| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uneq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the union of two classes. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| uneq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1 4136 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | |
| 2 | uneq2 4137 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
| 3 | 1, 2 | sylan9eq 2790 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∪ cun 3924 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 |
| This theorem is referenced by: uneq12i 4141 uneq12d 4144 un00 4420 opthprc 5718 dmpropg 6204 unixp 6271 fntpg 6596 fnun 6652 resasplit 6748 fvun 6969 rankprb 9865 pm54.43 10015 pwmndgplus 18913 evlseu 22041 ptuncnv 23745 sshjval 31331 bj-2upleq 37030 bj-unexg 37056 poimirlem4 37648 poimirlem9 37653 evlselvlem 42609 diophun 42796 pwssplit4 43113 clsk1indlem3 44067 |
| Copyright terms: Public domain | W3C validator |