![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > caovdid | Structured version Visualization version GIF version |
Description: Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.) |
Ref | Expression |
---|---|
caovdig.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐻(𝑥𝐺𝑧))) |
caovdid.2 | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
caovdid.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
caovdid.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
Ref | Expression |
---|---|
caovdid | ⊢ (𝜑 → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | caovdid.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
3 | caovdid.3 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
4 | caovdid.4 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
5 | caovdig.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐻(𝑥𝐺𝑧))) | |
6 | 5 | caovdig 7635 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝐶))) |
7 | 1, 2, 3, 4, 6 | syl13anc 1369 | 1 ⊢ (𝜑 → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 (class class class)co 7419 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ral 3051 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-iota 6501 df-fv 6557 df-ov 7422 |
This theorem is referenced by: caovdir2d 7637 caofdi 7725 |
Copyright terms: Public domain | W3C validator |