| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elirr | Structured version Visualization version GIF version | ||
| Description: No class is a member of itself. Exercise 6 of [TakeutiZaring] p. 22. Theorem 1.9(i) of [Schloeder] p. 1. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| elirr | ⊢ ¬ 𝐴 ∈ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 2 | 1, 1 | eleq12d 2827 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑥 ↔ 𝐴 ∈ 𝐴)) |
| 3 | 2 | notbid 318 | . . 3 ⊢ (𝑥 = 𝐴 → (¬ 𝑥 ∈ 𝑥 ↔ ¬ 𝐴 ∈ 𝐴)) |
| 4 | elirrv 9490 | . . 3 ⊢ ¬ 𝑥 ∈ 𝑥 | |
| 5 | 3, 4 | vtoclg 3508 | . 2 ⊢ (𝐴 ∈ 𝐴 → ¬ 𝐴 ∈ 𝐴) |
| 6 | pm2.01 188 | . 2 ⊢ ((𝐴 ∈ 𝐴 → ¬ 𝐴 ∈ 𝐴) → ¬ 𝐴 ∈ 𝐴) | |
| 7 | 5, 6 | ax-mp 5 | 1 ⊢ ¬ 𝐴 ∈ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2113 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-pr 5372 ax-reg 9485 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 |
| This theorem is referenced by: elneq 9493 nelaneq 9494 sucprcreg 9497 ruv 9498 disjcsn 9500 alephval3 10008 prv1n 35496 rankeq1o 36236 hfninf 36251 bj-iomnnom 37324 omabs2 43449 setc1onsubc 49727 |
| Copyright terms: Public domain | W3C validator |