Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uneq12 | Structured version Visualization version GIF version |
Description: Equality theorem for the union of two classes. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
uneq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1 4090 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | |
2 | uneq2 4091 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
3 | 1, 2 | sylan9eq 2798 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∪ cun 3885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 |
This theorem is referenced by: uneq12i 4095 uneq12d 4098 un00 4376 opthprc 5651 dmpropg 6118 unixp 6185 fntpg 6494 fnun 6545 resasplit 6644 fvun 6858 rankprb 9609 pm54.43 9759 pwmndgplus 18574 evlseu 21293 ptuncnv 22958 sshjval 29712 bj-2upleq 35202 poimirlem4 35781 poimirlem9 35786 diophun 40595 pwssplit4 40914 clsk1indlem3 41653 |
Copyright terms: Public domain | W3C validator |