| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjsn2 | Structured version Visualization version GIF version | ||
| Description: Two distinct singletons are disjoint. (Contributed by NM, 25-May-1998.) |
| Ref | Expression |
|---|---|
| disjsn2 | ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni 4593 | . . . 4 ⊢ (𝐵 ∈ {𝐴} → 𝐵 = 𝐴) | |
| 2 | 1 | eqcomd 2737 | . . 3 ⊢ (𝐵 ∈ {𝐴} → 𝐴 = 𝐵) |
| 3 | 2 | necon3ai 2953 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐵 ∈ {𝐴}) |
| 4 | disjsn 4664 | . 2 ⊢ (({𝐴} ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ {𝐴}) | |
| 5 | 3, 4 | sylibr 234 | 1 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∩ cin 3901 ∅c0 4283 {csn 4576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-v 3438 df-dif 3905 df-in 3909 df-nul 4284 df-sn 4577 |
| This theorem is referenced by: disjpr2 4666 disjtpsn 4668 difprsn1 4752 otsndisj 5459 xpsndisj 6110 funprg 6535 funtp 6538 funcnvpr 6543 f1oprg 6808 xp01disjl 8407 djuin 9811 pm54.43 9894 f1oun2prg 14824 s3sndisj 14874 sumpr 15655 cshwsdisj 17010 setsfun0 17083 setscom 17091 gsumpr 19868 dmdprdpr 19964 dprdpr 19965 ablfac1eulem 19987 cnfldfunALT 21307 cnfldfunALTOLD 21320 m2detleib 22547 dishaus 23298 dissnlocfin 23445 xpstopnlem1 23725 perfectlem2 27169 cosnopne 32673 prodpr 32807 esumpr 34077 esum2dlem 34103 prodfzo03 34614 onint1 36489 bj-disjsn01 36992 lindsadd 37659 poimirlem26 37692 sumpair 45078 perfectALTVlem2 47759 |
| Copyright terms: Public domain | W3C validator |