![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > caofdir | Structured version Visualization version GIF version |
Description: Transfer a reverse distributive law to the function operation. (Contributed by NM, 19-Oct-2014.) |
Ref | Expression |
---|---|
caofdi.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
caofdi.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐾) |
caofdi.3 | ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) |
caofdi.4 | ⊢ (𝜑 → 𝐻:𝐴⟶𝑆) |
caofdir.5 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝐾)) → ((𝑥𝑅𝑦)𝑇𝑧) = ((𝑥𝑇𝑧)𝑂(𝑦𝑇𝑧))) |
Ref | Expression |
---|---|
caofdir | ⊢ (𝜑 → ((𝐺 ∘f 𝑅𝐻) ∘f 𝑇𝐹) = ((𝐺 ∘f 𝑇𝐹) ∘f 𝑂(𝐻 ∘f 𝑇𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caofdir.5 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝐾)) → ((𝑥𝑅𝑦)𝑇𝑧) = ((𝑥𝑇𝑧)𝑂(𝑦𝑇𝑧))) | |
2 | 1 | adantlr 714 | . . . 4 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝐾)) → ((𝑥𝑅𝑦)𝑇𝑧) = ((𝑥𝑇𝑧)𝑂(𝑦𝑇𝑧))) |
3 | caofdi.3 | . . . . 5 ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) | |
4 | 3 | ffvelcdmda 7118 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐺‘𝑤) ∈ 𝑆) |
5 | caofdi.4 | . . . . 5 ⊢ (𝜑 → 𝐻:𝐴⟶𝑆) | |
6 | 5 | ffvelcdmda 7118 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐻‘𝑤) ∈ 𝑆) |
7 | caofdi.2 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝐾) | |
8 | 7 | ffvelcdmda 7118 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝐾) |
9 | 2, 4, 6, 8 | caovdird 7668 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (((𝐺‘𝑤)𝑅(𝐻‘𝑤))𝑇(𝐹‘𝑤)) = (((𝐺‘𝑤)𝑇(𝐹‘𝑤))𝑂((𝐻‘𝑤)𝑇(𝐹‘𝑤)))) |
10 | 9 | mpteq2dva 5266 | . 2 ⊢ (𝜑 → (𝑤 ∈ 𝐴 ↦ (((𝐺‘𝑤)𝑅(𝐻‘𝑤))𝑇(𝐹‘𝑤))) = (𝑤 ∈ 𝐴 ↦ (((𝐺‘𝑤)𝑇(𝐹‘𝑤))𝑂((𝐻‘𝑤)𝑇(𝐹‘𝑤))))) |
11 | caofdi.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
12 | ovexd 7483 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐺‘𝑤)𝑅(𝐻‘𝑤)) ∈ V) | |
13 | 3 | feqmptd 6990 | . . . 4 ⊢ (𝜑 → 𝐺 = (𝑤 ∈ 𝐴 ↦ (𝐺‘𝑤))) |
14 | 5 | feqmptd 6990 | . . . 4 ⊢ (𝜑 → 𝐻 = (𝑤 ∈ 𝐴 ↦ (𝐻‘𝑤))) |
15 | 11, 4, 6, 13, 14 | offval2 7734 | . . 3 ⊢ (𝜑 → (𝐺 ∘f 𝑅𝐻) = (𝑤 ∈ 𝐴 ↦ ((𝐺‘𝑤)𝑅(𝐻‘𝑤)))) |
16 | 7 | feqmptd 6990 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑤 ∈ 𝐴 ↦ (𝐹‘𝑤))) |
17 | 11, 12, 8, 15, 16 | offval2 7734 | . 2 ⊢ (𝜑 → ((𝐺 ∘f 𝑅𝐻) ∘f 𝑇𝐹) = (𝑤 ∈ 𝐴 ↦ (((𝐺‘𝑤)𝑅(𝐻‘𝑤))𝑇(𝐹‘𝑤)))) |
18 | ovexd 7483 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐺‘𝑤)𝑇(𝐹‘𝑤)) ∈ V) | |
19 | ovexd 7483 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐻‘𝑤)𝑇(𝐹‘𝑤)) ∈ V) | |
20 | 11, 4, 8, 13, 16 | offval2 7734 | . . 3 ⊢ (𝜑 → (𝐺 ∘f 𝑇𝐹) = (𝑤 ∈ 𝐴 ↦ ((𝐺‘𝑤)𝑇(𝐹‘𝑤)))) |
21 | 11, 6, 8, 14, 16 | offval2 7734 | . . 3 ⊢ (𝜑 → (𝐻 ∘f 𝑇𝐹) = (𝑤 ∈ 𝐴 ↦ ((𝐻‘𝑤)𝑇(𝐹‘𝑤)))) |
22 | 11, 18, 19, 20, 21 | offval2 7734 | . 2 ⊢ (𝜑 → ((𝐺 ∘f 𝑇𝐹) ∘f 𝑂(𝐻 ∘f 𝑇𝐹)) = (𝑤 ∈ 𝐴 ↦ (((𝐺‘𝑤)𝑇(𝐹‘𝑤))𝑂((𝐻‘𝑤)𝑇(𝐹‘𝑤))))) |
23 | 10, 17, 22 | 3eqtr4d 2790 | 1 ⊢ (𝜑 → ((𝐺 ∘f 𝑅𝐻) ∘f 𝑇𝐹) = ((𝐺 ∘f 𝑇𝐹) ∘f 𝑂(𝐻 ∘f 𝑇𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ↦ cmpt 5249 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ∘f cof 7712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 |
This theorem is referenced by: psrlmod 22003 lflvsdi1 39034 mendlmod 43150 expgrowth 44304 |
Copyright terms: Public domain | W3C validator |