MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elirr Structured version   Visualization version   GIF version

Theorem elirr 9557
Description: No class is a member of itself. Exercise 6 of [TakeutiZaring] p. 22. Theorem 1.9(i) of [Schloeder] p. 1. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
elirr ¬ 𝐴𝐴

Proof of Theorem elirr
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
21, 1eleq12d 2823 . . . 4 (𝑥 = 𝐴 → (𝑥𝑥𝐴𝐴))
32notbid 318 . . 3 (𝑥 = 𝐴 → (¬ 𝑥𝑥 ↔ ¬ 𝐴𝐴))
4 elirrv 9556 . . 3 ¬ 𝑥𝑥
53, 4vtoclg 3523 . 2 (𝐴𝐴 → ¬ 𝐴𝐴)
6 pm2.01 188 . 2 ((𝐴𝐴 → ¬ 𝐴𝐴) → ¬ 𝐴𝐴)
75, 6ax-mp 5 1 ¬ 𝐴𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-pr 5390  ax-reg 9552
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-v 3452  df-un 3922  df-sn 4593  df-pr 4595
This theorem is referenced by:  elneq  9558  sucprcreg  9561  ruv  9562  disjcsn  9564  alephval3  10070  prv1n  35425  rankeq1o  36166  hfninf  36181  bj-iomnnom  37254  omabs2  43328  setc1onsubc  49595
  Copyright terms: Public domain W3C validator