![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ssrab | Structured version Visualization version GIF version |
Description: Subclass of a restricted class abstraction. (Contributed by NM, 16-Aug-2006.) |
Ref | Expression |
---|---|
ssrab | ⊢ (𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3444 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
2 | 1 | sseq2i 4038 | . 2 ⊢ (𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ 𝐵 ⊆ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)}) |
3 | ssab 4087 | . 2 ⊢ (𝐵 ⊆ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
4 | dfss3 3997 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 ↔ ∀𝑥 ∈ 𝐵 𝑥 ∈ 𝐴) | |
5 | 4 | anbi1i 623 | . . 3 ⊢ ((𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜑) ↔ (∀𝑥 ∈ 𝐵 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
6 | r19.26 3117 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (∀𝑥 ∈ 𝐵 𝑥 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜑)) | |
7 | df-ral 3068 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∀𝑥(𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
8 | 5, 6, 7 | 3bitr2ri 300 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐵 → (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
9 | 2, 3, 8 | 3bitri 297 | 1 ⊢ (𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜑} ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 ∈ wcel 2108 {cab 2717 ∀wral 3067 {crab 3443 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rab 3444 df-ss 3993 |
This theorem is referenced by: ssrabdv 4097 omssnlim 7918 ordtypelem2 9588 ordtypelem10 9596 card2inf 9624 r0weon 10081 ramtlecl 17047 sscntz 19366 ppttop 23035 epttop 23037 cmpcov2 23419 tgcmp 23430 xkoinjcn 23716 fbssfi 23866 filssufilg 23940 uffixfr 23952 tmdgsum2 24125 symgtgp 24135 ghmcnp 24144 blcls 24540 clsocv 25303 lhop1lem 26072 ressatans 26995 axcontlem3 28999 axcontlem4 29000 ldgenpisyslem3 34129 ldgenpisys 34130 imambfm 34227 lfuhgr 35085 connpconn 35203 cvmlift2lem11 35281 cvmlift2lem12 35282 bj-rabtr 36896 hbtlem6 43086 usgrexmpl1lem 47836 usgrexmpl2lem 47841 |
Copyright terms: Public domain | W3C validator |