Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1518 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj1500 32948. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1518.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
bnj1518.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
bnj1518.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
bnj1518.4 | ⊢ 𝐹 = ∪ 𝐶 |
bnj1518.5 | ⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴)) |
bnj1518.6 | ⊢ (𝜓 ↔ (𝜑 ∧ 𝑓 ∈ 𝐶 ∧ 𝑥 ∈ dom 𝑓)) |
Ref | Expression |
---|---|
bnj1518 | ⊢ (𝜓 → ∀𝑑𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1518.6 | . . 3 ⊢ (𝜓 ↔ (𝜑 ∧ 𝑓 ∈ 𝐶 ∧ 𝑥 ∈ dom 𝑓)) | |
2 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑑𝜑 | |
3 | bnj1518.3 | . . . . . 6 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
4 | nfre1 3234 | . . . . . . 7 ⊢ Ⅎ𝑑∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌)) | |
5 | 4 | nfab 2912 | . . . . . 6 ⊢ Ⅎ𝑑{𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
6 | 3, 5 | nfcxfr 2904 | . . . . 5 ⊢ Ⅎ𝑑𝐶 |
7 | 6 | nfcri 2893 | . . . 4 ⊢ Ⅎ𝑑 𝑓 ∈ 𝐶 |
8 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑑 𝑥 ∈ dom 𝑓 | |
9 | 2, 7, 8 | nf3an 1905 | . . 3 ⊢ Ⅎ𝑑(𝜑 ∧ 𝑓 ∈ 𝐶 ∧ 𝑥 ∈ dom 𝑓) |
10 | 1, 9 | nfxfr 1856 | . 2 ⊢ Ⅎ𝑑𝜓 |
11 | 10 | nf5ri 2191 | 1 ⊢ (𝜓 → ∀𝑑𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∀wal 1537 = wceq 1539 ∈ wcel 2108 {cab 2715 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 〈cop 4564 ∪ cuni 4836 dom cdm 5580 ↾ cres 5582 Fn wfn 6413 ‘cfv 6418 predc-bnj14 32567 FrSe w-bnj15 32571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-rex 3069 |
This theorem is referenced by: bnj1501 32947 |
Copyright terms: Public domain | W3C validator |