Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1416 Structured version   Visualization version   GIF version

Theorem bnj1416 35032
Description: Technical lemma for bnj60 35055. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1416.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1416.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1416.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1416.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1416.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1416.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1416.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1416.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1416.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1416.10 𝑃 = 𝐻
bnj1416.11 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1416.12 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
bnj1416.28 (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅))
Assertion
Ref Expression
bnj1416 (𝜒 → dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))

Proof of Theorem bnj1416
StepHypRef Expression
1 bnj1416.12 . . . 4 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
21dmeqi 5918 . . 3 dom 𝑄 = dom (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
3 dmun 5924 . . 3 dom (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩}) = (dom 𝑃 ∪ dom {⟨𝑥, (𝐺𝑍)⟩})
4 fvex 6920 . . . . 5 (𝐺𝑍) ∈ V
54dmsnop 6238 . . . 4 dom {⟨𝑥, (𝐺𝑍)⟩} = {𝑥}
65uneq2i 4175 . . 3 (dom 𝑃 ∪ dom {⟨𝑥, (𝐺𝑍)⟩}) = (dom 𝑃 ∪ {𝑥})
72, 3, 63eqtri 2767 . 2 dom 𝑄 = (dom 𝑃 ∪ {𝑥})
8 bnj1416.28 . . . 4 (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅))
98uneq1d 4177 . . 3 (𝜒 → (dom 𝑃 ∪ {𝑥}) = ( trCl(𝑥, 𝐴, 𝑅) ∪ {𝑥}))
10 uncom 4168 . . 3 ( trCl(𝑥, 𝐴, 𝑅) ∪ {𝑥}) = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
119, 10eqtrdi 2791 . 2 (𝜒 → (dom 𝑃 ∪ {𝑥}) = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
127, 11eqtrid 2787 1 (𝜒 → dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wex 1776  wcel 2106  {cab 2712  wne 2938  wral 3059  wrex 3068  {crab 3433  [wsbc 3791  cun 3961  wss 3963  c0 4339  {csn 4631  cop 4637   cuni 4912   class class class wbr 5148  dom cdm 5689  cres 5691   Fn wfn 6558  cfv 6563   predc-bnj14 34681   FrSe w-bnj15 34685   trClc-bnj18 34687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-dm 5699  df-iota 6516  df-fv 6571
This theorem is referenced by:  bnj1312  35051
  Copyright terms: Public domain W3C validator