![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1152 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj69 34855. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1152 | ⊢ (𝑌 ∈ pred(𝑋, 𝐴, 𝑅) ↔ (𝑌 ∈ 𝐴 ∧ 𝑌𝑅𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5156 | . 2 ⊢ (𝑦 = 𝑌 → (𝑦𝑅𝑋 ↔ 𝑌𝑅𝑋)) | |
2 | df-bnj14 34534 | . 2 ⊢ pred(𝑋, 𝐴, 𝑅) = {𝑦 ∈ 𝐴 ∣ 𝑦𝑅𝑋} | |
3 | 1, 2 | elrab2 3684 | 1 ⊢ (𝑌 ∈ pred(𝑋, 𝐴, 𝑅) ↔ (𝑌 ∈ 𝐴 ∧ 𝑌𝑅𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∈ wcel 2099 class class class wbr 5153 predc-bnj14 34533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-br 5154 df-bnj14 34534 |
This theorem is referenced by: bnj1175 34849 bnj1177 34851 bnj1388 34878 |
Copyright terms: Public domain | W3C validator |