| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssrab | Structured version Visualization version GIF version | ||
| Description: Subclass of a restricted class abstraction. (Contributed by NM, 16-Aug-2006.) |
| Ref | Expression |
|---|---|
| ssrab | ⊢ (𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3397 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 2 | 1 | sseq2i 3967 | . 2 ⊢ (𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ 𝐵 ⊆ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
| 3 | ssab 4018 | . 2 ⊢ (𝐵 ⊆ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 4 | dfss3 3926 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 ↔ ∀𝑥 ∈ 𝐵 𝑥 ∈ 𝐴) | |
| 5 | 4 | anbi1i 624 | . . 3 ⊢ ((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜑) ↔ (∀𝑥 ∈ 𝐵 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
| 6 | r19.26 3089 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (∀𝑥 ∈ 𝐵 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜑)) | |
| 7 | df-ral 3045 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 8 | 5, 6, 7 | 3bitr2ri 300 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
| 9 | 2, 3, 8 | 3bitri 297 | 1 ⊢ (𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 {cab 2707 ∀wral 3044 {crab 3396 ⊆ wss 3905 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rab 3397 df-ss 3922 |
| This theorem is referenced by: ssrabdv 4027 omssnlim 7821 ordtypelem2 9430 ordtypelem10 9438 card2inf 9466 r0weon 9925 ramtlecl 16930 sscntz 19223 ppttop 22910 epttop 22912 cmpcov2 23293 tgcmp 23304 xkoinjcn 23590 fbssfi 23740 filssufilg 23814 uffixfr 23826 tmdgsum2 23999 symgtgp 24009 ghmcnp 24018 blcls 24410 clsocv 25166 lhop1lem 25934 ressatans 26860 axcontlem3 28929 axcontlem4 28930 ldgenpisyslem3 34131 ldgenpisys 34132 imambfm 34229 lfuhgr 35090 connpconn 35207 cvmlift2lem11 35285 cvmlift2lem12 35286 bj-rabtr 36903 hbtlem6 43102 usgrexmpl1lem 48006 usgrexmpl2lem 48011 |
| Copyright terms: Public domain | W3C validator |