Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > caofdi | Structured version Visualization version GIF version |
Description: Transfer a distributive law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.) |
Ref | Expression |
---|---|
caofdi.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
caofdi.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐾) |
caofdi.3 | ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) |
caofdi.4 | ⊢ (𝜑 → 𝐻:𝐴⟶𝑆) |
caofdi.5 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑇(𝑦𝑅𝑧)) = ((𝑥𝑇𝑦)𝑂(𝑥𝑇𝑧))) |
Ref | Expression |
---|---|
caofdi | ⊢ (𝜑 → (𝐹 ∘f 𝑇(𝐺 ∘f 𝑅𝐻)) = ((𝐹 ∘f 𝑇𝐺) ∘f 𝑂(𝐹 ∘f 𝑇𝐻))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caofdi.5 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑇(𝑦𝑅𝑧)) = ((𝑥𝑇𝑦)𝑂(𝑥𝑇𝑧))) | |
2 | 1 | adantlr 714 | . . . 4 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑇(𝑦𝑅𝑧)) = ((𝑥𝑇𝑦)𝑂(𝑥𝑇𝑧))) |
3 | caofdi.2 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝐾) | |
4 | 3 | ffvelrnda 6847 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝐾) |
5 | caofdi.3 | . . . . 5 ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) | |
6 | 5 | ffvelrnda 6847 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐺‘𝑤) ∈ 𝑆) |
7 | caofdi.4 | . . . . 5 ⊢ (𝜑 → 𝐻:𝐴⟶𝑆) | |
8 | 7 | ffvelrnda 6847 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐻‘𝑤) ∈ 𝑆) |
9 | 2, 4, 6, 8 | caovdid 7364 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹‘𝑤)𝑇((𝐺‘𝑤)𝑅(𝐻‘𝑤))) = (((𝐹‘𝑤)𝑇(𝐺‘𝑤))𝑂((𝐹‘𝑤)𝑇(𝐻‘𝑤)))) |
10 | 9 | mpteq2dva 5130 | . 2 ⊢ (𝜑 → (𝑤 ∈ 𝐴 ↦ ((𝐹‘𝑤)𝑇((𝐺‘𝑤)𝑅(𝐻‘𝑤)))) = (𝑤 ∈ 𝐴 ↦ (((𝐹‘𝑤)𝑇(𝐺‘𝑤))𝑂((𝐹‘𝑤)𝑇(𝐻‘𝑤))))) |
11 | caofdi.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
12 | ovexd 7190 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐺‘𝑤)𝑅(𝐻‘𝑤)) ∈ V) | |
13 | 3 | feqmptd 6725 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑤 ∈ 𝐴 ↦ (𝐹‘𝑤))) |
14 | 5 | feqmptd 6725 | . . . 4 ⊢ (𝜑 → 𝐺 = (𝑤 ∈ 𝐴 ↦ (𝐺‘𝑤))) |
15 | 7 | feqmptd 6725 | . . . 4 ⊢ (𝜑 → 𝐻 = (𝑤 ∈ 𝐴 ↦ (𝐻‘𝑤))) |
16 | 11, 6, 8, 14, 15 | offval2 7429 | . . 3 ⊢ (𝜑 → (𝐺 ∘f 𝑅𝐻) = (𝑤 ∈ 𝐴 ↦ ((𝐺‘𝑤)𝑅(𝐻‘𝑤)))) |
17 | 11, 4, 12, 13, 16 | offval2 7429 | . 2 ⊢ (𝜑 → (𝐹 ∘f 𝑇(𝐺 ∘f 𝑅𝐻)) = (𝑤 ∈ 𝐴 ↦ ((𝐹‘𝑤)𝑇((𝐺‘𝑤)𝑅(𝐻‘𝑤))))) |
18 | ovexd 7190 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹‘𝑤)𝑇(𝐺‘𝑤)) ∈ V) | |
19 | ovexd 7190 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹‘𝑤)𝑇(𝐻‘𝑤)) ∈ V) | |
20 | 11, 4, 6, 13, 14 | offval2 7429 | . . 3 ⊢ (𝜑 → (𝐹 ∘f 𝑇𝐺) = (𝑤 ∈ 𝐴 ↦ ((𝐹‘𝑤)𝑇(𝐺‘𝑤)))) |
21 | 11, 4, 8, 13, 15 | offval2 7429 | . . 3 ⊢ (𝜑 → (𝐹 ∘f 𝑇𝐻) = (𝑤 ∈ 𝐴 ↦ ((𝐹‘𝑤)𝑇(𝐻‘𝑤)))) |
22 | 11, 18, 19, 20, 21 | offval2 7429 | . 2 ⊢ (𝜑 → ((𝐹 ∘f 𝑇𝐺) ∘f 𝑂(𝐹 ∘f 𝑇𝐻)) = (𝑤 ∈ 𝐴 ↦ (((𝐹‘𝑤)𝑇(𝐺‘𝑤))𝑂((𝐹‘𝑤)𝑇(𝐻‘𝑤))))) |
23 | 10, 17, 22 | 3eqtr4d 2803 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑇(𝐺 ∘f 𝑅𝐻)) = ((𝐹 ∘f 𝑇𝐺) ∘f 𝑂(𝐹 ∘f 𝑇𝐻))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ↦ cmpt 5115 ⟶wf 6335 ‘cfv 6339 (class class class)co 7155 ∘f cof 7408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pr 5301 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7158 df-oprab 7159 df-mpo 7160 df-of 7410 |
This theorem is referenced by: psrlmod 20734 plydivlem4 24996 plydiveu 24998 quotcan 25009 basellem9 25778 lflvsdi2 36681 mendlmod 40538 |
Copyright terms: Public domain | W3C validator |