Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj219 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj219 | ⊢ (𝑛 = suc 𝑚 → 𝑚 E 𝑛) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3436 | . . 3 ⊢ 𝑚 ∈ V | |
2 | 1 | bnj216 32711 | . 2 ⊢ (𝑛 = suc 𝑚 → 𝑚 ∈ 𝑛) |
3 | epel 5498 | . 2 ⊢ (𝑚 E 𝑛 ↔ 𝑚 ∈ 𝑛) | |
4 | 2, 3 | sylibr 233 | 1 ⊢ (𝑛 = suc 𝑚 → 𝑚 E 𝑛) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 class class class wbr 5074 E cep 5494 suc csuc 6268 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-eprel 5495 df-suc 6272 |
This theorem is referenced by: bnj605 32887 bnj594 32892 bnj607 32896 bnj1110 32962 |
Copyright terms: Public domain | W3C validator |