![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > caofdi | Structured version Visualization version GIF version |
Description: Transfer a distributive law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.) |
Ref | Expression |
---|---|
caofdi.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
caofdi.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐾) |
caofdi.3 | ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) |
caofdi.4 | ⊢ (𝜑 → 𝐻:𝐴⟶𝑆) |
caofdi.5 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑇(𝑦𝑅𝑧)) = ((𝑥𝑇𝑦)𝑂(𝑥𝑇𝑧))) |
Ref | Expression |
---|---|
caofdi | ⊢ (𝜑 → (𝐹 ∘f 𝑇(𝐺 ∘f 𝑅𝐻)) = ((𝐹 ∘f 𝑇𝐺) ∘f 𝑂(𝐹 ∘f 𝑇𝐻))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caofdi.5 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑇(𝑦𝑅𝑧)) = ((𝑥𝑇𝑦)𝑂(𝑥𝑇𝑧))) | |
2 | 1 | adantlr 714 | . . . 4 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝑇(𝑦𝑅𝑧)) = ((𝑥𝑇𝑦)𝑂(𝑥𝑇𝑧))) |
3 | caofdi.2 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝐾) | |
4 | 3 | ffvelcdmda 7087 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝐾) |
5 | caofdi.3 | . . . . 5 ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) | |
6 | 5 | ffvelcdmda 7087 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐺‘𝑤) ∈ 𝑆) |
7 | caofdi.4 | . . . . 5 ⊢ (𝜑 → 𝐻:𝐴⟶𝑆) | |
8 | 7 | ffvelcdmda 7087 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐻‘𝑤) ∈ 𝑆) |
9 | 2, 4, 6, 8 | caovdid 7622 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹‘𝑤)𝑇((𝐺‘𝑤)𝑅(𝐻‘𝑤))) = (((𝐹‘𝑤)𝑇(𝐺‘𝑤))𝑂((𝐹‘𝑤)𝑇(𝐻‘𝑤)))) |
10 | 9 | mpteq2dva 5249 | . 2 ⊢ (𝜑 → (𝑤 ∈ 𝐴 ↦ ((𝐹‘𝑤)𝑇((𝐺‘𝑤)𝑅(𝐻‘𝑤)))) = (𝑤 ∈ 𝐴 ↦ (((𝐹‘𝑤)𝑇(𝐺‘𝑤))𝑂((𝐹‘𝑤)𝑇(𝐻‘𝑤))))) |
11 | caofdi.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
12 | ovexd 7444 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐺‘𝑤)𝑅(𝐻‘𝑤)) ∈ V) | |
13 | 3 | feqmptd 6961 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑤 ∈ 𝐴 ↦ (𝐹‘𝑤))) |
14 | 5 | feqmptd 6961 | . . . 4 ⊢ (𝜑 → 𝐺 = (𝑤 ∈ 𝐴 ↦ (𝐺‘𝑤))) |
15 | 7 | feqmptd 6961 | . . . 4 ⊢ (𝜑 → 𝐻 = (𝑤 ∈ 𝐴 ↦ (𝐻‘𝑤))) |
16 | 11, 6, 8, 14, 15 | offval2 7690 | . . 3 ⊢ (𝜑 → (𝐺 ∘f 𝑅𝐻) = (𝑤 ∈ 𝐴 ↦ ((𝐺‘𝑤)𝑅(𝐻‘𝑤)))) |
17 | 11, 4, 12, 13, 16 | offval2 7690 | . 2 ⊢ (𝜑 → (𝐹 ∘f 𝑇(𝐺 ∘f 𝑅𝐻)) = (𝑤 ∈ 𝐴 ↦ ((𝐹‘𝑤)𝑇((𝐺‘𝑤)𝑅(𝐻‘𝑤))))) |
18 | ovexd 7444 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹‘𝑤)𝑇(𝐺‘𝑤)) ∈ V) | |
19 | ovexd 7444 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐹‘𝑤)𝑇(𝐻‘𝑤)) ∈ V) | |
20 | 11, 4, 6, 13, 14 | offval2 7690 | . . 3 ⊢ (𝜑 → (𝐹 ∘f 𝑇𝐺) = (𝑤 ∈ 𝐴 ↦ ((𝐹‘𝑤)𝑇(𝐺‘𝑤)))) |
21 | 11, 4, 8, 13, 15 | offval2 7690 | . . 3 ⊢ (𝜑 → (𝐹 ∘f 𝑇𝐻) = (𝑤 ∈ 𝐴 ↦ ((𝐹‘𝑤)𝑇(𝐻‘𝑤)))) |
22 | 11, 18, 19, 20, 21 | offval2 7690 | . 2 ⊢ (𝜑 → ((𝐹 ∘f 𝑇𝐺) ∘f 𝑂(𝐹 ∘f 𝑇𝐻)) = (𝑤 ∈ 𝐴 ↦ (((𝐹‘𝑤)𝑇(𝐺‘𝑤))𝑂((𝐹‘𝑤)𝑇(𝐻‘𝑤))))) |
23 | 10, 17, 22 | 3eqtr4d 2783 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑇(𝐺 ∘f 𝑅𝐻)) = ((𝐹 ∘f 𝑇𝐺) ∘f 𝑂(𝐹 ∘f 𝑇𝐻))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ↦ cmpt 5232 ⟶wf 6540 ‘cfv 6544 (class class class)co 7409 ∘f cof 7668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-of 7670 |
This theorem is referenced by: psrlmod 21521 plydivlem4 25809 plydiveu 25811 quotcan 25822 basellem9 26593 lflvsdi2 37949 mendlmod 41935 |
Copyright terms: Public domain | W3C validator |