Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj216 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj216.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
bnj216 | ⊢ (𝐴 = suc 𝐵 → 𝐵 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj216.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | 1 | sucid 6345 | . 2 ⊢ 𝐵 ∈ suc 𝐵 |
3 | eleq2 2827 | . 2 ⊢ (𝐴 = suc 𝐵 → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ suc 𝐵)) | |
4 | 2, 3 | mpbiri 257 | 1 ⊢ (𝐴 = suc 𝐵 → 𝐵 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 Vcvv 3432 suc csuc 6268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-sn 4562 df-suc 6272 |
This theorem is referenced by: bnj219 32712 bnj1098 32763 bnj556 32880 bnj557 32881 bnj594 32892 bnj944 32918 bnj966 32924 bnj969 32926 bnj1145 32973 |
Copyright terms: Public domain | W3C validator |