Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj216 Structured version   Visualization version   GIF version

Theorem bnj216 34207
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj216.1 𝐵 ∈ V
Assertion
Ref Expression
bnj216 (𝐴 = suc 𝐵𝐵𝐴)

Proof of Theorem bnj216
StepHypRef Expression
1 bnj216.1 . . 3 𝐵 ∈ V
21sucid 6446 . 2 𝐵 ∈ suc 𝐵
3 eleq2 2821 . 2 (𝐴 = suc 𝐵 → (𝐵𝐴𝐵 ∈ suc 𝐵))
42, 3mpbiri 258 1 (𝐴 = suc 𝐵𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  Vcvv 3473  suc csuc 6366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-v 3475  df-un 3953  df-sn 4629  df-suc 6370
This theorem is referenced by:  bnj219  34208  bnj1098  34258  bnj556  34375  bnj557  34376  bnj594  34387  bnj944  34413  bnj966  34419  bnj969  34421  bnj1145  34468
  Copyright terms: Public domain W3C validator