Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj219 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj219 | ⊢ (𝑛 = suc 𝑚 → 𝑚 E 𝑛) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3426 | . . 3 ⊢ 𝑚 ∈ V | |
2 | 1 | bnj216 32611 | . 2 ⊢ (𝑛 = suc 𝑚 → 𝑚 ∈ 𝑛) |
3 | epel 5489 | . 2 ⊢ (𝑚 E 𝑛 ↔ 𝑚 ∈ 𝑛) | |
4 | 2, 3 | sylibr 233 | 1 ⊢ (𝑛 = suc 𝑚 → 𝑚 E 𝑛) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 class class class wbr 5070 E cep 5485 suc csuc 6253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-eprel 5486 df-suc 6257 |
This theorem is referenced by: bnj605 32787 bnj594 32792 bnj607 32796 bnj1110 32862 |
Copyright terms: Public domain | W3C validator |