Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1n0 | Structured version Visualization version GIF version |
Description: Ordinal one is not equal to ordinal zero. (Contributed by NM, 26-Dec-2004.) |
Ref | Expression |
---|---|
1n0 | ⊢ 1o ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 8126 | . 2 ⊢ 1o = {∅} | |
2 | 0ex 5177 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | snnz 4669 | . 2 ⊢ {∅} ≠ ∅ |
4 | 1, 3 | eqnetri 3021 | 1 ⊢ 1o ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2951 ∅c0 4225 {csn 4522 1oc1o 8105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 ax-nul 5176 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-fal 1551 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ne 2952 df-v 3411 df-dif 3861 df-un 3863 df-nul 4226 df-sn 4523 df-suc 6175 df-1o 8112 |
This theorem is referenced by: xp01disj 8130 xp01disjl 8131 map2xp 8709 sdom1 8756 1sdom 8759 unxpdom2 8764 sucxpdom 8765 djuin 9380 eldju2ndl 9386 updjudhcoinrg 9395 card1 9430 pm54.43lem 9462 cflim2 9723 isfin4p1 9775 dcomex 9907 pwcfsdom 10043 cfpwsdom 10044 canthp1lem2 10113 wunex2 10198 1pi 10343 fnpr2o 16888 fnpr2ob 16889 fvpr0o 16890 fvpr1o 16891 fvprif 16892 xpsfrnel 16893 setcepi 17414 frgpuptinv 18964 frgpup3lem 18970 frgpnabllem1 19061 dmdprdpr 19239 dprdpr 19240 coe1mul2lem1 20991 2ndcdisj 22156 xpstopnlem1 22509 bnj906 32430 gonan0 32870 gonar 32873 fmla0disjsuc 32876 sltval2 33444 nosgnn0 33446 sltintdifex 33449 sltres 33450 nogesgn1ores 33462 sltsolem1 33463 nosepnelem 33467 nogt01o 33484 noinfbnd1lem3 33513 noinfbnd2lem1 33518 rankeq1o 34044 onint1 34209 bj-disjsn01 34691 bj-0nel1 34692 bj-1nel0 34693 bj-pr21val 34752 bj-pr22val 34758 finxp1o 35111 finxp2o 35118 domalom 35123 wepwsolem 40381 clsk3nimkb 41138 clsk1indlem4 41142 clsk1indlem1 41143 |
Copyright terms: Public domain | W3C validator |