| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjsn2 | Structured version Visualization version GIF version | ||
| Description: Two distinct singletons are disjoint. (Contributed by NM, 25-May-1998.) |
| Ref | Expression |
|---|---|
| disjsn2 | ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni 4609 | . . . 4 ⊢ (𝐵 ∈ {𝐴} → 𝐵 = 𝐴) | |
| 2 | 1 | eqcomd 2736 | . . 3 ⊢ (𝐵 ∈ {𝐴} → 𝐴 = 𝐵) |
| 3 | 2 | necon3ai 2951 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐵 ∈ {𝐴}) |
| 4 | disjsn 4678 | . 2 ⊢ (({𝐴} ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ {𝐴}) | |
| 5 | 3, 4 | sylibr 234 | 1 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∩ cin 3916 ∅c0 4299 {csn 4592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-v 3452 df-dif 3920 df-in 3924 df-nul 4300 df-sn 4593 |
| This theorem is referenced by: disjpr2 4680 disjtpsn 4682 difprsn1 4767 otsndisj 5482 xpsndisj 6139 funprg 6573 funtp 6576 funcnvpr 6581 f1oprg 6848 xp01disjl 8459 enpr2dOLD 9024 djuin 9878 pm54.43 9961 pr2nelemOLD 9963 f1oun2prg 14890 s3sndisj 14940 sumpr 15721 cshwsdisj 17076 setsfun0 17149 setscom 17157 gsumpr 19892 dmdprdpr 19988 dprdpr 19989 ablfac1eulem 20011 cnfldfunALT 21286 cnfldfunALTOLD 21299 m2detleib 22525 dishaus 23276 dissnlocfin 23423 xpstopnlem1 23703 perfectlem2 27148 cosnopne 32624 prodpr 32758 esumpr 34063 esum2dlem 34089 prodfzo03 34601 onint1 36444 bj-disjsn01 36947 lindsadd 37614 poimirlem26 37647 sumpair 45036 perfectALTVlem2 47727 |
| Copyright terms: Public domain | W3C validator |