![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uneq12 | Structured version Visualization version GIF version |
Description: Equality theorem for the union of two classes. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
uneq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1 4171 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | |
2 | uneq2 4172 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
3 | 1, 2 | sylan9eq 2795 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∪ cun 3961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 |
This theorem is referenced by: uneq12i 4176 uneq12d 4179 un00 4451 opthprc 5753 dmpropg 6237 unixp 6304 fntpg 6628 fnun 6683 resasplit 6779 fvun 6999 rankprb 9889 pm54.43 10039 pwmndgplus 18961 evlseu 22125 ptuncnv 23831 sshjval 31379 bj-2upleq 36995 bj-unexg 37021 poimirlem4 37611 poimirlem9 37616 evlselvlem 42573 diophun 42761 pwssplit4 43078 clsk1indlem3 44033 |
Copyright terms: Public domain | W3C validator |