| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1416 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj60 35064. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1416.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
| bnj1416.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| bnj1416.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
| bnj1416.4 | ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
| bnj1416.5 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
| bnj1416.6 | ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
| bnj1416.7 | ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
| bnj1416.8 | ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
| bnj1416.9 | ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
| bnj1416.10 | ⊢ 𝑃 = ∪ 𝐻 |
| bnj1416.11 | ⊢ 𝑍 = 〈𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| bnj1416.12 | ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) |
| bnj1416.28 | ⊢ (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅)) |
| Ref | Expression |
|---|---|
| bnj1416 | ⊢ (𝜒 → dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1416.12 | . . . 4 ⊢ 𝑄 = (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) | |
| 2 | 1 | dmeqi 5842 | . . 3 ⊢ dom 𝑄 = dom (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) |
| 3 | dmun 5848 | . . 3 ⊢ dom (𝑃 ∪ {〈𝑥, (𝐺‘𝑍)〉}) = (dom 𝑃 ∪ dom {〈𝑥, (𝐺‘𝑍)〉}) | |
| 4 | fvex 6830 | . . . . 5 ⊢ (𝐺‘𝑍) ∈ V | |
| 5 | 4 | dmsnop 6160 | . . . 4 ⊢ dom {〈𝑥, (𝐺‘𝑍)〉} = {𝑥} |
| 6 | 5 | uneq2i 4113 | . . 3 ⊢ (dom 𝑃 ∪ dom {〈𝑥, (𝐺‘𝑍)〉}) = (dom 𝑃 ∪ {𝑥}) |
| 7 | 2, 3, 6 | 3eqtri 2757 | . 2 ⊢ dom 𝑄 = (dom 𝑃 ∪ {𝑥}) |
| 8 | bnj1416.28 | . . . 4 ⊢ (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅)) | |
| 9 | 8 | uneq1d 4115 | . . 3 ⊢ (𝜒 → (dom 𝑃 ∪ {𝑥}) = ( trCl(𝑥, 𝐴, 𝑅) ∪ {𝑥})) |
| 10 | uncom 4106 | . . 3 ⊢ ( trCl(𝑥, 𝐴, 𝑅) ∪ {𝑥}) = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)) | |
| 11 | 9, 10 | eqtrdi 2781 | . 2 ⊢ (𝜒 → (dom 𝑃 ∪ {𝑥}) = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
| 12 | 7, 11 | eqtrid 2777 | 1 ⊢ (𝜒 → dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∃wex 1780 ∈ wcel 2110 {cab 2708 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 {crab 3393 [wsbc 3739 ∪ cun 3898 ⊆ wss 3900 ∅c0 4281 {csn 4574 〈cop 4580 ∪ cuni 4857 class class class wbr 5089 dom cdm 5614 ↾ cres 5616 Fn wfn 6472 ‘cfv 6477 predc-bnj14 34690 FrSe w-bnj15 34694 trClc-bnj18 34696 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-dm 5624 df-iota 6433 df-fv 6485 |
| This theorem is referenced by: bnj1312 35060 |
| Copyright terms: Public domain | W3C validator |