Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1416 Structured version   Visualization version   GIF version

Theorem bnj1416 35015
Description: Technical lemma for bnj60 35038. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1416.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1416.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1416.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1416.4 (𝜏 ↔ (𝑓𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))))
bnj1416.5 𝐷 = {𝑥𝐴 ∣ ¬ ∃𝑓𝜏}
bnj1416.6 (𝜓 ↔ (𝑅 FrSe 𝐴𝐷 ≠ ∅))
bnj1416.7 (𝜒 ↔ (𝜓𝑥𝐷 ∧ ∀𝑦𝐷 ¬ 𝑦𝑅𝑥))
bnj1416.8 (𝜏′[𝑦 / 𝑥]𝜏)
bnj1416.9 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′}
bnj1416.10 𝑃 = 𝐻
bnj1416.11 𝑍 = ⟨𝑥, (𝑃 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1416.12 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
bnj1416.28 (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅))
Assertion
Ref Expression
bnj1416 (𝜒 → dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))

Proof of Theorem bnj1416
StepHypRef Expression
1 bnj1416.12 . . . 4 𝑄 = (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
21dmeqi 5929 . . 3 dom 𝑄 = dom (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩})
3 dmun 5935 . . 3 dom (𝑃 ∪ {⟨𝑥, (𝐺𝑍)⟩}) = (dom 𝑃 ∪ dom {⟨𝑥, (𝐺𝑍)⟩})
4 fvex 6933 . . . . 5 (𝐺𝑍) ∈ V
54dmsnop 6247 . . . 4 dom {⟨𝑥, (𝐺𝑍)⟩} = {𝑥}
65uneq2i 4188 . . 3 (dom 𝑃 ∪ dom {⟨𝑥, (𝐺𝑍)⟩}) = (dom 𝑃 ∪ {𝑥})
72, 3, 63eqtri 2772 . 2 dom 𝑄 = (dom 𝑃 ∪ {𝑥})
8 bnj1416.28 . . . 4 (𝜒 → dom 𝑃 = trCl(𝑥, 𝐴, 𝑅))
98uneq1d 4190 . . 3 (𝜒 → (dom 𝑃 ∪ {𝑥}) = ( trCl(𝑥, 𝐴, 𝑅) ∪ {𝑥}))
10 uncom 4181 . . 3 ( trCl(𝑥, 𝐴, 𝑅) ∪ {𝑥}) = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅))
119, 10eqtrdi 2796 . 2 (𝜒 → (dom 𝑃 ∪ {𝑥}) = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
127, 11eqtrid 2792 1 (𝜒 → dom 𝑄 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wne 2946  wral 3067  wrex 3076  {crab 3443  [wsbc 3804  cun 3974  wss 3976  c0 4352  {csn 4648  cop 4654   cuni 4931   class class class wbr 5166  dom cdm 5700  cres 5702   Fn wfn 6568  cfv 6573   predc-bnj14 34664   FrSe w-bnj15 34668   trClc-bnj18 34670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-dm 5710  df-iota 6525  df-fv 6581
This theorem is referenced by:  bnj1312  35034
  Copyright terms: Public domain W3C validator