MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovdid Structured version   Visualization version   GIF version

Theorem caovdid 7649
Description: Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovdig.1 ((𝜑 ∧ (𝑥𝐾𝑦𝑆𝑧𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐻(𝑥𝐺𝑧)))
caovdid.2 (𝜑𝐴𝐾)
caovdid.3 (𝜑𝐵𝑆)
caovdid.4 (𝜑𝐶𝑆)
Assertion
Ref Expression
caovdid (𝜑 → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝑥,𝐻,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem caovdid
StepHypRef Expression
1 id 22 . 2 (𝜑𝜑)
2 caovdid.2 . 2 (𝜑𝐴𝐾)
3 caovdid.3 . 2 (𝜑𝐵𝑆)
4 caovdid.4 . 2 (𝜑𝐶𝑆)
5 caovdig.1 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝑆𝑧𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐻(𝑥𝐺𝑧)))
65caovdig 7648 . 2 ((𝜑 ∧ (𝐴𝐾𝐵𝑆𝐶𝑆)) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝐶)))
71, 2, 3, 4, 6syl13anc 1373 1 (𝜑 → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  (class class class)co 7432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ral 3061  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-iota 6513  df-fv 6568  df-ov 7435
This theorem is referenced by:  caovdir2d  7650  caofdi  7740
  Copyright terms: Public domain W3C validator