Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > disjsn2 | Structured version Visualization version GIF version |
Description: Two distinct singletons are disjoint. (Contributed by NM, 25-May-1998.) |
Ref | Expression |
---|---|
disjsn2 | ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsni 4578 | . . . 4 ⊢ (𝐵 ∈ {𝐴} → 𝐵 = 𝐴) | |
2 | 1 | eqcomd 2744 | . . 3 ⊢ (𝐵 ∈ {𝐴} → 𝐴 = 𝐵) |
3 | 2 | necon3ai 2968 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐵 ∈ {𝐴}) |
4 | disjsn 4647 | . 2 ⊢ (({𝐴} ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ {𝐴}) | |
5 | 3, 4 | sylibr 233 | 1 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∩ cin 3886 ∅c0 4256 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-v 3434 df-dif 3890 df-in 3894 df-nul 4257 df-sn 4562 |
This theorem is referenced by: disjpr2 4649 disjtpsn 4651 difprsn1 4733 otsndisj 5433 xpsndisj 6066 funprg 6488 funtp 6491 funcnvpr 6496 f1oprg 6761 xp01disjl 8322 enpr2d 8838 phplem1OLD 9000 djuin 9676 pm54.43 9759 pr2nelem 9760 f1oun2prg 14630 s3sndisj 14678 sumpr 15460 cshwsdisj 16800 setsfun0 16873 setscom 16881 gsumpr 19556 dmdprdpr 19652 dprdpr 19653 ablfac1eulem 19675 cnfldfunALT 20610 cnfldfunALTOLD 20611 m2detleib 21780 dishaus 22533 dissnlocfin 22680 xpstopnlem1 22960 perfectlem2 26378 cosnopne 31027 prodpr 31140 esumpr 32034 esum2dlem 32060 prodfzo03 32583 onint1 34638 bj-disjsn01 35142 lindsadd 35770 poimirlem26 35803 sumpair 42578 perfectALTVlem2 45174 |
Copyright terms: Public domain | W3C validator |