| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1518 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj1500 35101. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1518.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
| bnj1518.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| bnj1518.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
| bnj1518.4 | ⊢ 𝐹 = ∪ 𝐶 |
| bnj1518.5 | ⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴)) |
| bnj1518.6 | ⊢ (𝜓 ↔ (𝜑 ∧ 𝑓 ∈ 𝐶 ∧ 𝑥 ∈ dom 𝑓)) |
| Ref | Expression |
|---|---|
| bnj1518 | ⊢ (𝜓 → ∀𝑑𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1518.6 | . . 3 ⊢ (𝜓 ↔ (𝜑 ∧ 𝑓 ∈ 𝐶 ∧ 𝑥 ∈ dom 𝑓)) | |
| 2 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑑𝜑 | |
| 3 | bnj1518.3 | . . . . . 6 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
| 4 | nfre1 3258 | . . . . . . 7 ⊢ Ⅎ𝑑∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) | |
| 5 | 4 | nfab 2901 | . . . . . 6 ⊢ Ⅎ𝑑{𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
| 6 | 3, 5 | nfcxfr 2893 | . . . . 5 ⊢ Ⅎ𝑑𝐶 |
| 7 | 6 | nfcri 2887 | . . . 4 ⊢ Ⅎ𝑑 𝑓 ∈ 𝐶 |
| 8 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑑 𝑥 ∈ dom 𝑓 | |
| 9 | 2, 7, 8 | nf3an 1902 | . . 3 ⊢ Ⅎ𝑑(𝜑 ∧ 𝑓 ∈ 𝐶 ∧ 𝑥 ∈ dom 𝑓) |
| 10 | 1, 9 | nfxfr 1854 | . 2 ⊢ Ⅎ𝑑𝜓 |
| 11 | 10 | nf5ri 2200 | 1 ⊢ (𝜓 → ∀𝑑𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∀wal 1539 = wceq 1541 ∈ wcel 2113 {cab 2711 ∀wral 3048 ∃wrex 3057 ⊆ wss 3898 〈cop 4581 ∪ cuni 4858 dom cdm 5619 ↾ cres 5621 Fn wfn 6481 ‘cfv 6486 predc-bnj14 34721 FrSe w-bnj15 34725 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-rex 3058 |
| This theorem is referenced by: bnj1501 35100 |
| Copyright terms: Public domain | W3C validator |