| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1n0 | Structured version Visualization version GIF version | ||
| Description: Ordinal one is not equal to ordinal zero. (Contributed by NM, 26-Dec-2004.) |
| Ref | Expression |
|---|---|
| 1n0 | ⊢ 1o ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 8444 | . 2 ⊢ 1o = {∅} | |
| 2 | 0ex 5265 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | snnz 4743 | . 2 ⊢ {∅} ≠ ∅ |
| 4 | 1, 3 | eqnetri 2996 | 1 ⊢ 1o ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2926 ∅c0 4299 {csn 4592 1oc1o 8430 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3452 df-dif 3920 df-un 3922 df-nul 4300 df-sn 4593 df-suc 6341 df-1o 8437 |
| This theorem is referenced by: nlim1 8456 xp01disj 8458 xp01disjl 8459 enpr2d 9023 map2xp 9117 snnen2o 9191 0sdom1dom 9192 sdom1 9196 sdom1OLD 9197 rex2dom 9200 1sdom2dom 9201 1sdomOLD 9203 unxpdom2 9208 sucxpdom 9209 ssttrcl 9675 ttrclselem2 9686 djuin 9878 eldju2ndl 9884 updjudhcoinrg 9893 card1 9928 pm54.43lem 9960 cflim2 10223 isfin4p1 10275 dcomex 10407 pwcfsdom 10543 cfpwsdom 10544 canthp1lem2 10613 wunex2 10698 1pi 10843 fnpr2o 17527 fnpr2ob 17528 fvpr0o 17529 fvpr1o 17530 fvprif 17531 xpsfrnel 17532 setcepi 18057 setc2obas 18063 frgpuptinv 19708 frgpup3lem 19714 frgpnabllem1 19810 dmdprdpr 19988 dprdpr 19989 coe1mul2lem1 22160 2ndcdisj 23350 xpstopnlem1 23703 sltval2 27575 nosgnn0 27577 sltintdifex 27580 sltres 27581 nogesgn1ores 27593 sltsolem1 27594 nosepnelem 27598 nogt01o 27615 noinfbnd1lem3 27644 noinfbnd2lem1 27649 bnj906 34927 gonan0 35386 gonar 35389 fmla0disjsuc 35392 rankeq1o 36166 onint1 36444 bj-disjsn01 36947 bj-0nel1 36948 bj-1nel0 36949 bj-pr21val 37008 bj-pr22val 37014 finxp1o 37387 finxp2o 37394 domalom 37399 wepwsolem 43038 onov0suclim 43270 clsk3nimkb 44036 clsk1indlem4 44040 clsk1indlem1 44041 nelsubc3 49064 prsthinc 49457 prstchom 49555 prstchom2ALT 49557 |
| Copyright terms: Public domain | W3C validator |