![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1500 | Structured version Visualization version GIF version |
Description: Well-founded recursion, part 2 of 3. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1500.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1500.2 | ⊢ 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩ |
bnj1500.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj1500.4 | ⊢ 𝐹 = ∪ 𝐶 |
Ref | Expression |
---|---|
bnj1500 | ⊢ (𝑅 FrSe 𝐴 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1500.1 | . 2 ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} | |
2 | bnj1500.2 | . 2 ⊢ 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩ | |
3 | bnj1500.3 | . 2 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
4 | bnj1500.4 | . 2 ⊢ 𝐹 = ∪ 𝐶 | |
5 | biid 261 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) ↔ (𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴)) | |
6 | biid 261 | . 2 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑓 ∈ 𝐶 ∧ 𝑥 ∈ dom 𝑓) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑓 ∈ 𝐶 ∧ 𝑥 ∈ dom 𝑓)) | |
7 | biid 261 | . 2 ⊢ ((((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑓 ∈ 𝐶 ∧ 𝑥 ∈ dom 𝑓) ∧ 𝑑 ∈ 𝐵 ∧ dom 𝑓 = 𝑑) ↔ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑓 ∈ 𝐶 ∧ 𝑥 ∈ dom 𝑓) ∧ 𝑑 ∈ 𝐵 ∧ dom 𝑓 = 𝑑)) | |
8 | 1, 2, 3, 4, 5, 6, 7 | bnj1501 34606 | 1 ⊢ (𝑅 FrSe 𝐴 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘⟨𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))⟩)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 {cab 2703 ∀wral 3055 ∃wrex 3064 ⊆ wss 3943 ⟨cop 4629 ∪ cuni 4902 dom cdm 5669 ↾ cres 5671 Fn wfn 6531 ‘cfv 6536 predc-bnj14 34227 FrSe w-bnj15 34231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-reg 9586 ax-inf2 9635 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-om 7852 df-1o 8464 df-bnj17 34226 df-bnj14 34228 df-bnj13 34230 df-bnj15 34232 df-bnj18 34234 df-bnj19 34236 |
This theorem is referenced by: bnj1523 34610 |
Copyright terms: Public domain | W3C validator |