Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > disjsn2 | Structured version Visualization version GIF version |
Description: Two distinct singletons are disjoint. (Contributed by NM, 25-May-1998.) |
Ref | Expression |
---|---|
disjsn2 | ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsni 4590 | . . . 4 ⊢ (𝐵 ∈ {𝐴} → 𝐵 = 𝐴) | |
2 | 1 | eqcomd 2742 | . . 3 ⊢ (𝐵 ∈ {𝐴} → 𝐴 = 𝐵) |
3 | 2 | necon3ai 2965 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐵 ∈ {𝐴}) |
4 | disjsn 4659 | . 2 ⊢ (({𝐴} ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ {𝐴}) | |
5 | 3, 4 | sylibr 233 | 1 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ∩ cin 3897 ∅c0 4269 {csn 4573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-v 3443 df-dif 3901 df-in 3905 df-nul 4270 df-sn 4574 |
This theorem is referenced by: disjpr2 4661 disjtpsn 4663 difprsn1 4747 otsndisj 5463 xpsndisj 6101 funprg 6538 funtp 6541 funcnvpr 6546 f1oprg 6812 xp01disjl 8393 enpr2dOLD 8915 phplem1OLD 9082 djuin 9775 pm54.43 9858 pr2nelemOLD 9860 f1oun2prg 14729 s3sndisj 14777 sumpr 15559 cshwsdisj 16897 setsfun0 16970 setscom 16978 gsumpr 19651 dmdprdpr 19747 dprdpr 19748 ablfac1eulem 19770 cnfldfunALT 20716 cnfldfunALTOLD 20717 m2detleib 21886 dishaus 22639 dissnlocfin 22786 xpstopnlem1 23066 perfectlem2 26484 cosnopne 31314 prodpr 31427 esumpr 32332 esum2dlem 32358 prodfzo03 32883 onint1 34734 bj-disjsn01 35236 lindsadd 35883 poimirlem26 35916 sumpair 42907 perfectALTVlem2 45533 |
Copyright terms: Public domain | W3C validator |