Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 1n0 | Structured version Visualization version GIF version |
Description: Ordinal one is not equal to ordinal zero. (Contributed by NM, 26-Dec-2004.) |
Ref | Expression |
---|---|
1n0 | ⊢ 1o ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 8335 | . 2 ⊢ 1o = {∅} | |
2 | 0ex 5240 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | snnz 4716 | . 2 ⊢ {∅} ≠ ∅ |
4 | 1, 3 | eqnetri 3012 | 1 ⊢ 1o ≠ ∅ |
Colors of variables: wff setvar class |
Syntax hints: ≠ wne 2941 ∅c0 4262 {csn 4565 1oc1o 8321 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-nul 5239 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-v 3439 df-dif 3895 df-un 3897 df-nul 4263 df-sn 4566 df-suc 6287 df-1o 8328 |
This theorem is referenced by: nlim1 8350 xp01disj 8352 xp01disjl 8353 enpr2d 8874 map2xp 8972 snnen2o 9058 0sdom1dom 9059 sdom1 9063 sdom1OLD 9064 rex2dom 9067 1sdom2dom 9068 1sdomOLD 9070 unxpdom2 9075 sucxpdom 9076 ssttrcl 9517 ttrclselem2 9528 djuin 9720 eldju2ndl 9726 updjudhcoinrg 9735 card1 9770 pm54.43lem 9802 cflim2 10065 isfin4p1 10117 dcomex 10249 pwcfsdom 10385 cfpwsdom 10386 canthp1lem2 10455 wunex2 10540 1pi 10685 fnpr2o 17313 fnpr2ob 17314 fvpr0o 17315 fvpr1o 17316 fvprif 17317 xpsfrnel 17318 setcepi 17848 setc2obas 17854 frgpuptinv 19422 frgpup3lem 19428 frgpnabllem1 19519 dmdprdpr 19697 dprdpr 19698 coe1mul2lem1 21483 2ndcdisj 22652 xpstopnlem1 23005 bnj906 32955 gonan0 33399 gonar 33402 fmla0disjsuc 33405 sltval2 33904 nosgnn0 33906 sltintdifex 33909 sltres 33910 nogesgn1ores 33922 sltsolem1 33923 nosepnelem 33927 nogt01o 33944 noinfbnd1lem3 33973 noinfbnd2lem1 33978 rankeq1o 34518 onint1 34683 bj-disjsn01 35186 bj-0nel1 35187 bj-1nel0 35188 bj-pr21val 35247 bj-pr22val 35253 finxp1o 35607 finxp2o 35614 domalom 35619 wepwsolem 40905 clsk3nimkb 41688 clsk1indlem4 41692 clsk1indlem1 41693 prsthinc 46393 prstchom 46416 prstchom2ALT 46418 |
Copyright terms: Public domain | W3C validator |