Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj521 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj521 | ⊢ (𝐴 ∩ {𝐴}) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 9286 | . . . 4 ⊢ ¬ 𝐴 ∈ 𝐴 | |
2 | elin 3899 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∩ {𝐴}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ {𝐴})) | |
3 | velsn 4574 | . . . . . . 7 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
4 | eleq1 2826 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐴 ↔ 𝐴 ∈ 𝐴)) | |
5 | 4 | biimpac 478 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐴) → 𝐴 ∈ 𝐴) |
6 | 3, 5 | sylan2b 593 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ {𝐴}) → 𝐴 ∈ 𝐴) |
7 | 2, 6 | sylbi 216 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ {𝐴}) → 𝐴 ∈ 𝐴) |
8 | 7 | exlimiv 1934 | . . . 4 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∩ {𝐴}) → 𝐴 ∈ 𝐴) |
9 | 1, 8 | mto 196 | . . 3 ⊢ ¬ ∃𝑥 𝑥 ∈ (𝐴 ∩ {𝐴}) |
10 | n0 4277 | . . 3 ⊢ ((𝐴 ∩ {𝐴}) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐴 ∩ {𝐴})) | |
11 | 9, 10 | mtbir 322 | . 2 ⊢ ¬ (𝐴 ∩ {𝐴}) ≠ ∅ |
12 | nne 2946 | . 2 ⊢ (¬ (𝐴 ∩ {𝐴}) ≠ ∅ ↔ (𝐴 ∩ {𝐴}) = ∅) | |
13 | 11, 12 | mpbi 229 | 1 ⊢ (𝐴 ∩ {𝐴}) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 ∩ cin 3882 ∅c0 4253 {csn 4558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-reg 9281 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-nul 4254 df-sn 4559 df-pr 4561 |
This theorem is referenced by: bnj927 32649 bnj535 32770 |
Copyright terms: Public domain | W3C validator |