![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > caofdi | Structured version Visualization version GIF version |
Description: Transfer a distributive law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.) |
Ref | Expression |
---|---|
caofdi.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
caofdi.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐾) |
caofdi.3 | ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) |
caofdi.4 | ⊢ (𝜑 → 𝐻:𝐴⟶𝑆) |
caofdi.5 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑇(𝑦𝑅𝑧)) = ((𝑥𝑇𝑦)𝑂(𝑥𝑇𝑧))) |
Ref | Expression |
---|---|
caofdi | ⊢ (𝜑 → (𝐹 ∘f 𝑇(𝐺 ∘f 𝑅𝐻)) = ((𝐹 ∘f 𝑇𝐺) ∘f 𝑂(𝐹 ∘f 𝑇𝐻))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caofdi.5 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑇(𝑦𝑅𝑧)) = ((𝑥𝑇𝑦)𝑂(𝑥𝑇𝑧))) | |
2 | 1 | adantlr 712 | . . . 4 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑇(𝑦𝑅𝑧)) = ((𝑥𝑇𝑦)𝑂(𝑥𝑇𝑧))) |
3 | caofdi.2 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝐾) | |
4 | 3 | ffvelcdmda 7077 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝐾) |
5 | caofdi.3 | . . . . 5 ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) | |
6 | 5 | ffvelcdmda 7077 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐺‘𝑤) ∈ 𝑆) |
7 | caofdi.4 | . . . . 5 ⊢ (𝜑 → 𝐻:𝐴⟶𝑆) | |
8 | 7 | ffvelcdmda 7077 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐻‘𝑤) ∈ 𝑆) |
9 | 2, 4, 6, 8 | caovdid 7616 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹‘𝑤)𝑇((𝐺‘𝑤)𝑅(𝐻‘𝑤))) = (((𝐹‘𝑤)𝑇(𝐺‘𝑤))𝑂((𝐹‘𝑤)𝑇(𝐻‘𝑤)))) |
10 | 9 | mpteq2dva 5239 | . 2 ⊢ (𝜑 → (𝑤 ∈ 𝐴 ↦ ((𝐹‘𝑤)𝑇((𝐺‘𝑤)𝑅(𝐻‘𝑤)))) = (𝑤 ∈ 𝐴 ↦ (((𝐹‘𝑤)𝑇(𝐺‘𝑤))𝑂((𝐹‘𝑤)𝑇(𝐻‘𝑤))))) |
11 | caofdi.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
12 | ovexd 7437 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐺‘𝑤)𝑅(𝐻‘𝑤)) ∈ V) | |
13 | 3 | feqmptd 6951 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑤 ∈ 𝐴 ↦ (𝐹‘𝑤))) |
14 | 5 | feqmptd 6951 | . . . 4 ⊢ (𝜑 → 𝐺 = (𝑤 ∈ 𝐴 ↦ (𝐺‘𝑤))) |
15 | 7 | feqmptd 6951 | . . . 4 ⊢ (𝜑 → 𝐻 = (𝑤 ∈ 𝐴 ↦ (𝐻‘𝑤))) |
16 | 11, 6, 8, 14, 15 | offval2 7684 | . . 3 ⊢ (𝜑 → (𝐺 ∘f 𝑅𝐻) = (𝑤 ∈ 𝐴 ↦ ((𝐺‘𝑤)𝑅(𝐻‘𝑤)))) |
17 | 11, 4, 12, 13, 16 | offval2 7684 | . 2 ⊢ (𝜑 → (𝐹 ∘f 𝑇(𝐺 ∘f 𝑅𝐻)) = (𝑤 ∈ 𝐴 ↦ ((𝐹‘𝑤)𝑇((𝐺‘𝑤)𝑅(𝐻‘𝑤))))) |
18 | ovexd 7437 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹‘𝑤)𝑇(𝐺‘𝑤)) ∈ V) | |
19 | ovexd 7437 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹‘𝑤)𝑇(𝐻‘𝑤)) ∈ V) | |
20 | 11, 4, 6, 13, 14 | offval2 7684 | . . 3 ⊢ (𝜑 → (𝐹 ∘f 𝑇𝐺) = (𝑤 ∈ 𝐴 ↦ ((𝐹‘𝑤)𝑇(𝐺‘𝑤)))) |
21 | 11, 4, 8, 13, 15 | offval2 7684 | . . 3 ⊢ (𝜑 → (𝐹 ∘f 𝑇𝐻) = (𝑤 ∈ 𝐴 ↦ ((𝐹‘𝑤)𝑇(𝐻‘𝑤)))) |
22 | 11, 18, 19, 20, 21 | offval2 7684 | . 2 ⊢ (𝜑 → ((𝐹 ∘f 𝑇𝐺) ∘f 𝑂(𝐹 ∘f 𝑇𝐻)) = (𝑤 ∈ 𝐴 ↦ (((𝐹‘𝑤)𝑇(𝐺‘𝑤))𝑂((𝐹‘𝑤)𝑇(𝐻‘𝑤))))) |
23 | 10, 17, 22 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑇(𝐺 ∘f 𝑅𝐻)) = ((𝐹 ∘f 𝑇𝐺) ∘f 𝑂(𝐹 ∘f 𝑇𝐻))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ↦ cmpt 5222 ⟶wf 6530 ‘cfv 6534 (class class class)co 7402 ∘f cof 7662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-oprab 7406 df-mpo 7407 df-of 7664 |
This theorem is referenced by: psrlmod 21852 plydivlem4 26174 plydiveu 26176 quotcan 26187 basellem9 26962 lflvsdi2 38453 mendlmod 42487 |
Copyright terms: Public domain | W3C validator |