Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1152 Structured version   Visualization version   GIF version

Theorem bnj1152 34988
Description: Technical lemma for bnj69 35000. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj1152 (𝑌 ∈ pred(𝑋, 𝐴, 𝑅) ↔ (𝑌𝐴𝑌𝑅𝑋))

Proof of Theorem bnj1152
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 breq1 5110 . 2 (𝑦 = 𝑌 → (𝑦𝑅𝑋𝑌𝑅𝑋))
2 df-bnj14 34679 . 2 pred(𝑋, 𝐴, 𝑅) = {𝑦𝐴𝑦𝑅𝑋}
31, 2elrab2 3662 1 (𝑌 ∈ pred(𝑋, 𝐴, 𝑅) ↔ (𝑌𝐴𝑌𝑅𝑋))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109   class class class wbr 5107   predc-bnj14 34678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-bnj14 34679
This theorem is referenced by:  bnj1175  34994  bnj1177  34996  bnj1388  35023
  Copyright terms: Public domain W3C validator