Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uneq12 | Structured version Visualization version GIF version |
Description: Equality theorem for the union of two classes. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
uneq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1 4086 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | |
2 | uneq2 4087 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
3 | 1, 2 | sylan9eq 2799 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∪ cun 3881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 |
This theorem is referenced by: uneq12i 4091 uneq12d 4094 un00 4373 opthprc 5642 dmpropg 6107 unixp 6174 fntpg 6478 fnun 6529 resasplit 6628 fvun 6840 rankprb 9540 pm54.43 9690 pwmndgplus 18489 evlseu 21203 ptuncnv 22866 sshjval 29613 bj-2upleq 35129 poimirlem4 35708 poimirlem9 35713 diophun 40511 pwssplit4 40830 clsk1indlem3 41542 |
Copyright terms: Public domain | W3C validator |