Contributed by NM, 26-Dec-2004.) |
Ref | Expression |
---|---|
1n0 | ⊢ 1o ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 8293 | . 2 ⊢ 1o = {∅} | |
2 | 0ex 5234 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | snnz 4717 | . 2 ⊢ {∅} ≠ ∅ |
4 | 1, 3 | eqnetri 3015 | 1 ⊢ 1o ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2944 ∅c0 4261 {csn 4566 1oc1o 8274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-nul 5233 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-v 3432 df-dif 3894 df-un 3896 df-nul 4262 df-sn 4567 df-suc 6269 df-1o 8281 |
This theorem is referenced by: xp01disj 8301 xp01disjl 8302 map2xp 8899 sdom1 8984 1sdom 8987 unxpdom2 8992 sucxpdom 8993 ssttrcl 9434 ttrclselem2 9445 djuin 9660 eldju2ndl 9666 updjudhcoinrg 9675 card1 9710 pm54.43lem 9742 cflim2 10003 isfin4p1 10055 dcomex 10187 pwcfsdom 10323 cfpwsdom 10324 canthp1lem2 10393 wunex2 10478 1pi 10623 fnpr2o 17249 fnpr2ob 17250 fvpr0o 17251 fvpr1o 17252 fvprif 17253 xpsfrnel 17254 setcepi 17784 setc2obas 17790 frgpuptinv 19358 frgpup3lem 19364 frgpnabllem1 19455 dmdprdpr 19633 dprdpr 19634 coe1mul2lem1 21419 2ndcdisj 22588 xpstopnlem1 22941 bnj906 32889 gonan0 33333 gonar 33336 fmla0disjsuc 33339 sltval2 33838 nosgnn0 33840 sltintdifex 33843 sltres 33844 nogesgn1ores 33856 sltsolem1 33857 nosepnelem 33861 nogt01o 33878 noinfbnd1lem3 33907 noinfbnd2lem1 33912 rankeq1o 34452 onint1 34617 bj-disjsn01 35121 bj-0nel1 35122 bj-1nel0 35123 bj-pr21val 35182 bj-pr22val 35188 finxp1o 35542 finxp2o 35549 domalom 35554 wepwsolem 40847 clsk3nimkb 41603 clsk1indlem4 41607 clsk1indlem1 41608 prsthinc 46287 prstchom 46310 prstchom2ALT 46312 |
Copyright terms: Public domain | W3C validator |