Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1136 Structured version   Visualization version   GIF version

Theorem bnj1136 33609
Description: Technical lemma for bnj69 33622. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1136.1 𝐵 = ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
bnj1136.2 (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴))
bnj1136.3 (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))
Assertion
Ref Expression
bnj1136 ((𝑅 FrSe 𝐴𝑋𝐴) → trCl(𝑋, 𝐴, 𝑅) = 𝐵)
Distinct variable groups:   𝑦,𝐴   𝑦,𝑅   𝑦,𝑋
Allowed substitution hints:   𝜃(𝑦)   𝜏(𝑦)   𝐵(𝑦)

Proof of Theorem bnj1136
StepHypRef Expression
1 bnj1136.2 . . . 4 (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴))
21biimpri 227 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴) → 𝜃)
3 bnj1136.1 . . . . 5 𝐵 = ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))
4 bnj1148 33608 . . . . . 6 ((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V)
5 bnj893 33540 . . . . . . 7 ((𝑅 FrSe 𝐴𝑋𝐴) → trCl(𝑋, 𝐴, 𝑅) ∈ V)
6 simp1 1136 . . . . . . . . . 10 ((𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅)) → 𝑅 FrSe 𝐴)
7 bnj1127 33603 . . . . . . . . . . 11 (𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) → 𝑦𝐴)
873ad2ant3 1135 . . . . . . . . . 10 ((𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅)) → 𝑦𝐴)
9 bnj893 33540 . . . . . . . . . 10 ((𝑅 FrSe 𝐴𝑦𝐴) → trCl(𝑦, 𝐴, 𝑅) ∈ V)
106, 8, 9syl2anc 584 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅)) → trCl(𝑦, 𝐴, 𝑅) ∈ V)
11103expia 1121 . . . . . . . 8 ((𝑅 FrSe 𝐴𝑋𝐴) → (𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) → trCl(𝑦, 𝐴, 𝑅) ∈ V))
1211ralrimiv 3142 . . . . . . 7 ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ∈ V)
13 iunexg 7896 . . . . . . 7 (( trCl(𝑋, 𝐴, 𝑅) ∈ V ∧ ∀𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ∈ V) → 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ∈ V)
145, 12, 13syl2anc 584 . . . . . 6 ((𝑅 FrSe 𝐴𝑋𝐴) → 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ∈ V)
154, 14bnj1149 33404 . . . . 5 ((𝑅 FrSe 𝐴𝑋𝐴) → ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ∈ V)
163, 15eqeltrid 2842 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴) → 𝐵 ∈ V)
173bnj1137 33607 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴) → TrFo(𝐵, 𝐴, 𝑅))
183bnj931 33382 . . . . 5 pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵
1918a1i 11 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
20 bnj1136.3 . . . 4 (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))
2116, 17, 19, 20syl3anbrc 1343 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴) → 𝜏)
221, 20bnj1124 33600 . . 3 ((𝜃𝜏) → trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
232, 21, 22syl2anc 584 . 2 ((𝑅 FrSe 𝐴𝑋𝐴) → trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
24 bnj906 33542 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
25 bnj1125 33604 . . . . . . 7 ((𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅)) → trCl(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
26253expia 1121 . . . . . 6 ((𝑅 FrSe 𝐴𝑋𝐴) → (𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) → trCl(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)))
2726ralrimiv 3142 . . . . 5 ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
28 ss2iun 4972 . . . . . 6 (∀𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅) → 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑋, 𝐴, 𝑅))
29 bnj1143 33402 . . . . . 6 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅)
3028, 29sstrdi 3956 . . . . 5 (∀𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅) → 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
3127, 30syl 17 . . . 4 ((𝑅 FrSe 𝐴𝑋𝐴) → 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
3224, 31unssd 4146 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴) → ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅)) ⊆ trCl(𝑋, 𝐴, 𝑅))
333, 32eqsstrid 3992 . 2 ((𝑅 FrSe 𝐴𝑋𝐴) → 𝐵 ⊆ trCl(𝑋, 𝐴, 𝑅))
3423, 33eqssd 3961 1 ((𝑅 FrSe 𝐴𝑋𝐴) → trCl(𝑋, 𝐴, 𝑅) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  Vcvv 3445  cun 3908  wss 3910   ciun 4954   predc-bnj14 33300   FrSe w-bnj15 33304   trClc-bnj18 33306   TrFow-bnj19 33308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-reg 9528  ax-inf2 9577
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-om 7803  df-1o 8412  df-bnj17 33299  df-bnj14 33301  df-bnj13 33303  df-bnj15 33305  df-bnj18 33307  df-bnj19 33309
This theorem is referenced by:  bnj1408  33648
  Copyright terms: Public domain W3C validator