MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uneq12 Structured version   Visualization version   GIF version

Theorem uneq12 4110
Description: Equality theorem for the union of two classes. (Contributed by NM, 29-Mar-1998.)
Assertion
Ref Expression
uneq12 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))

Proof of Theorem uneq12
StepHypRef Expression
1 uneq1 4108 . 2 (𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
2 uneq2 4109 . 2 (𝐶 = 𝐷 → (𝐵𝐶) = (𝐵𝐷))
31, 2sylan9eq 2786 1 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  cun 3895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3902
This theorem is referenced by:  uneq12i  4113  uneq12d  4116  un00  4392  opthprc  5678  dmpropg  6162  unixp  6229  fntpg  6541  fnun  6595  resasplit  6693  fvun  6912  rankprb  9744  pm54.43  9894  pwmndgplus  18843  evlseu  22018  ptuncnv  23722  sshjval  31330  bj-2upleq  37056  bj-unexg  37082  poimirlem4  37674  poimirlem9  37679  evlselvlem  42689  diophun  42876  pwssplit4  43192  clsk1indlem3  44146
  Copyright terms: Public domain W3C validator