Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj521 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj521 | ⊢ (𝐴 ∩ {𝐴}) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 9356 | . . . 4 ⊢ ¬ 𝐴 ∈ 𝐴 | |
2 | elin 3903 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∩ {𝐴}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ {𝐴})) | |
3 | velsn 4577 | . . . . . . 7 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
4 | eleq1 2826 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐴 ↔ 𝐴 ∈ 𝐴)) | |
5 | 4 | biimpac 479 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐴) → 𝐴 ∈ 𝐴) |
6 | 3, 5 | sylan2b 594 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ {𝐴}) → 𝐴 ∈ 𝐴) |
7 | 2, 6 | sylbi 216 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ {𝐴}) → 𝐴 ∈ 𝐴) |
8 | 7 | exlimiv 1933 | . . . 4 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∩ {𝐴}) → 𝐴 ∈ 𝐴) |
9 | 1, 8 | mto 196 | . . 3 ⊢ ¬ ∃𝑥 𝑥 ∈ (𝐴 ∩ {𝐴}) |
10 | n0 4280 | . . 3 ⊢ ((𝐴 ∩ {𝐴}) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐴 ∩ {𝐴})) | |
11 | 9, 10 | mtbir 323 | . 2 ⊢ ¬ (𝐴 ∩ {𝐴}) ≠ ∅ |
12 | nne 2947 | . 2 ⊢ (¬ (𝐴 ∩ {𝐴}) ≠ ∅ ↔ (𝐴 ∩ {𝐴}) = ∅) | |
13 | 11, 12 | mpbi 229 | 1 ⊢ (𝐴 ∩ {𝐴}) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 ∩ cin 3886 ∅c0 4256 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-reg 9351 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-nul 4257 df-sn 4562 df-pr 4564 |
This theorem is referenced by: bnj927 32749 bnj535 32870 |
Copyright terms: Public domain | W3C validator |