Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj219 Structured version   Visualization version   GIF version

Theorem bnj219 32612
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj219 (𝑛 = suc 𝑚𝑚 E 𝑛)

Proof of Theorem bnj219
StepHypRef Expression
1 vex 3426 . . 3 𝑚 ∈ V
21bnj216 32611 . 2 (𝑛 = suc 𝑚𝑚𝑛)
3 epel 5489 . 2 (𝑚 E 𝑛𝑚𝑛)
42, 3sylibr 233 1 (𝑛 = suc 𝑚𝑚 E 𝑛)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539   class class class wbr 5070   E cep 5485  suc csuc 6253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-eprel 5486  df-suc 6257
This theorem is referenced by:  bnj605  32787  bnj594  32792  bnj607  32796  bnj1110  32862
  Copyright terms: Public domain W3C validator