| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1n0 | Structured version Visualization version GIF version | ||
| Description: Ordinal one is not equal to ordinal zero. (Contributed by NM, 26-Dec-2004.) |
| Ref | Expression |
|---|---|
| 1n0 | ⊢ 1o ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 8485 | . 2 ⊢ 1o = {∅} | |
| 2 | 0ex 5277 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | snnz 4752 | . 2 ⊢ {∅} ≠ ∅ |
| 4 | 1, 3 | eqnetri 3002 | 1 ⊢ 1o ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2932 ∅c0 4308 {csn 4601 1oc1o 8471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-v 3461 df-dif 3929 df-un 3931 df-nul 4309 df-sn 4602 df-suc 6358 df-1o 8478 |
| This theorem is referenced by: nlim1 8499 xp01disj 8501 xp01disjl 8502 enpr2d 9061 map2xp 9159 snnen2o 9243 0sdom1dom 9244 sdom1 9248 sdom1OLD 9249 rex2dom 9252 1sdom2dom 9253 1sdomOLD 9255 unxpdom2 9260 sucxpdom 9261 ssttrcl 9727 ttrclselem2 9738 djuin 9930 eldju2ndl 9936 updjudhcoinrg 9945 card1 9980 pm54.43lem 10012 cflim2 10275 isfin4p1 10327 dcomex 10459 pwcfsdom 10595 cfpwsdom 10596 canthp1lem2 10665 wunex2 10750 1pi 10895 fnpr2o 17569 fnpr2ob 17570 fvpr0o 17571 fvpr1o 17572 fvprif 17573 xpsfrnel 17574 setcepi 18099 setc2obas 18105 frgpuptinv 19750 frgpup3lem 19756 frgpnabllem1 19852 dmdprdpr 20030 dprdpr 20031 coe1mul2lem1 22202 2ndcdisj 23392 xpstopnlem1 23745 sltval2 27618 nosgnn0 27620 sltintdifex 27623 sltres 27624 nogesgn1ores 27636 sltsolem1 27637 nosepnelem 27641 nogt01o 27658 noinfbnd1lem3 27687 noinfbnd2lem1 27692 bnj906 34907 gonan0 35360 gonar 35363 fmla0disjsuc 35366 rankeq1o 36135 onint1 36413 bj-disjsn01 36916 bj-0nel1 36917 bj-1nel0 36918 bj-pr21val 36977 bj-pr22val 36983 finxp1o 37356 finxp2o 37363 domalom 37368 wepwsolem 43013 onov0suclim 43245 clsk3nimkb 44011 clsk1indlem4 44015 clsk1indlem1 44016 nelsubc3 48986 prsthinc 49298 prstchom 49387 prstchom2ALT 49389 |
| Copyright terms: Public domain | W3C validator |