Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj219 Structured version   Visualization version   GIF version

Theorem bnj219 34730
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj219 (𝑛 = suc 𝑚𝑚 E 𝑛)

Proof of Theorem bnj219
StepHypRef Expression
1 vex 3454 . . 3 𝑚 ∈ V
21bnj216 34729 . 2 (𝑛 = suc 𝑚𝑚𝑛)
3 epel 5544 . 2 (𝑚 E 𝑛𝑚𝑛)
42, 3sylibr 234 1 (𝑛 = suc 𝑚𝑚 E 𝑛)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540   class class class wbr 5110   E cep 5540  suc csuc 6337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-eprel 5541  df-suc 6341
This theorem is referenced by:  bnj605  34904  bnj594  34909  bnj607  34913  bnj1110  34979
  Copyright terms: Public domain W3C validator