![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1416 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj60 34528. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1416.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1416.2 | ⊢ 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩ |
bnj1416.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj1416.4 | ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
bnj1416.5 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
bnj1416.6 | ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
bnj1416.7 | ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
bnj1416.8 | ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
bnj1416.9 | ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
bnj1416.10 | ⊢ 𝑃 = ∪ 𝐻 |
bnj1416.11 | ⊢ 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩ |
bnj1416.12 | ⊢ 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺‘𝑍)⟩}) |
bnj1416.28 | ⊢ (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅)) |
Ref | Expression |
---|---|
bnj1416 | ⊢ (𝜒 → dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1416.12 | . . . 4 ⊢ 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺‘𝑍)⟩}) | |
2 | 1 | dmeqi 5894 | . . 3 ⊢ dom 𝑄 = dom (𝑃 ∪ {⟨𝑥, (𝐺‘𝑍)⟩}) |
3 | dmun 5900 | . . 3 ⊢ dom (𝑃 ∪ {⟨𝑥, (𝐺‘𝑍)⟩}) = (dom 𝑃 ∪ dom {⟨𝑥, (𝐺‘𝑍)⟩}) | |
4 | fvex 6894 | . . . . 5 ⊢ (𝐺‘𝑍) ∈ V | |
5 | 4 | dmsnop 6205 | . . . 4 ⊢ dom {⟨𝑥, (𝐺‘𝑍)⟩} = {𝑥} |
6 | 5 | uneq2i 4152 | . . 3 ⊢ (dom 𝑃 ∪ dom {⟨𝑥, (𝐺‘𝑍)⟩}) = (dom 𝑃 ∪ {𝑥}) |
7 | 2, 3, 6 | 3eqtri 2756 | . 2 ⊢ dom 𝑄 = (dom 𝑃 ∪ {𝑥}) |
8 | bnj1416.28 | . . . 4 ⊢ (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅)) | |
9 | 8 | uneq1d 4154 | . . 3 ⊢ (𝜒 → (dom 𝑃 ∪ {𝑥}) = ( trCl(𝑥, 𝐴, 𝑅) ∪ {𝑥})) |
10 | uncom 4145 | . . 3 ⊢ ( trCl(𝑥, 𝐴, 𝑅) ∪ {𝑥}) = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) | |
11 | 9, 10 | eqtrdi 2780 | . 2 ⊢ (𝜒 → (dom 𝑃 ∪ {𝑥}) = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
12 | 7, 11 | eqtrid 2776 | 1 ⊢ (𝜒 → dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∃wex 1773 ∈ wcel 2098 {cab 2701 ≠ wne 2932 ∀wral 3053 ∃wrex 3062 {crab 3424 [wsbc 3769 ∪ cun 3938 ⊆ wss 3940 ∅c0 4314 {csn 4620 ⟨cop 4626 ∪ cuni 4899 class class class wbr 5138 dom cdm 5666 ↾ cres 5668 Fn wfn 6528 ‘cfv 6533 predc-bnj14 34154 FrSe w-bnj15 34158 trClc-bnj18 34160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-dm 5676 df-iota 6485 df-fv 6541 |
This theorem is referenced by: bnj1312 34524 |
Copyright terms: Public domain | W3C validator |