Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj106 Structured version   Visualization version   GIF version

Theorem bnj106 33145
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj106.1 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj106.2 𝐹 ∈ V
Assertion
Ref Expression
bnj106 ([𝐹 / 𝑓][1o / 𝑛]𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
Distinct variable groups:   𝐴,𝑓,𝑛   𝑓,𝐹,𝑖,𝑦   𝑅,𝑓,𝑛   𝑖,𝑛,𝑦
Allowed substitution hints:   𝜓(𝑦,𝑓,𝑖,𝑛)   𝐴(𝑦,𝑖)   𝑅(𝑦,𝑖)   𝐹(𝑛)

Proof of Theorem bnj106
StepHypRef Expression
1 bnj106.1 . . . 4 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
2 bnj105 33001 . . . 4 1o ∈ V
31, 2bnj92 33139 . . 3 ([1o / 𝑛]𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
43sbcbii 3790 . 2 ([𝐹 / 𝑓][1o / 𝑛]𝜓[𝐹 / 𝑓]𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
5 bnj106.2 . . 3 𝐹 ∈ V
6 fveq1 6828 . . . . . 6 (𝑓 = 𝐹 → (𝑓‘suc 𝑖) = (𝐹‘suc 𝑖))
7 fveq1 6828 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑖) = (𝐹𝑖))
87bnj1113 33062 . . . . . 6 (𝑓 = 𝐹 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅))
96, 8eqeq12d 2753 . . . . 5 (𝑓 = 𝐹 → ((𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) ↔ (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
109imbi2d 341 . . . 4 (𝑓 = 𝐹 → ((suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ (suc 𝑖 ∈ 1o → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅))))
1110ralbidv 3171 . . 3 (𝑓 = 𝐹 → (∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅))))
125, 11sbcie 3773 . 2 ([𝐹 / 𝑓]𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
134, 12bitri 275 1 ([𝐹 / 𝑓][1o / 𝑛]𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖 ∈ 1o → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2106  wral 3062  Vcvv 3442  [wsbc 3730   ciun 4945  suc csuc 6308  cfv 6483  ωcom 7784  1oc1o 8364   predc-bnj14 32965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pow 5312
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ral 3063  df-rex 3072  df-v 3444  df-sbc 3731  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-nul 4274  df-pw 4553  df-sn 4578  df-uni 4857  df-iun 4947  df-br 5097  df-suc 6312  df-iota 6435  df-fv 6491  df-1o 8371
This theorem is referenced by:  bnj126  33150
  Copyright terms: Public domain W3C validator