![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1n0 | Structured version Visualization version GIF version |
Description: Ordinal one is not equal to ordinal zero. (Contributed by NM, 26-Dec-2004.) |
Ref | Expression |
---|---|
1n0 | ⊢ 1o ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 8529 | . 2 ⊢ 1o = {∅} | |
2 | 0ex 5325 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | snnz 4801 | . 2 ⊢ {∅} ≠ ∅ |
4 | 1, 3 | eqnetri 3017 | 1 ⊢ 1o ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2946 ∅c0 4352 {csn 4648 1oc1o 8515 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-un 3981 df-nul 4353 df-sn 4649 df-suc 6401 df-1o 8522 |
This theorem is referenced by: nlim1 8545 xp01disj 8547 xp01disjl 8548 enpr2d 9115 map2xp 9213 snnen2o 9300 0sdom1dom 9301 sdom1 9305 sdom1OLD 9306 rex2dom 9309 1sdom2dom 9310 1sdomOLD 9312 unxpdom2 9317 sucxpdom 9318 ssttrcl 9784 ttrclselem2 9795 djuin 9987 eldju2ndl 9993 updjudhcoinrg 10002 card1 10037 pm54.43lem 10069 cflim2 10332 isfin4p1 10384 dcomex 10516 pwcfsdom 10652 cfpwsdom 10653 canthp1lem2 10722 wunex2 10807 1pi 10952 fnpr2o 17617 fnpr2ob 17618 fvpr0o 17619 fvpr1o 17620 fvprif 17621 xpsfrnel 17622 setcepi 18155 setc2obas 18161 frgpuptinv 19813 frgpup3lem 19819 frgpnabllem1 19915 dmdprdpr 20093 dprdpr 20094 coe1mul2lem1 22291 2ndcdisj 23485 xpstopnlem1 23838 sltval2 27719 nosgnn0 27721 sltintdifex 27724 sltres 27725 nogesgn1ores 27737 sltsolem1 27738 nosepnelem 27742 nogt01o 27759 noinfbnd1lem3 27788 noinfbnd2lem1 27793 bnj906 34906 gonan0 35360 gonar 35363 fmla0disjsuc 35366 rankeq1o 36135 onint1 36415 bj-disjsn01 36918 bj-0nel1 36919 bj-1nel0 36920 bj-pr21val 36979 bj-pr22val 36985 finxp1o 37358 finxp2o 37365 domalom 37370 wepwsolem 42999 onov0suclim 43236 clsk3nimkb 44002 clsk1indlem4 44006 clsk1indlem1 44007 prsthinc 48721 prstchom 48744 prstchom2ALT 48746 |
Copyright terms: Public domain | W3C validator |