Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssrab | Structured version Visualization version GIF version |
Description: Subclass of a restricted class abstraction. (Contributed by NM, 16-Aug-2006.) |
Ref | Expression |
---|---|
ssrab | ⊢ (𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3073 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
2 | 1 | sseq2i 3950 | . 2 ⊢ (𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ 𝐵 ⊆ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
3 | ssab 3995 | . 2 ⊢ (𝐵 ⊆ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
4 | dfss3 3909 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 ↔ ∀𝑥 ∈ 𝐵 𝑥 ∈ 𝐴) | |
5 | 4 | anbi1i 624 | . . 3 ⊢ ((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜑) ↔ (∀𝑥 ∈ 𝐵 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
6 | r19.26 3095 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (∀𝑥 ∈ 𝐵 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜑)) | |
7 | df-ral 3069 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
8 | 5, 6, 7 | 3bitr2ri 300 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
9 | 2, 3, 8 | 3bitri 297 | 1 ⊢ (𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 ∈ wcel 2106 {cab 2715 ∀wral 3064 {crab 3068 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 |
This theorem is referenced by: ssrabdv 4007 omssnlim 7727 ordtypelem2 9278 ordtypelem10 9286 card2inf 9314 r0weon 9768 ramtlecl 16701 sscntz 18932 ppttop 22157 epttop 22159 cmpcov2 22541 tgcmp 22552 xkoinjcn 22838 fbssfi 22988 filssufilg 23062 uffixfr 23074 tmdgsum2 23247 symgtgp 23257 ghmcnp 23266 blcls 23662 clsocv 24414 lhop1lem 25177 ressatans 26084 axcontlem3 27334 axcontlem4 27335 ldgenpisyslem3 32133 ldgenpisys 32134 imambfm 32229 lfuhgr 33079 connpconn 33197 cvmlift2lem11 33275 cvmlift2lem12 33276 bj-rabtr 35118 hbtlem6 40954 |
Copyright terms: Public domain | W3C validator |