| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj219 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj219 | ⊢ (𝑛 = suc 𝑚 → 𝑚 E 𝑛) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . . 3 ⊢ 𝑚 ∈ V | |
| 2 | 1 | bnj216 34744 | . 2 ⊢ (𝑛 = suc 𝑚 → 𝑚 ∈ 𝑛) |
| 3 | epel 5517 | . 2 ⊢ (𝑚 E 𝑛 ↔ 𝑚 ∈ 𝑛) | |
| 4 | 2, 3 | sylibr 234 | 1 ⊢ (𝑛 = suc 𝑚 → 𝑚 E 𝑛) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 class class class wbr 5089 E cep 5513 suc csuc 6308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-eprel 5514 df-suc 6312 |
| This theorem is referenced by: bnj605 34919 bnj594 34924 bnj607 34928 bnj1110 34994 |
| Copyright terms: Public domain | W3C validator |