| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > caovdird | Structured version Visualization version GIF version | ||
| Description: Convert an operation distributive law to class notation. (Contributed by Mario Carneiro, 30-Dec-2014.) |
| Ref | Expression |
|---|---|
| caovdirg.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝐾)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐻(𝑦𝐺𝑧))) |
| caovdird.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| caovdird.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| caovdird.4 | ⊢ (𝜑 → 𝐶 ∈ 𝐾) |
| Ref | Expression |
|---|---|
| caovdird | ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐻(𝐵𝐺𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | caovdird.2 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 3 | caovdird.3 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
| 4 | caovdird.4 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝐾) | |
| 5 | caovdirg.1 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝐾)) → ((𝑥𝐹𝑦)𝐺𝑧) = ((𝑥𝐺𝑧)𝐻(𝑦𝐺𝑧))) | |
| 6 | 5 | caovdirg 7624 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝐾)) → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐻(𝐵𝐺𝐶))) |
| 7 | 1, 2, 3, 4, 6 | syl13anc 1374 | 1 ⊢ (𝜑 → ((𝐴𝐹𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐻(𝐵𝐺𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 (class class class)co 7405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 |
| This theorem is referenced by: caofdir 7714 |
| Copyright terms: Public domain | W3C validator |