| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1n0 | Structured version Visualization version GIF version | ||
| Description: Ordinal one is not equal to ordinal zero. (Contributed by NM, 26-Dec-2004.) |
| Ref | Expression |
|---|---|
| 1n0 | ⊢ 1o ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df1o2 8400 | . 2 ⊢ 1o = {∅} | |
| 2 | 0ex 5249 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | snnz 4730 | . 2 ⊢ {∅} ≠ ∅ |
| 4 | 1, 3 | eqnetri 2999 | 1 ⊢ 1o ≠ ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ≠ wne 2929 ∅c0 4282 {csn 4577 1oc1o 8386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-nul 5248 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-v 3439 df-dif 3901 df-un 3903 df-nul 4283 df-sn 4578 df-suc 6319 df-1o 8393 |
| This theorem is referenced by: nlim1 8412 xp01disj 8414 xp01disjl 8415 enpr2d 8979 map2xp 9069 snnen2o 9138 0sdom1dom 9139 sdom1 9143 rex2dom 9146 1sdom2dom 9147 unxpdom2 9153 sucxpdom 9154 ssttrcl 9614 ttrclselem2 9625 djuin 9820 eldju2ndl 9826 updjudhcoinrg 9835 card1 9870 pm54.43lem 9902 cflim2 10163 isfin4p1 10215 dcomex 10347 pwcfsdom 10483 cfpwsdom 10484 canthp1lem2 10553 wunex2 10638 1pi 10783 fnpr2o 17465 fnpr2ob 17466 fvpr0o 17467 fvpr1o 17468 fvprif 17469 xpsfrnel 17470 setcepi 17999 setc2obas 18005 frgpuptinv 19687 frgpup3lem 19693 frgpnabllem1 19789 dmdprdpr 19967 dprdpr 19968 coe1mul2lem1 22184 2ndcdisj 23374 xpstopnlem1 23727 sltval2 27598 nosgnn0 27600 sltintdifex 27603 sltres 27604 nogesgn1ores 27616 sltsolem1 27617 nosepnelem 27621 nogt01o 27638 noinfbnd1lem3 27667 noinfbnd2lem1 27672 bnj906 34965 gonan0 35459 gonar 35462 fmla0disjsuc 35465 rankeq1o 36238 onint1 36516 bj-disjsn01 37019 bj-0nel1 37020 bj-1nel0 37021 bj-pr21val 37080 bj-pr22val 37086 finxp1o 37459 finxp2o 37466 domalom 37471 wepwsolem 43162 onov0suclim 43394 clsk3nimkb 44160 clsk1indlem4 44164 clsk1indlem1 44165 nelsubc3 49199 prsthinc 49592 prstchom 49690 prstchom2ALT 49692 |
| Copyright terms: Public domain | W3C validator |