| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjsn2 | Structured version Visualization version GIF version | ||
| Description: Two distinct singletons are disjoint. (Contributed by NM, 25-May-1998.) |
| Ref | Expression |
|---|---|
| disjsn2 | ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni 4596 | . . . 4 ⊢ (𝐵 ∈ {𝐴} → 𝐵 = 𝐴) | |
| 2 | 1 | eqcomd 2735 | . . 3 ⊢ (𝐵 ∈ {𝐴} → 𝐴 = 𝐵) |
| 3 | 2 | necon3ai 2950 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐵 ∈ {𝐴}) |
| 4 | disjsn 4665 | . 2 ⊢ (({𝐴} ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ {𝐴}) | |
| 5 | 3, 4 | sylibr 234 | 1 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∩ cin 3904 ∅c0 4286 {csn 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-v 3440 df-dif 3908 df-in 3912 df-nul 4287 df-sn 4580 |
| This theorem is referenced by: disjpr2 4667 disjtpsn 4669 difprsn1 4754 otsndisj 5466 xpsndisj 6116 funprg 6540 funtp 6543 funcnvpr 6548 f1oprg 6813 xp01disjl 8417 djuin 9833 pm54.43 9916 f1oun2prg 14842 s3sndisj 14892 sumpr 15673 cshwsdisj 17028 setsfun0 17101 setscom 17109 gsumpr 19852 dmdprdpr 19948 dprdpr 19949 ablfac1eulem 19971 cnfldfunALT 21294 cnfldfunALTOLD 21307 m2detleib 22534 dishaus 23285 dissnlocfin 23432 xpstopnlem1 23712 perfectlem2 27157 cosnopne 32650 prodpr 32784 esumpr 34035 esum2dlem 34061 prodfzo03 34573 onint1 36425 bj-disjsn01 36928 lindsadd 37595 poimirlem26 37628 sumpair 45016 perfectALTVlem2 47710 |
| Copyright terms: Public domain | W3C validator |