MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssrab Structured version   Visualization version   GIF version

Theorem ssrab 4023
Description: Subclass of a restricted class abstraction. (Contributed by NM, 16-Aug-2006.)
Assertion
Ref Expression
ssrab (𝐵 ⊆ {𝑥𝐴𝜑} ↔ (𝐵𝐴 ∧ ∀𝑥𝐵 𝜑))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ssrab
StepHypRef Expression
1 df-rab 3396 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
21sseq2i 3964 . 2 (𝐵 ⊆ {𝑥𝐴𝜑} ↔ 𝐵 ⊆ {𝑥 ∣ (𝑥𝐴𝜑)})
3 ssab 4015 . 2 (𝐵 ⊆ {𝑥 ∣ (𝑥𝐴𝜑)} ↔ ∀𝑥(𝑥𝐵 → (𝑥𝐴𝜑)))
4 dfss3 3923 . . . 4 (𝐵𝐴 ↔ ∀𝑥𝐵 𝑥𝐴)
54anbi1i 624 . . 3 ((𝐵𝐴 ∧ ∀𝑥𝐵 𝜑) ↔ (∀𝑥𝐵 𝑥𝐴 ∧ ∀𝑥𝐵 𝜑))
6 r19.26 3092 . . 3 (∀𝑥𝐵 (𝑥𝐴𝜑) ↔ (∀𝑥𝐵 𝑥𝐴 ∧ ∀𝑥𝐵 𝜑))
7 df-ral 3048 . . 3 (∀𝑥𝐵 (𝑥𝐴𝜑) ↔ ∀𝑥(𝑥𝐵 → (𝑥𝐴𝜑)))
85, 6, 73bitr2ri 300 . 2 (∀𝑥(𝑥𝐵 → (𝑥𝐴𝜑)) ↔ (𝐵𝐴 ∧ ∀𝑥𝐵 𝜑))
92, 3, 83bitri 297 1 (𝐵 ⊆ {𝑥𝐴𝜑} ↔ (𝐵𝐴 ∧ ∀𝑥𝐵 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539  wcel 2111  {cab 2709  wral 3047  {crab 3395  wss 3902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rab 3396  df-ss 3919
This theorem is referenced by:  ssrabdv  4024  omssnlim  7811  ordtypelem2  9405  ordtypelem10  9413  card2inf  9441  r0weon  9900  ramtlecl  16909  sscntz  19236  ppttop  22920  epttop  22922  cmpcov2  23303  tgcmp  23314  xkoinjcn  23600  fbssfi  23750  filssufilg  23824  uffixfr  23836  tmdgsum2  24009  symgtgp  24019  ghmcnp  24028  blcls  24419  clsocv  25175  lhop1lem  25943  ressatans  26869  axcontlem3  28942  axcontlem4  28943  ldgenpisyslem3  34173  ldgenpisys  34174  imambfm  34270  fineqvnttrclse  35132  lfuhgr  35150  connpconn  35267  cvmlift2lem11  35345  cvmlift2lem12  35346  bj-rabtr  36963  hbtlem6  43161  usgrexmpl1lem  48051  usgrexmpl2lem  48056
  Copyright terms: Public domain W3C validator