MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjsn2 Structured version   Visualization version   GIF version

Theorem disjsn2 4645
Description: Two distinct singletons are disjoint. (Contributed by NM, 25-May-1998.)
Assertion
Ref Expression
disjsn2 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)

Proof of Theorem disjsn2
StepHypRef Expression
1 elsni 4575 . . . 4 (𝐵 ∈ {𝐴} → 𝐵 = 𝐴)
21eqcomd 2744 . . 3 (𝐵 ∈ {𝐴} → 𝐴 = 𝐵)
32necon3ai 2967 . 2 (𝐴𝐵 → ¬ 𝐵 ∈ {𝐴})
4 disjsn 4644 . 2 (({𝐴} ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ {𝐴})
53, 4sylibr 233 1 (𝐴𝐵 → ({𝐴} ∩ {𝐵}) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2108  wne 2942  cin 3882  c0 4253  {csn 4558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-v 3424  df-dif 3886  df-in 3890  df-nul 4254  df-sn 4559
This theorem is referenced by:  disjpr2  4646  disjtpsn  4648  difprsn1  4730  otsndisj  5427  xpsndisj  6055  funprg  6472  funtp  6475  funcnvpr  6480  f1oprg  6744  xp01disjl  8288  enpr2d  8792  phplem1  8892  djuin  9607  pm54.43  9690  pr2nelem  9691  f1oun2prg  14558  s3sndisj  14606  sumpr  15388  cshwsdisj  16728  setsfun0  16801  setscom  16809  gsumpr  19471  dmdprdpr  19567  dprdpr  19568  ablfac1eulem  19590  cnfldfun  20522  m2detleib  21688  dishaus  22441  dissnlocfin  22588  xpstopnlem1  22868  perfectlem2  26283  cosnopne  30929  prodpr  31042  esumpr  31934  esum2dlem  31960  prodfzo03  32483  onint1  34565  bj-disjsn01  35069  lindsadd  35697  poimirlem26  35730  sumpair  42467  perfectALTVlem2  45062
  Copyright terms: Public domain W3C validator