Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj216 Structured version   Visualization version   GIF version

Theorem bnj216 32611
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj216.1 𝐵 ∈ V
Assertion
Ref Expression
bnj216 (𝐴 = suc 𝐵𝐵𝐴)

Proof of Theorem bnj216
StepHypRef Expression
1 bnj216.1 . . 3 𝐵 ∈ V
21sucid 6330 . 2 𝐵 ∈ suc 𝐵
3 eleq2 2827 . 2 (𝐴 = suc 𝐵 → (𝐵𝐴𝐵 ∈ suc 𝐵))
42, 3mpbiri 257 1 (𝐴 = suc 𝐵𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  suc csuc 6253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-un 3888  df-sn 4559  df-suc 6257
This theorem is referenced by:  bnj219  32612  bnj1098  32663  bnj556  32780  bnj557  32781  bnj594  32792  bnj944  32818  bnj966  32824  bnj969  32826  bnj1145  32873
  Copyright terms: Public domain W3C validator