MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caofdi Structured version   Visualization version   GIF version

Theorem caofdi 7659
Description: Transfer a distributive law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
caofdi.1 (𝜑𝐴𝑉)
caofdi.2 (𝜑𝐹:𝐴𝐾)
caofdi.3 (𝜑𝐺:𝐴𝑆)
caofdi.4 (𝜑𝐻:𝐴𝑆)
caofdi.5 ((𝜑 ∧ (𝑥𝐾𝑦𝑆𝑧𝑆)) → (𝑥𝑇(𝑦𝑅𝑧)) = ((𝑥𝑇𝑦)𝑂(𝑥𝑇𝑧)))
Assertion
Ref Expression
caofdi (𝜑 → (𝐹f 𝑇(𝐺f 𝑅𝐻)) = ((𝐹f 𝑇𝐺) ∘f 𝑂(𝐹f 𝑇𝐻)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐹,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐻,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧   𝑥,𝑂,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem caofdi
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caofdi.5 . . . . 5 ((𝜑 ∧ (𝑥𝐾𝑦𝑆𝑧𝑆)) → (𝑥𝑇(𝑦𝑅𝑧)) = ((𝑥𝑇𝑦)𝑂(𝑥𝑇𝑧)))
21adantlr 715 . . . 4 (((𝜑𝑤𝐴) ∧ (𝑥𝐾𝑦𝑆𝑧𝑆)) → (𝑥𝑇(𝑦𝑅𝑧)) = ((𝑥𝑇𝑦)𝑂(𝑥𝑇𝑧)))
3 caofdi.2 . . . . 5 (𝜑𝐹:𝐴𝐾)
43ffvelcdmda 7022 . . . 4 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝐾)
5 caofdi.3 . . . . 5 (𝜑𝐺:𝐴𝑆)
65ffvelcdmda 7022 . . . 4 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑆)
7 caofdi.4 . . . . 5 (𝜑𝐻:𝐴𝑆)
87ffvelcdmda 7022 . . . 4 ((𝜑𝑤𝐴) → (𝐻𝑤) ∈ 𝑆)
92, 4, 6, 8caovdid 7568 . . 3 ((𝜑𝑤𝐴) → ((𝐹𝑤)𝑇((𝐺𝑤)𝑅(𝐻𝑤))) = (((𝐹𝑤)𝑇(𝐺𝑤))𝑂((𝐹𝑤)𝑇(𝐻𝑤))))
109mpteq2dva 5188 . 2 (𝜑 → (𝑤𝐴 ↦ ((𝐹𝑤)𝑇((𝐺𝑤)𝑅(𝐻𝑤)))) = (𝑤𝐴 ↦ (((𝐹𝑤)𝑇(𝐺𝑤))𝑂((𝐹𝑤)𝑇(𝐻𝑤)))))
11 caofdi.1 . . 3 (𝜑𝐴𝑉)
12 ovexd 7388 . . 3 ((𝜑𝑤𝐴) → ((𝐺𝑤)𝑅(𝐻𝑤)) ∈ V)
133feqmptd 6895 . . 3 (𝜑𝐹 = (𝑤𝐴 ↦ (𝐹𝑤)))
145feqmptd 6895 . . . 4 (𝜑𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
157feqmptd 6895 . . . 4 (𝜑𝐻 = (𝑤𝐴 ↦ (𝐻𝑤)))
1611, 6, 8, 14, 15offval2 7637 . . 3 (𝜑 → (𝐺f 𝑅𝐻) = (𝑤𝐴 ↦ ((𝐺𝑤)𝑅(𝐻𝑤))))
1711, 4, 12, 13, 16offval2 7637 . 2 (𝜑 → (𝐹f 𝑇(𝐺f 𝑅𝐻)) = (𝑤𝐴 ↦ ((𝐹𝑤)𝑇((𝐺𝑤)𝑅(𝐻𝑤)))))
18 ovexd 7388 . . 3 ((𝜑𝑤𝐴) → ((𝐹𝑤)𝑇(𝐺𝑤)) ∈ V)
19 ovexd 7388 . . 3 ((𝜑𝑤𝐴) → ((𝐹𝑤)𝑇(𝐻𝑤)) ∈ V)
2011, 4, 6, 13, 14offval2 7637 . . 3 (𝜑 → (𝐹f 𝑇𝐺) = (𝑤𝐴 ↦ ((𝐹𝑤)𝑇(𝐺𝑤))))
2111, 4, 8, 13, 15offval2 7637 . . 3 (𝜑 → (𝐹f 𝑇𝐻) = (𝑤𝐴 ↦ ((𝐹𝑤)𝑇(𝐻𝑤))))
2211, 18, 19, 20, 21offval2 7637 . 2 (𝜑 → ((𝐹f 𝑇𝐺) ∘f 𝑂(𝐹f 𝑇𝐻)) = (𝑤𝐴 ↦ (((𝐹𝑤)𝑇(𝐺𝑤))𝑂((𝐹𝑤)𝑇(𝐻𝑤)))))
2310, 17, 223eqtr4d 2774 1 (𝜑 → (𝐹f 𝑇(𝐺f 𝑅𝐻)) = ((𝐹f 𝑇𝐺) ∘f 𝑂(𝐹f 𝑇𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3438  cmpt 5176  wf 6482  cfv 6486  (class class class)co 7353  f cof 7615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617
This theorem is referenced by:  psrlmod  21886  plydivlem4  26221  plydiveu  26223  quotcan  26234  basellem9  27016  lflvsdi2  39077  mendlmod  43182
  Copyright terms: Public domain W3C validator