| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1n0 | Structured version Visualization version GIF version | ||
| Description: Ordinal one is not equal to ordinal zero. (Contributed by NM, 26-Dec-2004.) |
| Ref | Expression |
|---|---|
| 1n0 | ⊢ 1o ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 8441 | . 2 ⊢ 1o = {∅} | |
| 2 | 0ex 5262 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | snnz 4740 | . 2 ⊢ {∅} ≠ ∅ |
| 4 | 1, 3 | eqnetri 2995 | 1 ⊢ 1o ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2925 ∅c0 4296 {csn 4589 1oc1o 8427 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3449 df-dif 3917 df-un 3919 df-nul 4297 df-sn 4590 df-suc 6338 df-1o 8434 |
| This theorem is referenced by: nlim1 8453 xp01disj 8455 xp01disjl 8456 enpr2d 9020 map2xp 9111 snnen2o 9184 0sdom1dom 9185 sdom1 9189 sdom1OLD 9190 rex2dom 9193 1sdom2dom 9194 1sdomOLD 9196 unxpdom2 9201 sucxpdom 9202 ssttrcl 9668 ttrclselem2 9679 djuin 9871 eldju2ndl 9877 updjudhcoinrg 9886 card1 9921 pm54.43lem 9953 cflim2 10216 isfin4p1 10268 dcomex 10400 pwcfsdom 10536 cfpwsdom 10537 canthp1lem2 10606 wunex2 10691 1pi 10836 fnpr2o 17520 fnpr2ob 17521 fvpr0o 17522 fvpr1o 17523 fvprif 17524 xpsfrnel 17525 setcepi 18050 setc2obas 18056 frgpuptinv 19701 frgpup3lem 19707 frgpnabllem1 19803 dmdprdpr 19981 dprdpr 19982 coe1mul2lem1 22153 2ndcdisj 23343 xpstopnlem1 23696 sltval2 27568 nosgnn0 27570 sltintdifex 27573 sltres 27574 nogesgn1ores 27586 sltsolem1 27587 nosepnelem 27591 nogt01o 27608 noinfbnd1lem3 27637 noinfbnd2lem1 27642 bnj906 34920 gonan0 35379 gonar 35382 fmla0disjsuc 35385 rankeq1o 36159 onint1 36437 bj-disjsn01 36940 bj-0nel1 36941 bj-1nel0 36942 bj-pr21val 37001 bj-pr22val 37007 finxp1o 37380 finxp2o 37387 domalom 37392 wepwsolem 43031 onov0suclim 43263 clsk3nimkb 44029 clsk1indlem4 44033 clsk1indlem1 44034 nelsubc3 49060 prsthinc 49453 prstchom 49551 prstchom2ALT 49553 |
| Copyright terms: Public domain | W3C validator |