![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj521 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj521 | ⊢ (𝐴 ∩ {𝐴}) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 8854 | . . . 4 ⊢ ¬ 𝐴 ∈ 𝐴 | |
2 | elin 4051 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∩ {𝐴}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ {𝐴})) | |
3 | velsn 4451 | . . . . . . 7 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
4 | eleq1 2846 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐴 ↔ 𝐴 ∈ 𝐴)) | |
5 | 4 | biimpac 471 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐴) → 𝐴 ∈ 𝐴) |
6 | 3, 5 | sylan2b 585 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ {𝐴}) → 𝐴 ∈ 𝐴) |
7 | 2, 6 | sylbi 209 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ {𝐴}) → 𝐴 ∈ 𝐴) |
8 | 7 | exlimiv 1890 | . . . 4 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∩ {𝐴}) → 𝐴 ∈ 𝐴) |
9 | 1, 8 | mto 189 | . . 3 ⊢ ¬ ∃𝑥 𝑥 ∈ (𝐴 ∩ {𝐴}) |
10 | n0 4190 | . . 3 ⊢ ((𝐴 ∩ {𝐴}) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐴 ∩ {𝐴})) | |
11 | 9, 10 | mtbir 315 | . 2 ⊢ ¬ (𝐴 ∩ {𝐴}) ≠ ∅ |
12 | nne 2964 | . 2 ⊢ (¬ (𝐴 ∩ {𝐴}) ≠ ∅ ↔ (𝐴 ∩ {𝐴}) = ∅) | |
13 | 11, 12 | mpbi 222 | 1 ⊢ (𝐴 ∩ {𝐴}) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 387 = wceq 1508 ∃wex 1743 ∈ wcel 2051 ≠ wne 2960 ∩ cin 3821 ∅c0 4172 {csn 4435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pr 5182 ax-reg 8849 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-ral 3086 df-rex 3087 df-v 3410 df-dif 3825 df-un 3827 df-in 3829 df-nul 4173 df-sn 4436 df-pr 4438 |
This theorem is referenced by: bnj927 31720 bnj535 31841 |
Copyright terms: Public domain | W3C validator |