MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caofdir Structured version   Visualization version   GIF version

Theorem caofdir 7755
Description: Transfer a reverse distributive law to the function operation. (Contributed by NM, 19-Oct-2014.)
Hypotheses
Ref Expression
caofdi.1 (𝜑𝐴𝑉)
caofdi.2 (𝜑𝐹:𝐴𝐾)
caofdi.3 (𝜑𝐺:𝐴𝑆)
caofdi.4 (𝜑𝐻:𝐴𝑆)
caofdir.5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝐾)) → ((𝑥𝑅𝑦)𝑇𝑧) = ((𝑥𝑇𝑧)𝑂(𝑦𝑇𝑧)))
Assertion
Ref Expression
caofdir (𝜑 → ((𝐺f 𝑅𝐻) ∘f 𝑇𝐹) = ((𝐺f 𝑇𝐹) ∘f 𝑂(𝐻f 𝑇𝐹)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐹,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐻,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧   𝑥,𝑂,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem caofdir
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caofdir.5 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝐾)) → ((𝑥𝑅𝑦)𝑇𝑧) = ((𝑥𝑇𝑧)𝑂(𝑦𝑇𝑧)))
21adantlr 714 . . . 4 (((𝜑𝑤𝐴) ∧ (𝑥𝑆𝑦𝑆𝑧𝐾)) → ((𝑥𝑅𝑦)𝑇𝑧) = ((𝑥𝑇𝑧)𝑂(𝑦𝑇𝑧)))
3 caofdi.3 . . . . 5 (𝜑𝐺:𝐴𝑆)
43ffvelcdmda 7118 . . . 4 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑆)
5 caofdi.4 . . . . 5 (𝜑𝐻:𝐴𝑆)
65ffvelcdmda 7118 . . . 4 ((𝜑𝑤𝐴) → (𝐻𝑤) ∈ 𝑆)
7 caofdi.2 . . . . 5 (𝜑𝐹:𝐴𝐾)
87ffvelcdmda 7118 . . . 4 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝐾)
92, 4, 6, 8caovdird 7668 . . 3 ((𝜑𝑤𝐴) → (((𝐺𝑤)𝑅(𝐻𝑤))𝑇(𝐹𝑤)) = (((𝐺𝑤)𝑇(𝐹𝑤))𝑂((𝐻𝑤)𝑇(𝐹𝑤))))
109mpteq2dva 5266 . 2 (𝜑 → (𝑤𝐴 ↦ (((𝐺𝑤)𝑅(𝐻𝑤))𝑇(𝐹𝑤))) = (𝑤𝐴 ↦ (((𝐺𝑤)𝑇(𝐹𝑤))𝑂((𝐻𝑤)𝑇(𝐹𝑤)))))
11 caofdi.1 . . 3 (𝜑𝐴𝑉)
12 ovexd 7483 . . 3 ((𝜑𝑤𝐴) → ((𝐺𝑤)𝑅(𝐻𝑤)) ∈ V)
133feqmptd 6990 . . . 4 (𝜑𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
145feqmptd 6990 . . . 4 (𝜑𝐻 = (𝑤𝐴 ↦ (𝐻𝑤)))
1511, 4, 6, 13, 14offval2 7734 . . 3 (𝜑 → (𝐺f 𝑅𝐻) = (𝑤𝐴 ↦ ((𝐺𝑤)𝑅(𝐻𝑤))))
167feqmptd 6990 . . 3 (𝜑𝐹 = (𝑤𝐴 ↦ (𝐹𝑤)))
1711, 12, 8, 15, 16offval2 7734 . 2 (𝜑 → ((𝐺f 𝑅𝐻) ∘f 𝑇𝐹) = (𝑤𝐴 ↦ (((𝐺𝑤)𝑅(𝐻𝑤))𝑇(𝐹𝑤))))
18 ovexd 7483 . . 3 ((𝜑𝑤𝐴) → ((𝐺𝑤)𝑇(𝐹𝑤)) ∈ V)
19 ovexd 7483 . . 3 ((𝜑𝑤𝐴) → ((𝐻𝑤)𝑇(𝐹𝑤)) ∈ V)
2011, 4, 8, 13, 16offval2 7734 . . 3 (𝜑 → (𝐺f 𝑇𝐹) = (𝑤𝐴 ↦ ((𝐺𝑤)𝑇(𝐹𝑤))))
2111, 6, 8, 14, 16offval2 7734 . . 3 (𝜑 → (𝐻f 𝑇𝐹) = (𝑤𝐴 ↦ ((𝐻𝑤)𝑇(𝐹𝑤))))
2211, 18, 19, 20, 21offval2 7734 . 2 (𝜑 → ((𝐺f 𝑇𝐹) ∘f 𝑂(𝐻f 𝑇𝐹)) = (𝑤𝐴 ↦ (((𝐺𝑤)𝑇(𝐹𝑤))𝑂((𝐻𝑤)𝑇(𝐹𝑤)))))
2310, 17, 223eqtr4d 2790 1 (𝜑 → ((𝐺f 𝑅𝐻) ∘f 𝑇𝐹) = ((𝐺f 𝑇𝐹) ∘f 𝑂(𝐻f 𝑇𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714
This theorem is referenced by:  psrlmod  22003  lflvsdi1  39034  mendlmod  43150  expgrowth  44304
  Copyright terms: Public domain W3C validator