![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-disjcsn | Structured version Visualization version GIF version |
Description: A class is disjoint from its singleton. A consequence of regularity. Shorter proof than bnj521 31687 and does not depend on df-ne 2961. (Contributed by BJ, 4-Apr-2019.) |
Ref | Expression |
---|---|
bj-disjcsn | ⊢ (𝐴 ∩ {𝐴}) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 8854 | . 2 ⊢ ¬ 𝐴 ∈ 𝐴 | |
2 | disjsn 4517 | . 2 ⊢ ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴 ∈ 𝐴) | |
3 | 1, 2 | mpbir 223 | 1 ⊢ (𝐴 ∩ {𝐴}) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1508 ∈ wcel 2051 ∩ cin 3821 ∅c0 4172 {csn 4435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pr 5182 ax-reg 8849 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ral 3086 df-rex 3087 df-v 3410 df-dif 3825 df-un 3827 df-in 3829 df-nul 4173 df-sn 4436 df-pr 4438 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |