![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1n0 | Structured version Visualization version GIF version |
Description: Ordinal one is not equal to ordinal zero. (Contributed by NM, 26-Dec-2004.) |
Ref | Expression |
---|---|
1n0 | ⊢ 1o ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 8511 | . 2 ⊢ 1o = {∅} | |
2 | 0ex 5312 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | snnz 4780 | . 2 ⊢ {∅} ≠ ∅ |
4 | 1, 3 | eqnetri 3008 | 1 ⊢ 1o ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2937 ∅c0 4338 {csn 4630 1oc1o 8497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-nul 5311 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-v 3479 df-dif 3965 df-un 3967 df-nul 4339 df-sn 4631 df-suc 6391 df-1o 8504 |
This theorem is referenced by: nlim1 8525 xp01disj 8527 xp01disjl 8528 enpr2d 9087 map2xp 9185 snnen2o 9270 0sdom1dom 9271 sdom1 9275 sdom1OLD 9276 rex2dom 9279 1sdom2dom 9280 1sdomOLD 9282 unxpdom2 9287 sucxpdom 9288 ssttrcl 9752 ttrclselem2 9763 djuin 9955 eldju2ndl 9961 updjudhcoinrg 9970 card1 10005 pm54.43lem 10037 cflim2 10300 isfin4p1 10352 dcomex 10484 pwcfsdom 10620 cfpwsdom 10621 canthp1lem2 10690 wunex2 10775 1pi 10920 fnpr2o 17603 fnpr2ob 17604 fvpr0o 17605 fvpr1o 17606 fvprif 17607 xpsfrnel 17608 setcepi 18141 setc2obas 18147 frgpuptinv 19803 frgpup3lem 19809 frgpnabllem1 19905 dmdprdpr 20083 dprdpr 20084 coe1mul2lem1 22285 2ndcdisj 23479 xpstopnlem1 23832 sltval2 27715 nosgnn0 27717 sltintdifex 27720 sltres 27721 nogesgn1ores 27733 sltsolem1 27734 nosepnelem 27738 nogt01o 27755 noinfbnd1lem3 27784 noinfbnd2lem1 27789 bnj906 34922 gonan0 35376 gonar 35379 fmla0disjsuc 35382 rankeq1o 36152 onint1 36431 bj-disjsn01 36934 bj-0nel1 36935 bj-1nel0 36936 bj-pr21val 36995 bj-pr22val 37001 finxp1o 37374 finxp2o 37381 domalom 37386 wepwsolem 43030 onov0suclim 43263 clsk3nimkb 44029 clsk1indlem4 44033 clsk1indlem1 44034 prsthinc 48854 prstchom 48877 prstchom2ALT 48879 |
Copyright terms: Public domain | W3C validator |