![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj216 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj216.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
bnj216 | ⊢ (𝐴 = suc 𝐵 → 𝐵 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj216.1 | . . 3 ⊢ 𝐵 ∈ V | |
2 | 1 | sucid 6477 | . 2 ⊢ 𝐵 ∈ suc 𝐵 |
3 | eleq2 2833 | . 2 ⊢ (𝐴 = suc 𝐵 → (𝐵 ∈ 𝐴 ↔ 𝐵 ∈ suc 𝐵)) | |
4 | 2, 3 | mpbiri 258 | 1 ⊢ (𝐴 = suc 𝐵 → 𝐵 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 suc csuc 6397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-sn 4649 df-suc 6401 |
This theorem is referenced by: bnj219 34709 bnj1098 34759 bnj556 34876 bnj557 34877 bnj594 34888 bnj944 34914 bnj966 34920 bnj969 34922 bnj1145 34969 |
Copyright terms: Public domain | W3C validator |