![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1500 | Structured version Visualization version GIF version |
Description: Well-founded recursion, part 2 of 3. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1500.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1500.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1500.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj1500.4 | ⊢ 𝐹 = ∪ 𝐶 |
Ref | Expression |
---|---|
bnj1500 | ⊢ (𝑅 FrSe 𝐴 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1500.1 | . 2 ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} | |
2 | bnj1500.2 | . 2 ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 | |
3 | bnj1500.3 | . 2 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
4 | bnj1500.4 | . 2 ⊢ 𝐹 = ∪ 𝐶 | |
5 | biid 253 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) ↔ (𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴)) | |
6 | biid 253 | . 2 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑓 ∈ 𝐶 ∧ 𝑥 ∈ dom 𝑓) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑓 ∈ 𝐶 ∧ 𝑥 ∈ dom 𝑓)) | |
7 | biid 253 | . 2 ⊢ ((((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑓 ∈ 𝐶 ∧ 𝑥 ∈ dom 𝑓) ∧ 𝑑 ∈ 𝐵 ∧ dom 𝑓 = 𝑑) ↔ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) ∧ 𝑓 ∈ 𝐶 ∧ 𝑥 ∈ dom 𝑓) ∧ 𝑑 ∈ 𝐵 ∧ dom 𝑓 = 𝑑)) | |
8 | 1, 2, 3, 4, 5, 6, 7 | bnj1501 31742 | 1 ⊢ (𝑅 FrSe 𝐴 → ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) = (𝐺‘〈𝑥, (𝐹 ↾ pred(𝑥, 𝐴, 𝑅))〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1071 = wceq 1601 ∈ wcel 2107 {cab 2763 ∀wral 3090 ∃wrex 3091 ⊆ wss 3792 〈cop 4404 ∪ cuni 4673 dom cdm 5357 ↾ cres 5359 Fn wfn 6132 ‘cfv 6137 predc-bnj14 31364 FrSe w-bnj15 31368 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-reg 8788 ax-inf2 8837 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-om 7346 df-1o 7845 df-bnj17 31363 df-bnj14 31365 df-bnj13 31367 df-bnj15 31369 df-bnj18 31371 df-bnj19 31373 |
This theorem is referenced by: bnj1523 31746 |
Copyright terms: Public domain | W3C validator |