Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uneq12 | Structured version Visualization version GIF version |
Description: Equality theorem for the union of two classes. (Contributed by NM, 29-Mar-1998.) |
Ref | Expression |
---|---|
uneq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uneq1 4063 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | |
2 | uneq2 4064 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
3 | 1, 2 | sylan9eq 2813 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∪ cun 3858 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-un 3865 |
This theorem is referenced by: uneq12i 4068 uneq12d 4071 un00 4342 opthprc 5590 dmpropg 6049 unixp 6116 fntpg 6400 fnun 6450 resasplit 6538 fvun 6747 rankprb 9326 pm54.43 9476 pwmndgplus 18180 evlseu 20860 ptuncnv 22521 sshjval 29246 bj-2upleq 34764 poimirlem4 35376 poimirlem9 35381 diophun 40132 pwssplit4 40451 clsk1indlem3 41164 |
Copyright terms: Public domain | W3C validator |