| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjsn2 | Structured version Visualization version GIF version | ||
| Description: Two distinct singletons are disjoint. (Contributed by NM, 25-May-1998.) |
| Ref | Expression |
|---|---|
| disjsn2 | ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsni 4594 | . . . 4 ⊢ (𝐵 ∈ {𝐴} → 𝐵 = 𝐴) | |
| 2 | 1 | eqcomd 2739 | . . 3 ⊢ (𝐵 ∈ {𝐴} → 𝐴 = 𝐵) |
| 3 | 2 | necon3ai 2954 | . 2 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐵 ∈ {𝐴}) |
| 4 | disjsn 4665 | . 2 ⊢ (({𝐴} ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ {𝐴}) | |
| 5 | 3, 4 | sylibr 234 | 1 ⊢ (𝐴 ≠ 𝐵 → ({𝐴} ∩ {𝐵}) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∩ cin 3897 ∅c0 4282 {csn 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-v 3439 df-dif 3901 df-in 3905 df-nul 4283 df-sn 4578 |
| This theorem is referenced by: disjpr2 4667 disjtpsn 4669 difprsn1 4753 otsndisj 5464 xpsndisj 6117 funprg 6542 funtp 6545 funcnvpr 6550 f1oprg 6816 xp01disjl 8415 djuin 9820 pm54.43 9903 f1oun2prg 14828 s3sndisj 14878 sumpr 15659 cshwsdisj 17014 setsfun0 17087 setscom 17095 gsumpr 19871 dmdprdpr 19967 dprdpr 19968 ablfac1eulem 19990 cnfldfunALT 21310 cnfldfunALTOLD 21323 m2detleib 22549 dishaus 23300 dissnlocfin 23447 xpstopnlem1 23727 perfectlem2 27171 cosnopne 32681 prodpr 32816 esumpr 34102 esum2dlem 34128 prodfzo03 34639 onint1 36516 bj-disjsn01 37019 lindsadd 37676 poimirlem26 37709 sumpair 45159 perfectALTVlem2 47849 |
| Copyright terms: Public domain | W3C validator |