| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjsn2 | Structured version Visualization version GIF version | ||
| Description: Two distinct singletons are disjoint. (Contributed by NM, 25-May-1998.) |
| Ref | Expression |
|---|---|
| disjsn2 | ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni 4606 | . . . 4 ⊢ (𝐵 ∈ {𝐴} → 𝐵 = 𝐴) | |
| 2 | 1 | eqcomd 2735 | . . 3 ⊢ (𝐵 ∈ {𝐴} → 𝐴 = 𝐵) |
| 3 | 2 | necon3ai 2950 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐵 ∈ {𝐴}) |
| 4 | disjsn 4675 | . 2 ⊢ (({𝐴} ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ {𝐴}) | |
| 5 | 3, 4 | sylibr 234 | 1 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∩ cin 3913 ∅c0 4296 {csn 4589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-v 3449 df-dif 3917 df-in 3921 df-nul 4297 df-sn 4590 |
| This theorem is referenced by: disjpr2 4677 disjtpsn 4679 difprsn1 4764 otsndisj 5479 xpsndisj 6136 funprg 6570 funtp 6573 funcnvpr 6578 f1oprg 6845 xp01disjl 8456 enpr2dOLD 9021 djuin 9871 pm54.43 9954 pr2nelemOLD 9956 f1oun2prg 14883 s3sndisj 14933 sumpr 15714 cshwsdisj 17069 setsfun0 17142 setscom 17150 gsumpr 19885 dmdprdpr 19981 dprdpr 19982 ablfac1eulem 20004 cnfldfunALT 21279 cnfldfunALTOLD 21292 m2detleib 22518 dishaus 23269 dissnlocfin 23416 xpstopnlem1 23696 perfectlem2 27141 cosnopne 32617 prodpr 32751 esumpr 34056 esum2dlem 34082 prodfzo03 34594 onint1 36437 bj-disjsn01 36940 lindsadd 37607 poimirlem26 37640 sumpair 45029 perfectALTVlem2 47723 |
| Copyright terms: Public domain | W3C validator |