MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjsn2 Structured version   Visualization version   GIF version

Theorem disjsn2 4666
Description: Two distinct singletons are disjoint. (Contributed by NM, 25-May-1998.)
Assertion
Ref Expression
disjsn2 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)

Proof of Theorem disjsn2
StepHypRef Expression
1 elsni 4594 . . . 4 (𝐵 ∈ {𝐴} → 𝐵 = 𝐴)
21eqcomd 2739 . . 3 (𝐵 ∈ {𝐴} → 𝐴 = 𝐵)
32necon3ai 2954 . 2 (𝐴𝐵 → ¬ 𝐵 ∈ {𝐴})
4 disjsn 4665 . 2 (({𝐴} ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ {𝐴})
53, 4sylibr 234 1 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2113  wne 2929  cin 3897  c0 4282  {csn 4577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-v 3439  df-dif 3901  df-in 3905  df-nul 4283  df-sn 4578
This theorem is referenced by:  disjpr2  4667  disjtpsn  4669  difprsn1  4753  otsndisj  5464  xpsndisj  6117  funprg  6542  funtp  6545  funcnvpr  6550  f1oprg  6816  xp01disjl  8415  djuin  9820  pm54.43  9903  f1oun2prg  14828  s3sndisj  14878  sumpr  15659  cshwsdisj  17014  setsfun0  17087  setscom  17095  gsumpr  19871  dmdprdpr  19967  dprdpr  19968  ablfac1eulem  19990  cnfldfunALT  21310  cnfldfunALTOLD  21323  m2detleib  22549  dishaus  23300  dissnlocfin  23447  xpstopnlem1  23727  perfectlem2  27171  cosnopne  32681  prodpr  32816  esumpr  34102  esum2dlem  34128  prodfzo03  34639  onint1  36516  bj-disjsn01  37019  lindsadd  37676  poimirlem26  37709  sumpair  45159  perfectALTVlem2  47849
  Copyright terms: Public domain W3C validator