| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj216 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj216.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| bnj216 | ⊢ (𝐴 = suc 𝐵 → 𝐵 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj216.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | 1 | sucid 6441 | . 2 ⊢ 𝐵 ∈ suc 𝐵 |
| 3 | eleq2 2824 | . 2 ⊢ (𝐴 = suc 𝐵 → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ suc 𝐵)) | |
| 4 | 2, 3 | mpbiri 258 | 1 ⊢ (𝐴 = suc 𝐵 → 𝐵 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3464 suc csuc 6359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 df-sn 4607 df-suc 6363 |
| This theorem is referenced by: bnj219 34769 bnj1098 34819 bnj556 34936 bnj557 34937 bnj594 34948 bnj944 34974 bnj966 34980 bnj969 34982 bnj1145 35029 |
| Copyright terms: Public domain | W3C validator |