MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovdir2d Structured version   Visualization version   GIF version

Theorem caovdir2d 7574
Description: Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
caovdir2d.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧)))
caovdir2d.2 (𝜑𝐴𝑆)
caovdir2d.3 (𝜑𝐵𝑆)
caovdir2d.4 (𝜑𝐶𝑆)
caovdir2d.cl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
caovdir2d.com ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
Assertion
Ref Expression
caovdir2d (𝜑 → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem caovdir2d
StepHypRef Expression
1 caovdir2d.1 . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧)))
2 caovdir2d.4 . . 3 (𝜑𝐶𝑆)
3 caovdir2d.2 . . 3 (𝜑𝐴𝑆)
4 caovdir2d.3 . . 3 (𝜑𝐵𝑆)
51, 2, 3, 4caovdid 7573 . 2 (𝜑 → (𝐶𝐺(𝐴𝐹𝐵)) = ((𝐶𝐺𝐴)𝐹(𝐶𝐺𝐵)))
6 caovdir2d.com . . 3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
7 caovdir2d.cl . . . 4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝐹𝑦) ∈ 𝑆)
87, 3, 4caovcld 7551 . . 3 (𝜑 → (𝐴𝐹𝐵) ∈ 𝑆)
96, 8, 2caovcomd 7554 . 2 (𝜑 → ((𝐴𝐹𝐵)𝐺𝐶) = (𝐶𝐺(𝐴𝐹𝐵)))
106, 3, 2caovcomd 7554 . . 3 (𝜑 → (𝐴𝐺𝐶) = (𝐶𝐺𝐴))
116, 4, 2caovcomd 7554 . . 3 (𝜑 → (𝐵𝐺𝐶) = (𝐶𝐺𝐵))
1210, 11oveq12d 7379 . 2 (𝜑 → ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶)) = ((𝐶𝐺𝐴)𝐹(𝐶𝐺𝐵)))
135, 9, 123eqtr4d 2783 1 (𝜑 → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐹(𝐵𝐺𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  (class class class)co 7361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3062  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-iota 6452  df-fv 6508  df-ov 7364
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator