![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elirr | Structured version Visualization version GIF version |
Description: No class is a member of itself. Exercise 6 of [TakeutiZaring] p. 22. Theorem 1.9(i) of [Schloeder] p. 1. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
elirr | ⊢ ¬ 𝐴 ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
2 | 1, 1 | eleq12d 2819 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑥 ↔ 𝐴 ∈ 𝐴)) |
3 | 2 | notbid 317 | . . 3 ⊢ (𝑥 = 𝐴 → (¬ 𝑥 ∈ 𝑥 ↔ ¬ 𝐴 ∈ 𝐴)) |
4 | elirrv 9626 | . . 3 ⊢ ¬ 𝑥 ∈ 𝑥 | |
5 | 3, 4 | vtoclg 3532 | . 2 ⊢ (𝐴 ∈ 𝐴 → ¬ 𝐴 ∈ 𝐴) |
6 | pm2.01 188 | . 2 ⊢ ((𝐴 ∈ 𝐴 → ¬ 𝐴 ∈ 𝐴) → ¬ 𝐴 ∈ 𝐴) | |
7 | 5, 6 | ax-mp 5 | 1 ⊢ ¬ 𝐴 ∈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1533 ∈ wcel 2098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-pr 5429 ax-reg 9622 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3051 df-rex 3060 df-v 3463 df-un 3949 df-sn 4631 df-pr 4633 |
This theorem is referenced by: elneq 9628 sucprcreg 9631 ruv 9632 disjcsn 9634 alephval3 10140 prv1n 35174 rankeq1o 35900 hfninf 35915 bj-iomnnom 36871 omabs2 42905 |
Copyright terms: Public domain | W3C validator |