![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > caofdi | Structured version Visualization version GIF version |
Description: Transfer a distributive law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.) |
Ref | Expression |
---|---|
caofdi.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
caofdi.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐾) |
caofdi.3 | ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) |
caofdi.4 | ⊢ (𝜑 → 𝐻:𝐴⟶𝑆) |
caofdi.5 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑇(𝑦𝑅𝑧)) = ((𝑥𝑇𝑦)𝑂(𝑥𝑇𝑧))) |
Ref | Expression |
---|---|
caofdi | ⊢ (𝜑 → (𝐹 ∘𝑓 𝑇(𝐺 ∘𝑓 𝑅𝐻)) = ((𝐹 ∘𝑓 𝑇𝐺) ∘𝑓 𝑂(𝐹 ∘𝑓 𝑇𝐻))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caofdi.5 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑇(𝑦𝑅𝑧)) = ((𝑥𝑇𝑦)𝑂(𝑥𝑇𝑧))) | |
2 | 1 | adantlr 707 | . . . 4 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑇(𝑦𝑅𝑧)) = ((𝑥𝑇𝑦)𝑂(𝑥𝑇𝑧))) |
3 | caofdi.2 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝐾) | |
4 | 3 | ffvelrnda 6583 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝐾) |
5 | caofdi.3 | . . . . 5 ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) | |
6 | 5 | ffvelrnda 6583 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐺‘𝑤) ∈ 𝑆) |
7 | caofdi.4 | . . . . 5 ⊢ (𝜑 → 𝐻:𝐴⟶𝑆) | |
8 | 7 | ffvelrnda 6583 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐻‘𝑤) ∈ 𝑆) |
9 | 2, 4, 6, 8 | caovdid 7081 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹‘𝑤)𝑇((𝐺‘𝑤)𝑅(𝐻‘𝑤))) = (((𝐹‘𝑤)𝑇(𝐺‘𝑤))𝑂((𝐹‘𝑤)𝑇(𝐻‘𝑤)))) |
10 | 9 | mpteq2dva 4935 | . 2 ⊢ (𝜑 → (𝑤 ∈ 𝐴 ↦ ((𝐹‘𝑤)𝑇((𝐺‘𝑤)𝑅(𝐻‘𝑤)))) = (𝑤 ∈ 𝐴 ↦ (((𝐹‘𝑤)𝑇(𝐺‘𝑤))𝑂((𝐹‘𝑤)𝑇(𝐻‘𝑤))))) |
11 | caofdi.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
12 | ovexd 6910 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐺‘𝑤)𝑅(𝐻‘𝑤)) ∈ V) | |
13 | 3 | feqmptd 6472 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑤 ∈ 𝐴 ↦ (𝐹‘𝑤))) |
14 | 5 | feqmptd 6472 | . . . 4 ⊢ (𝜑 → 𝐺 = (𝑤 ∈ 𝐴 ↦ (𝐺‘𝑤))) |
15 | 7 | feqmptd 6472 | . . . 4 ⊢ (𝜑 → 𝐻 = (𝑤 ∈ 𝐴 ↦ (𝐻‘𝑤))) |
16 | 11, 6, 8, 14, 15 | offval2 7146 | . . 3 ⊢ (𝜑 → (𝐺 ∘𝑓 𝑅𝐻) = (𝑤 ∈ 𝐴 ↦ ((𝐺‘𝑤)𝑅(𝐻‘𝑤)))) |
17 | 11, 4, 12, 13, 16 | offval2 7146 | . 2 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑇(𝐺 ∘𝑓 𝑅𝐻)) = (𝑤 ∈ 𝐴 ↦ ((𝐹‘𝑤)𝑇((𝐺‘𝑤)𝑅(𝐻‘𝑤))))) |
18 | ovexd 6910 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹‘𝑤)𝑇(𝐺‘𝑤)) ∈ V) | |
19 | ovexd 6910 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹‘𝑤)𝑇(𝐻‘𝑤)) ∈ V) | |
20 | 11, 4, 6, 13, 14 | offval2 7146 | . . 3 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑇𝐺) = (𝑤 ∈ 𝐴 ↦ ((𝐹‘𝑤)𝑇(𝐺‘𝑤)))) |
21 | 11, 4, 8, 13, 15 | offval2 7146 | . . 3 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑇𝐻) = (𝑤 ∈ 𝐴 ↦ ((𝐹‘𝑤)𝑇(𝐻‘𝑤)))) |
22 | 11, 18, 19, 20, 21 | offval2 7146 | . 2 ⊢ (𝜑 → ((𝐹 ∘𝑓 𝑇𝐺) ∘𝑓 𝑂(𝐹 ∘𝑓 𝑇𝐻)) = (𝑤 ∈ 𝐴 ↦ (((𝐹‘𝑤)𝑇(𝐺‘𝑤))𝑂((𝐹‘𝑤)𝑇(𝐻‘𝑤))))) |
23 | 10, 17, 22 | 3eqtr4d 2841 | 1 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑇(𝐺 ∘𝑓 𝑅𝐻)) = ((𝐹 ∘𝑓 𝑇𝐺) ∘𝑓 𝑂(𝐹 ∘𝑓 𝑇𝐻))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 Vcvv 3383 ↦ cmpt 4920 ⟶wf 6095 ‘cfv 6099 (class class class)co 6876 ∘𝑓 cof 7127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-reu 3094 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-of 7129 |
This theorem is referenced by: psrlmod 19721 plydivlem4 24389 plydiveu 24391 quotcan 24402 basellem9 25164 lflvsdi2 35092 mendlmod 38536 |
Copyright terms: Public domain | W3C validator |