![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elirr | Structured version Visualization version GIF version |
Description: No class is a member of itself. Exercise 6 of [TakeutiZaring] p. 22. Theorem 1.9(i) of [Schloeder] p. 1. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
elirr | ⊢ ¬ 𝐴 ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
2 | 1, 1 | eleq12d 2838 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝑥 ↔ 𝐴 ∈ 𝐴)) |
3 | 2 | notbid 318 | . . 3 ⊢ (𝑥 = 𝐴 → (¬ 𝑥 ∈ 𝑥 ↔ ¬ 𝐴 ∈ 𝐴)) |
4 | elirrv 9665 | . . 3 ⊢ ¬ 𝑥 ∈ 𝑥 | |
5 | 3, 4 | vtoclg 3566 | . 2 ⊢ (𝐴 ∈ 𝐴 → ¬ 𝐴 ∈ 𝐴) |
6 | pm2.01 188 | . 2 ⊢ ((𝐴 ∈ 𝐴 → ¬ 𝐴 ∈ 𝐴) → ¬ 𝐴 ∈ 𝐴) | |
7 | 5, 6 | ax-mp 5 | 1 ⊢ ¬ 𝐴 ∈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-pr 5447 ax-reg 9661 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-v 3490 df-un 3981 df-sn 4649 df-pr 4651 |
This theorem is referenced by: elneq 9667 sucprcreg 9670 ruv 9671 disjcsn 9673 alephval3 10179 prv1n 35399 rankeq1o 36135 hfninf 36150 bj-iomnnom 37225 omabs2 43294 |
Copyright terms: Public domain | W3C validator |