| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uneq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the union of two classes. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| uneq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1 4127 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | |
| 2 | uneq2 4128 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
| 3 | 1, 2 | sylan9eq 2785 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∪ cun 3915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 |
| This theorem is referenced by: uneq12i 4132 uneq12d 4135 un00 4411 opthprc 5705 dmpropg 6191 unixp 6258 fntpg 6579 fnun 6635 resasplit 6733 fvun 6954 rankprb 9811 pm54.43 9961 pwmndgplus 18869 evlseu 21997 ptuncnv 23701 sshjval 31286 bj-2upleq 37007 bj-unexg 37033 poimirlem4 37625 poimirlem9 37630 evlselvlem 42581 diophun 42768 pwssplit4 43085 clsk1indlem3 44039 |
| Copyright terms: Public domain | W3C validator |