MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uneq12 Structured version   Visualization version   GIF version

Theorem uneq12 4122
Description: Equality theorem for the union of two classes. (Contributed by NM, 29-Mar-1998.)
Assertion
Ref Expression
uneq12 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))

Proof of Theorem uneq12
StepHypRef Expression
1 uneq1 4120 . 2 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
2 uneq2 4121 . 2 (𝐶 = 𝐷 → (𝐵𝐶) = (𝐵𝐷))
31, 2sylan9eq 2784 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  cun 3909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3446  df-un 3916
This theorem is referenced by:  uneq12i  4125  uneq12d  4128  un00  4404  opthprc  5695  dmpropg  6176  unixp  6243  fntpg  6560  fnun  6614  resasplit  6712  fvun  6933  rankprb  9780  pm54.43  9930  pwmndgplus  18838  evlseu  21966  ptuncnv  23670  sshjval  31252  bj-2upleq  36973  bj-unexg  36999  poimirlem4  37591  poimirlem9  37596  evlselvlem  42547  diophun  42734  pwssplit4  43051  clsk1indlem3  44005
  Copyright terms: Public domain W3C validator