Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1152 Structured version   Visualization version   GIF version

Theorem bnj1152 34662
Description: Technical lemma for bnj69 34674. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj1152 (𝑌 ∈ pred(𝑋, 𝐴, 𝑅) ↔ (𝑌𝐴𝑌𝑅𝑋))

Proof of Theorem bnj1152
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 breq1 5155 . 2 (𝑦 = 𝑌 → (𝑦𝑅𝑋𝑌𝑅𝑋))
2 df-bnj14 34353 . 2 pred(𝑋, 𝐴, 𝑅) = {𝑦𝐴𝑦𝑅𝑋}
31, 2elrab2 3687 1 (𝑌 ∈ pred(𝑋, 𝐴, 𝑅) ↔ (𝑌𝐴𝑌𝑅𝑋))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394  wcel 2098   class class class wbr 5152   predc-bnj14 34352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2706  df-cleq 2720  df-clel 2806  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-br 5153  df-bnj14 34353
This theorem is referenced by:  bnj1175  34668  bnj1177  34670  bnj1388  34697
  Copyright terms: Public domain W3C validator