Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj219 Structured version   Visualization version   GIF version

Theorem bnj219 34726
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj219 (𝑛 = suc 𝑚𝑚 E 𝑛)

Proof of Theorem bnj219
StepHypRef Expression
1 vex 3482 . . 3 𝑚 ∈ V
21bnj216 34725 . 2 (𝑛 = suc 𝑚𝑚𝑛)
3 epel 5592 . 2 (𝑚 E 𝑛𝑚𝑛)
42, 3sylibr 234 1 (𝑛 = suc 𝑚𝑚 E 𝑛)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537   class class class wbr 5148   E cep 5588  suc csuc 6388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-eprel 5589  df-suc 6392
This theorem is referenced by:  bnj605  34900  bnj594  34905  bnj607  34909  bnj1110  34975
  Copyright terms: Public domain W3C validator