MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elirr Structured version   Visualization version   GIF version

Theorem elirr 9485
Description: No class is a member of itself. Exercise 6 of [TakeutiZaring] p. 22. Theorem 1.9(i) of [Schloeder] p. 1. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
elirr ¬ 𝐴𝐴

Proof of Theorem elirr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
21, 1eleq12d 2825 . . . 4 (𝑥 = 𝐴 → (𝑥𝑥𝐴𝐴))
32notbid 318 . . 3 (𝑥 = 𝐴 → (¬ 𝑥𝑥 ↔ ¬ 𝐴𝐴))
4 elirrv 9483 . . 3 ¬ 𝑥𝑥
53, 4vtoclg 3509 . 2 (𝐴𝐴 → ¬ 𝐴𝐴)
6 pm2.01 188 . 2 ((𝐴𝐴 → ¬ 𝐴𝐴) → ¬ 𝐴𝐴)
75, 6ax-mp 5 1 ¬ 𝐴𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-pr 5370  ax-reg 9478
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806
This theorem is referenced by:  elneq  9486  nelaneq  9487  sucprcreg  9490  ruv  9491  disjcsn  9493  alephval3  9998  prv1n  35463  rankeq1o  36204  hfninf  36219  bj-iomnnom  37292  omabs2  43364  setc1onsubc  49633
  Copyright terms: Public domain W3C validator