![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disjsn2 | Structured version Visualization version GIF version |
Description: Two distinct singletons are disjoint. (Contributed by NM, 25-May-1998.) |
Ref | Expression |
---|---|
disjsn2 | ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsni 4665 | . . . 4 ⊢ (𝐵 ∈ {𝐴} → 𝐵 = 𝐴) | |
2 | 1 | eqcomd 2746 | . . 3 ⊢ (𝐵 ∈ {𝐴} → 𝐴 = 𝐵) |
3 | 2 | necon3ai 2971 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐵 ∈ {𝐴}) |
4 | disjsn 4736 | . 2 ⊢ (({𝐴} ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ {𝐴}) | |
5 | 3, 4 | sylibr 234 | 1 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∩ cin 3975 ∅c0 4352 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-v 3490 df-dif 3979 df-in 3983 df-nul 4353 df-sn 4649 |
This theorem is referenced by: disjpr2 4738 disjtpsn 4740 difprsn1 4825 otsndisj 5538 xpsndisj 6194 funprg 6632 funtp 6635 funcnvpr 6640 f1oprg 6907 xp01disjl 8548 enpr2dOLD 9116 phplem1OLD 9280 djuin 9987 pm54.43 10070 pr2nelemOLD 10072 f1oun2prg 14966 s3sndisj 15016 sumpr 15796 cshwsdisj 17146 setsfun0 17219 setscom 17227 gsumpr 19997 dmdprdpr 20093 dprdpr 20094 ablfac1eulem 20116 cnfldfunALT 21402 cnfldfunALTOLD 21415 cnfldfunALTOLDOLD 21416 m2detleib 22658 dishaus 23411 dissnlocfin 23558 xpstopnlem1 23838 perfectlem2 27292 cosnopne 32706 prodpr 32830 esumpr 34030 esum2dlem 34056 prodfzo03 34580 onint1 36415 bj-disjsn01 36918 lindsadd 37573 poimirlem26 37606 sumpair 44935 perfectALTVlem2 47596 |
Copyright terms: Public domain | W3C validator |