| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > caovdir2d | Structured version Visualization version GIF version | ||
| Description: Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.) |
| Ref | Expression |
|---|---|
| caovdir2d.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧))) |
| caovdir2d.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| caovdir2d.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| caovdir2d.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑆) |
| caovdir2d.cl | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) |
| caovdir2d.com | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) |
| Ref | Expression |
|---|---|
| caovdir2d | ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovdir2d.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧))) | |
| 2 | caovdir2d.4 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑆) | |
| 3 | caovdir2d.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 4 | caovdir2d.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
| 5 | 1, 2, 3, 4 | caovdid 7561 | . 2 ⊢ (𝜑 → (𝐶𝐺(𝐴𝐹𝐵)) = ((𝐶𝐺𝐴)𝐹(𝐶𝐺𝐵))) |
| 6 | caovdir2d.com | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) | |
| 7 | caovdir2d.cl | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆) | |
| 8 | 7, 3, 4 | caovcld 7539 | . . 3 ⊢ (𝜑 → (𝐴𝐹𝐵) ∈ 𝑆) |
| 9 | 6, 8, 2 | caovcomd 7542 | . 2 ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐺𝐶) = (𝐶𝐺(𝐴𝐹𝐵))) |
| 10 | 6, 3, 2 | caovcomd 7542 | . . 3 ⊢ (𝜑 → (𝐴𝐺𝐶) = (𝐶𝐺𝐴)) |
| 11 | 6, 4, 2 | caovcomd 7542 | . . 3 ⊢ (𝜑 → (𝐵𝐺𝐶) = (𝐶𝐺𝐵)) |
| 12 | 10, 11 | oveq12d 7364 | . 2 ⊢ (𝜑 → ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶)) = ((𝐶𝐺𝐴)𝐹(𝐶𝐺𝐵))) |
| 13 | 5, 9, 12 | 3eqtr4d 2776 | 1 ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 (class class class)co 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |