Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-disjcsn | Structured version Visualization version GIF version |
Description: A class is disjoint from its singleton. A consequence of regularity. Shorter proof than bnj521 32249 and does not depend on df-ne 2953. (Contributed by BJ, 4-Apr-2019.) |
Ref | Expression |
---|---|
bj-disjcsn | ⊢ (𝐴 ∩ {𝐴}) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 9108 | . 2 ⊢ ¬ 𝐴 ∈ 𝐴 | |
2 | disjsn 4608 | . 2 ⊢ ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ 𝐴) | |
3 | 1, 2 | mpbir 234 | 1 ⊢ (𝐴 ∩ {𝐴}) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2112 ∩ cin 3860 ∅c0 4228 {csn 4526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-12 2176 ax-ext 2730 ax-sep 5174 ax-nul 5181 ax-pr 5303 ax-reg 9103 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-ral 3076 df-rex 3077 df-v 3412 df-dif 3864 df-un 3866 df-in 3868 df-nul 4229 df-sn 4527 df-pr 4529 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |