Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > disjsn2 | Structured version Visualization version GIF version |
Description: Two distinct singletons are disjoint. (Contributed by NM, 25-May-1998.) |
Ref | Expression |
---|---|
disjsn2 | ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsni 4575 | . . . 4 ⊢ (𝐵 ∈ {𝐴} → 𝐵 = 𝐴) | |
2 | 1 | eqcomd 2744 | . . 3 ⊢ (𝐵 ∈ {𝐴} → 𝐴 = 𝐵) |
3 | 2 | necon3ai 2967 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐵 ∈ {𝐴}) |
4 | disjsn 4644 | . 2 ⊢ (({𝐴} ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ {𝐴}) | |
5 | 3, 4 | sylibr 233 | 1 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∩ cin 3882 ∅c0 4253 {csn 4558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-v 3424 df-dif 3886 df-in 3890 df-nul 4254 df-sn 4559 |
This theorem is referenced by: disjpr2 4646 disjtpsn 4648 difprsn1 4730 otsndisj 5427 xpsndisj 6055 funprg 6472 funtp 6475 funcnvpr 6480 f1oprg 6744 xp01disjl 8288 enpr2d 8792 phplem1 8892 djuin 9607 pm54.43 9690 pr2nelem 9691 f1oun2prg 14558 s3sndisj 14606 sumpr 15388 cshwsdisj 16728 setsfun0 16801 setscom 16809 gsumpr 19471 dmdprdpr 19567 dprdpr 19568 ablfac1eulem 19590 cnfldfun 20522 m2detleib 21688 dishaus 22441 dissnlocfin 22588 xpstopnlem1 22868 perfectlem2 26283 cosnopne 30929 prodpr 31042 esumpr 31934 esum2dlem 31960 prodfzo03 32483 onint1 34565 bj-disjsn01 35069 lindsadd 35697 poimirlem26 35730 sumpair 42467 perfectALTVlem2 45062 |
Copyright terms: Public domain | W3C validator |