Proof of Theorem caovdig
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | caovdig.1 | . . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐻(𝑥𝐺𝑧))) | 
| 2 | 1 | ralrimivvva 3205 | . 2
⊢ (𝜑 → ∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐻(𝑥𝐺𝑧))) | 
| 3 |  | oveq1 7438 | . . . 4
⊢ (𝑥 = 𝐴 → (𝑥𝐺(𝑦𝐹𝑧)) = (𝐴𝐺(𝑦𝐹𝑧))) | 
| 4 |  | oveq1 7438 | . . . . 5
⊢ (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦)) | 
| 5 |  | oveq1 7438 | . . . . 5
⊢ (𝑥 = 𝐴 → (𝑥𝐺𝑧) = (𝐴𝐺𝑧)) | 
| 6 | 4, 5 | oveq12d 7449 | . . . 4
⊢ (𝑥 = 𝐴 → ((𝑥𝐺𝑦)𝐻(𝑥𝐺𝑧)) = ((𝐴𝐺𝑦)𝐻(𝐴𝐺𝑧))) | 
| 7 | 3, 6 | eqeq12d 2753 | . . 3
⊢ (𝑥 = 𝐴 → ((𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐻(𝑥𝐺𝑧)) ↔ (𝐴𝐺(𝑦𝐹𝑧)) = ((𝐴𝐺𝑦)𝐻(𝐴𝐺𝑧)))) | 
| 8 |  | oveq1 7438 | . . . . 5
⊢ (𝑦 = 𝐵 → (𝑦𝐹𝑧) = (𝐵𝐹𝑧)) | 
| 9 | 8 | oveq2d 7447 | . . . 4
⊢ (𝑦 = 𝐵 → (𝐴𝐺(𝑦𝐹𝑧)) = (𝐴𝐺(𝐵𝐹𝑧))) | 
| 10 |  | oveq2 7439 | . . . . 5
⊢ (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵)) | 
| 11 | 10 | oveq1d 7446 | . . . 4
⊢ (𝑦 = 𝐵 → ((𝐴𝐺𝑦)𝐻(𝐴𝐺𝑧)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝑧))) | 
| 12 | 9, 11 | eqeq12d 2753 | . . 3
⊢ (𝑦 = 𝐵 → ((𝐴𝐺(𝑦𝐹𝑧)) = ((𝐴𝐺𝑦)𝐻(𝐴𝐺𝑧)) ↔ (𝐴𝐺(𝐵𝐹𝑧)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝑧)))) | 
| 13 |  | oveq2 7439 | . . . . 5
⊢ (𝑧 = 𝐶 → (𝐵𝐹𝑧) = (𝐵𝐹𝐶)) | 
| 14 | 13 | oveq2d 7447 | . . . 4
⊢ (𝑧 = 𝐶 → (𝐴𝐺(𝐵𝐹𝑧)) = (𝐴𝐺(𝐵𝐹𝐶))) | 
| 15 |  | oveq2 7439 | . . . . 5
⊢ (𝑧 = 𝐶 → (𝐴𝐺𝑧) = (𝐴𝐺𝐶)) | 
| 16 | 15 | oveq2d 7447 | . . . 4
⊢ (𝑧 = 𝐶 → ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝑧)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝐶))) | 
| 17 | 14, 16 | eqeq12d 2753 | . . 3
⊢ (𝑧 = 𝐶 → ((𝐴𝐺(𝐵𝐹𝑧)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝑧)) ↔ (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝐶)))) | 
| 18 | 7, 12, 17 | rspc3v 3638 | . 2
⊢ ((𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (∀𝑥 ∈ 𝐾 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐻(𝑥𝐺𝑧)) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝐶)))) | 
| 19 | 2, 18 | mpan9 506 | 1
⊢ ((𝜑 ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝐶))) |