Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj521 Structured version   Visualization version   GIF version

Theorem bnj521 32616
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj521 (𝐴 ∩ {𝐴}) = ∅

Proof of Theorem bnj521
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elirr 9286 . . . 4 ¬ 𝐴𝐴
2 elin 3899 . . . . . 6 (𝑥 ∈ (𝐴 ∩ {𝐴}) ↔ (𝑥𝐴𝑥 ∈ {𝐴}))
3 velsn 4574 . . . . . . 7 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
4 eleq1 2826 . . . . . . . 8 (𝑥 = 𝐴 → (𝑥𝐴𝐴𝐴))
54biimpac 478 . . . . . . 7 ((𝑥𝐴𝑥 = 𝐴) → 𝐴𝐴)
63, 5sylan2b 593 . . . . . 6 ((𝑥𝐴𝑥 ∈ {𝐴}) → 𝐴𝐴)
72, 6sylbi 216 . . . . 5 (𝑥 ∈ (𝐴 ∩ {𝐴}) → 𝐴𝐴)
87exlimiv 1934 . . . 4 (∃𝑥 𝑥 ∈ (𝐴 ∩ {𝐴}) → 𝐴𝐴)
91, 8mto 196 . . 3 ¬ ∃𝑥 𝑥 ∈ (𝐴 ∩ {𝐴})
10 n0 4277 . . 3 ((𝐴 ∩ {𝐴}) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐴 ∩ {𝐴}))
119, 10mtbir 322 . 2 ¬ (𝐴 ∩ {𝐴}) ≠ ∅
12 nne 2946 . 2 (¬ (𝐴 ∩ {𝐴}) ≠ ∅ ↔ (𝐴 ∩ {𝐴}) = ∅)
1311, 12mpbi 229 1 (𝐴 ∩ {𝐴}) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1539  wex 1783  wcel 2108  wne 2942  cin 3882  c0 4253  {csn 4558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-reg 9281
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-nul 4254  df-sn 4559  df-pr 4561
This theorem is referenced by:  bnj927  32649  bnj535  32770
  Copyright terms: Public domain W3C validator