| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1n0 | Structured version Visualization version GIF version | ||
| Description: Ordinal one is not equal to ordinal zero. (Contributed by NM, 26-Dec-2004.) |
| Ref | Expression |
|---|---|
| 1n0 | ⊢ 1o ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 8402 | . 2 ⊢ 1o = {∅} | |
| 2 | 0ex 5249 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | snnz 4730 | . 2 ⊢ {∅} ≠ ∅ |
| 4 | 1, 3 | eqnetri 2995 | 1 ⊢ 1o ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2925 ∅c0 4286 {csn 4579 1oc1o 8388 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3440 df-dif 3908 df-un 3910 df-nul 4287 df-sn 4580 df-suc 6317 df-1o 8395 |
| This theorem is referenced by: nlim1 8414 xp01disj 8416 xp01disjl 8417 enpr2d 8981 map2xp 9071 snnen2o 9144 0sdom1dom 9145 sdom1 9149 rex2dom 9152 1sdom2dom 9153 unxpdom2 9159 sucxpdom 9160 ssttrcl 9630 ttrclselem2 9641 djuin 9833 eldju2ndl 9839 updjudhcoinrg 9848 card1 9883 pm54.43lem 9915 cflim2 10176 isfin4p1 10228 dcomex 10360 pwcfsdom 10496 cfpwsdom 10497 canthp1lem2 10566 wunex2 10651 1pi 10796 fnpr2o 17479 fnpr2ob 17480 fvpr0o 17481 fvpr1o 17482 fvprif 17483 xpsfrnel 17484 setcepi 18013 setc2obas 18019 frgpuptinv 19668 frgpup3lem 19674 frgpnabllem1 19770 dmdprdpr 19948 dprdpr 19949 coe1mul2lem1 22169 2ndcdisj 23359 xpstopnlem1 23712 sltval2 27584 nosgnn0 27586 sltintdifex 27589 sltres 27590 nogesgn1ores 27602 sltsolem1 27603 nosepnelem 27607 nogt01o 27624 noinfbnd1lem3 27653 noinfbnd2lem1 27658 bnj906 34899 gonan0 35367 gonar 35370 fmla0disjsuc 35373 rankeq1o 36147 onint1 36425 bj-disjsn01 36928 bj-0nel1 36929 bj-1nel0 36930 bj-pr21val 36989 bj-pr22val 36995 finxp1o 37368 finxp2o 37375 domalom 37380 wepwsolem 43018 onov0suclim 43250 clsk3nimkb 44016 clsk1indlem4 44020 clsk1indlem1 44021 nelsubc3 49060 prsthinc 49453 prstchom 49551 prstchom2ALT 49553 |
| Copyright terms: Public domain | W3C validator |