MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caovdig Structured version   Visualization version   GIF version

Theorem caovdig 7464
Description: Convert an operation distributive law to class notation. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
caovdig.1 ((𝜑 ∧ (𝑥𝐾𝑦𝑆𝑧𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐻(𝑥𝐺𝑧)))
Assertion
Ref Expression
caovdig ((𝜑 ∧ (𝐴𝐾𝐵𝑆𝐶𝑆)) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝐶)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐹,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝑥,𝐻,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧

Proof of Theorem caovdig
StepHypRef Expression
1 caovdig.1 . . 3 ((𝜑 ∧ (𝑥𝐾𝑦𝑆𝑧𝑆)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐻(𝑥𝐺𝑧)))
21ralrimivvva 3115 . 2 (𝜑 → ∀𝑥𝐾𝑦𝑆𝑧𝑆 (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐻(𝑥𝐺𝑧)))
3 oveq1 7262 . . . 4 (𝑥 = 𝐴 → (𝑥𝐺(𝑦𝐹𝑧)) = (𝐴𝐺(𝑦𝐹𝑧)))
4 oveq1 7262 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐺𝑦) = (𝐴𝐺𝑦))
5 oveq1 7262 . . . . 5 (𝑥 = 𝐴 → (𝑥𝐺𝑧) = (𝐴𝐺𝑧))
64, 5oveq12d 7273 . . . 4 (𝑥 = 𝐴 → ((𝑥𝐺𝑦)𝐻(𝑥𝐺𝑧)) = ((𝐴𝐺𝑦)𝐻(𝐴𝐺𝑧)))
73, 6eqeq12d 2754 . . 3 (𝑥 = 𝐴 → ((𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐻(𝑥𝐺𝑧)) ↔ (𝐴𝐺(𝑦𝐹𝑧)) = ((𝐴𝐺𝑦)𝐻(𝐴𝐺𝑧))))
8 oveq1 7262 . . . . 5 (𝑦 = 𝐵 → (𝑦𝐹𝑧) = (𝐵𝐹𝑧))
98oveq2d 7271 . . . 4 (𝑦 = 𝐵 → (𝐴𝐺(𝑦𝐹𝑧)) = (𝐴𝐺(𝐵𝐹𝑧)))
10 oveq2 7263 . . . . 5 (𝑦 = 𝐵 → (𝐴𝐺𝑦) = (𝐴𝐺𝐵))
1110oveq1d 7270 . . . 4 (𝑦 = 𝐵 → ((𝐴𝐺𝑦)𝐻(𝐴𝐺𝑧)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝑧)))
129, 11eqeq12d 2754 . . 3 (𝑦 = 𝐵 → ((𝐴𝐺(𝑦𝐹𝑧)) = ((𝐴𝐺𝑦)𝐻(𝐴𝐺𝑧)) ↔ (𝐴𝐺(𝐵𝐹𝑧)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝑧))))
13 oveq2 7263 . . . . 5 (𝑧 = 𝐶 → (𝐵𝐹𝑧) = (𝐵𝐹𝐶))
1413oveq2d 7271 . . . 4 (𝑧 = 𝐶 → (𝐴𝐺(𝐵𝐹𝑧)) = (𝐴𝐺(𝐵𝐹𝐶)))
15 oveq2 7263 . . . . 5 (𝑧 = 𝐶 → (𝐴𝐺𝑧) = (𝐴𝐺𝐶))
1615oveq2d 7271 . . . 4 (𝑧 = 𝐶 → ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝑧)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝐶)))
1714, 16eqeq12d 2754 . . 3 (𝑧 = 𝐶 → ((𝐴𝐺(𝐵𝐹𝑧)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝑧)) ↔ (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝐶))))
187, 12, 17rspc3v 3565 . 2 ((𝐴𝐾𝐵𝑆𝐶𝑆) → (∀𝑥𝐾𝑦𝑆𝑧𝑆 (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐻(𝑥𝐺𝑧)) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝐶))))
192, 18mpan9 506 1 ((𝜑 ∧ (𝐴𝐾𝐵𝑆𝐶𝑆)) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐻(𝐴𝐺𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  (class class class)co 7255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426  df-ov 7258
This theorem is referenced by:  caovdid  7465  caovdi  7469  srgi  19662  ringi  19714
  Copyright terms: Public domain W3C validator