Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1518 Structured version   Visualization version   GIF version

Theorem bnj1518 34106
Description: Technical lemma for bnj1500 34110. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1518.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1518.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1518.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1518.4 𝐹 = 𝐶
bnj1518.5 (𝜑 ↔ (𝑅 FrSe 𝐴𝑥𝐴))
bnj1518.6 (𝜓 ↔ (𝜑𝑓𝐶𝑥 ∈ dom 𝑓))
Assertion
Ref Expression
bnj1518 (𝜓 → ∀𝑑𝜓)
Distinct variable groups:   𝑓,𝑑   𝜑,𝑑   𝑥,𝑑
Allowed substitution hints:   𝜑(𝑥,𝑓)   𝜓(𝑥,𝑓,𝑑)   𝐴(𝑥,𝑓,𝑑)   𝐵(𝑥,𝑓,𝑑)   𝐶(𝑥,𝑓,𝑑)   𝑅(𝑥,𝑓,𝑑)   𝐹(𝑥,𝑓,𝑑)   𝐺(𝑥,𝑓,𝑑)   𝑌(𝑥,𝑓,𝑑)

Proof of Theorem bnj1518
StepHypRef Expression
1 bnj1518.6 . . 3 (𝜓 ↔ (𝜑𝑓𝐶𝑥 ∈ dom 𝑓))
2 nfv 1918 . . . 4 𝑑𝜑
3 bnj1518.3 . . . . . 6 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
4 nfre1 3283 . . . . . . 7 𝑑𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))
54nfab 2910 . . . . . 6 𝑑{𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
63, 5nfcxfr 2902 . . . . 5 𝑑𝐶
76nfcri 2891 . . . 4 𝑑 𝑓𝐶
8 nfv 1918 . . . 4 𝑑 𝑥 ∈ dom 𝑓
92, 7, 8nf3an 1905 . . 3 𝑑(𝜑𝑓𝐶𝑥 ∈ dom 𝑓)
101, 9nfxfr 1856 . 2 𝑑𝜓
1110nf5ri 2189 1 (𝜓 → ∀𝑑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088  wal 1540   = wceq 1542  wcel 2107  {cab 2710  wral 3062  wrex 3071  wss 3949  cop 4635   cuni 4909  dom cdm 5677  cres 5679   Fn wfn 6539  cfv 6544   predc-bnj14 33730   FrSe w-bnj15 33734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-rex 3072
This theorem is referenced by:  bnj1501  34109
  Copyright terms: Public domain W3C validator