![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj219 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj219 | ⊢ (𝑛 = suc 𝑚 → 𝑚 E 𝑛) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3482 | . . 3 ⊢ 𝑚 ∈ V | |
2 | 1 | bnj216 34725 | . 2 ⊢ (𝑛 = suc 𝑚 → 𝑚 ∈ 𝑛) |
3 | epel 5592 | . 2 ⊢ (𝑚 E 𝑛 ↔ 𝑚 ∈ 𝑛) | |
4 | 2, 3 | sylibr 234 | 1 ⊢ (𝑛 = suc 𝑚 → 𝑚 E 𝑛) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 class class class wbr 5148 E cep 5588 suc csuc 6388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-eprel 5589 df-suc 6392 |
This theorem is referenced by: bnj605 34900 bnj594 34905 bnj607 34909 bnj1110 34975 |
Copyright terms: Public domain | W3C validator |