| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj216 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj216.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| bnj216 | ⊢ (𝐴 = suc 𝐵 → 𝐵 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj216.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 2 | 1 | sucid 6390 | . 2 ⊢ 𝐵 ∈ suc 𝐵 |
| 3 | eleq2 2820 | . 2 ⊢ (𝐴 = suc 𝐵 → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ suc 𝐵)) | |
| 4 | 2, 3 | mpbiri 258 | 1 ⊢ (𝐴 = suc 𝐵 → 𝐵 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 suc csuc 6308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-sn 4574 df-suc 6312 |
| This theorem is referenced by: bnj219 34745 bnj1098 34795 bnj556 34912 bnj557 34913 bnj594 34924 bnj944 34950 bnj966 34956 bnj969 34958 bnj1145 35005 |
| Copyright terms: Public domain | W3C validator |