| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uneq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the union of two classes. (Contributed by NM, 29-Mar-1998.) |
| Ref | Expression |
|---|---|
| uneq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1 4120 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶)) | |
| 2 | uneq2 4121 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 ∪ 𝐶) = (𝐵 ∪ 𝐷)) | |
| 3 | 1, 2 | sylan9eq 2784 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∪ cun 3909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-un 3916 |
| This theorem is referenced by: uneq12i 4125 uneq12d 4128 un00 4404 opthprc 5695 dmpropg 6176 unixp 6243 fntpg 6560 fnun 6614 resasplit 6712 fvun 6933 rankprb 9780 pm54.43 9930 pwmndgplus 18838 evlseu 21966 ptuncnv 23670 sshjval 31252 bj-2upleq 36973 bj-unexg 36999 poimirlem4 37591 poimirlem9 37596 evlselvlem 42547 diophun 42734 pwssplit4 43051 clsk1indlem3 44005 |
| Copyright terms: Public domain | W3C validator |