| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1n0 | Structured version Visualization version GIF version | ||
| Description: Ordinal one is not equal to ordinal zero. (Contributed by NM, 26-Dec-2004.) |
| Ref | Expression |
|---|---|
| 1n0 | ⊢ 1o ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 8392 | . 2 ⊢ 1o = {∅} | |
| 2 | 0ex 5245 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | snnz 4729 | . 2 ⊢ {∅} ≠ ∅ |
| 4 | 1, 3 | eqnetri 2998 | 1 ⊢ 1o ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2928 ∅c0 4283 {csn 4576 1oc1o 8378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5244 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-dif 3905 df-un 3907 df-nul 4284 df-sn 4577 df-suc 6312 df-1o 8385 |
| This theorem is referenced by: nlim1 8404 xp01disj 8406 xp01disjl 8407 enpr2d 8970 map2xp 9060 snnen2o 9129 0sdom1dom 9130 sdom1 9134 rex2dom 9137 1sdom2dom 9138 unxpdom2 9144 sucxpdom 9145 ssttrcl 9605 ttrclselem2 9616 djuin 9811 eldju2ndl 9817 updjudhcoinrg 9826 card1 9861 pm54.43lem 9893 cflim2 10154 isfin4p1 10206 dcomex 10338 pwcfsdom 10474 cfpwsdom 10475 canthp1lem2 10544 wunex2 10629 1pi 10774 fnpr2o 17461 fnpr2ob 17462 fvpr0o 17463 fvpr1o 17464 fvprif 17465 xpsfrnel 17466 setcepi 17995 setc2obas 18001 frgpuptinv 19684 frgpup3lem 19690 frgpnabllem1 19786 dmdprdpr 19964 dprdpr 19965 coe1mul2lem1 22182 2ndcdisj 23372 xpstopnlem1 23725 sltval2 27596 nosgnn0 27598 sltintdifex 27601 sltres 27602 nogesgn1ores 27614 sltsolem1 27615 nosepnelem 27619 nogt01o 27636 noinfbnd1lem3 27665 noinfbnd2lem1 27670 bnj906 34940 gonan0 35434 gonar 35437 fmla0disjsuc 35440 rankeq1o 36211 onint1 36489 bj-disjsn01 36992 bj-0nel1 36993 bj-1nel0 36994 bj-pr21val 37053 bj-pr22val 37059 finxp1o 37432 finxp2o 37439 domalom 37444 wepwsolem 43081 onov0suclim 43313 clsk3nimkb 44079 clsk1indlem4 44083 clsk1indlem1 44084 nelsubc3 49109 prsthinc 49502 prstchom 49600 prstchom2ALT 49602 |
| Copyright terms: Public domain | W3C validator |