| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjsn2 | Structured version Visualization version GIF version | ||
| Description: Two distinct singletons are disjoint. (Contributed by NM, 25-May-1998.) |
| Ref | Expression |
|---|---|
| disjsn2 | ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni 4618 | . . . 4 ⊢ (𝐵 ∈ {𝐴} → 𝐵 = 𝐴) | |
| 2 | 1 | eqcomd 2741 | . . 3 ⊢ (𝐵 ∈ {𝐴} → 𝐴 = 𝐵) |
| 3 | 2 | necon3ai 2957 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐵 ∈ {𝐴}) |
| 4 | disjsn 4687 | . 2 ⊢ (({𝐴} ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ {𝐴}) | |
| 5 | 3, 4 | sylibr 234 | 1 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∩ cin 3925 ∅c0 4308 {csn 4601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-v 3461 df-dif 3929 df-in 3933 df-nul 4309 df-sn 4602 |
| This theorem is referenced by: disjpr2 4689 disjtpsn 4691 difprsn1 4776 otsndisj 5494 xpsndisj 6152 funprg 6590 funtp 6593 funcnvpr 6598 f1oprg 6863 xp01disjl 8504 enpr2dOLD 9064 phplem1OLD 9228 djuin 9932 pm54.43 10015 pr2nelemOLD 10017 f1oun2prg 14936 s3sndisj 14986 sumpr 15764 cshwsdisj 17118 setsfun0 17191 setscom 17199 gsumpr 19936 dmdprdpr 20032 dprdpr 20033 ablfac1eulem 20055 cnfldfunALT 21330 cnfldfunALTOLD 21343 m2detleib 22569 dishaus 23320 dissnlocfin 23467 xpstopnlem1 23747 perfectlem2 27193 cosnopne 32671 prodpr 32805 esumpr 34097 esum2dlem 34123 prodfzo03 34635 onint1 36467 bj-disjsn01 36970 lindsadd 37637 poimirlem26 37670 sumpair 45059 perfectALTVlem2 47736 |
| Copyright terms: Public domain | W3C validator |