MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caofdir Structured version   Visualization version   GIF version

Theorem caofdir 7714
Description: Transfer a reverse distributive law to the function operation. (Contributed by NM, 19-Oct-2014.)
Hypotheses
Ref Expression
caofdi.1 (𝜑𝐴𝑉)
caofdi.2 (𝜑𝐹:𝐴𝐾)
caofdi.3 (𝜑𝐺:𝐴𝑆)
caofdi.4 (𝜑𝐻:𝐴𝑆)
caofdir.5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝐾)) → ((𝑥𝑅𝑦)𝑇𝑧) = ((𝑥𝑇𝑧)𝑂(𝑦𝑇𝑧)))
Assertion
Ref Expression
caofdir (𝜑 → ((𝐺f 𝑅𝐻) ∘f 𝑇𝐹) = ((𝐺f 𝑇𝐹) ∘f 𝑂(𝐻f 𝑇𝐹)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐹,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,𝐻,𝑦,𝑧   𝑥,𝐾,𝑦,𝑧   𝑥,𝑂,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑆,𝑦,𝑧   𝑥,𝑇,𝑦,𝑧
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem caofdir
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 caofdir.5 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑆𝑧𝐾)) → ((𝑥𝑅𝑦)𝑇𝑧) = ((𝑥𝑇𝑧)𝑂(𝑦𝑇𝑧)))
21adantlr 712 . . . 4 (((𝜑𝑤𝐴) ∧ (𝑥𝑆𝑦𝑆𝑧𝐾)) → ((𝑥𝑅𝑦)𝑇𝑧) = ((𝑥𝑇𝑧)𝑂(𝑦𝑇𝑧)))
3 caofdi.3 . . . . 5 (𝜑𝐺:𝐴𝑆)
43ffvelcdmda 7086 . . . 4 ((𝜑𝑤𝐴) → (𝐺𝑤) ∈ 𝑆)
5 caofdi.4 . . . . 5 (𝜑𝐻:𝐴𝑆)
65ffvelcdmda 7086 . . . 4 ((𝜑𝑤𝐴) → (𝐻𝑤) ∈ 𝑆)
7 caofdi.2 . . . . 5 (𝜑𝐹:𝐴𝐾)
87ffvelcdmda 7086 . . . 4 ((𝜑𝑤𝐴) → (𝐹𝑤) ∈ 𝐾)
92, 4, 6, 8caovdird 7629 . . 3 ((𝜑𝑤𝐴) → (((𝐺𝑤)𝑅(𝐻𝑤))𝑇(𝐹𝑤)) = (((𝐺𝑤)𝑇(𝐹𝑤))𝑂((𝐻𝑤)𝑇(𝐹𝑤))))
109mpteq2dva 5248 . 2 (𝜑 → (𝑤𝐴 ↦ (((𝐺𝑤)𝑅(𝐻𝑤))𝑇(𝐹𝑤))) = (𝑤𝐴 ↦ (((𝐺𝑤)𝑇(𝐹𝑤))𝑂((𝐻𝑤)𝑇(𝐹𝑤)))))
11 caofdi.1 . . 3 (𝜑𝐴𝑉)
12 ovexd 7447 . . 3 ((𝜑𝑤𝐴) → ((𝐺𝑤)𝑅(𝐻𝑤)) ∈ V)
133feqmptd 6960 . . . 4 (𝜑𝐺 = (𝑤𝐴 ↦ (𝐺𝑤)))
145feqmptd 6960 . . . 4 (𝜑𝐻 = (𝑤𝐴 ↦ (𝐻𝑤)))
1511, 4, 6, 13, 14offval2 7694 . . 3 (𝜑 → (𝐺f 𝑅𝐻) = (𝑤𝐴 ↦ ((𝐺𝑤)𝑅(𝐻𝑤))))
167feqmptd 6960 . . 3 (𝜑𝐹 = (𝑤𝐴 ↦ (𝐹𝑤)))
1711, 12, 8, 15, 16offval2 7694 . 2 (𝜑 → ((𝐺f 𝑅𝐻) ∘f 𝑇𝐹) = (𝑤𝐴 ↦ (((𝐺𝑤)𝑅(𝐻𝑤))𝑇(𝐹𝑤))))
18 ovexd 7447 . . 3 ((𝜑𝑤𝐴) → ((𝐺𝑤)𝑇(𝐹𝑤)) ∈ V)
19 ovexd 7447 . . 3 ((𝜑𝑤𝐴) → ((𝐻𝑤)𝑇(𝐹𝑤)) ∈ V)
2011, 4, 8, 13, 16offval2 7694 . . 3 (𝜑 → (𝐺f 𝑇𝐹) = (𝑤𝐴 ↦ ((𝐺𝑤)𝑇(𝐹𝑤))))
2111, 6, 8, 14, 16offval2 7694 . . 3 (𝜑 → (𝐻f 𝑇𝐹) = (𝑤𝐴 ↦ ((𝐻𝑤)𝑇(𝐹𝑤))))
2211, 18, 19, 20, 21offval2 7694 . 2 (𝜑 → ((𝐺f 𝑇𝐹) ∘f 𝑂(𝐻f 𝑇𝐹)) = (𝑤𝐴 ↦ (((𝐺𝑤)𝑇(𝐹𝑤))𝑂((𝐻𝑤)𝑇(𝐹𝑤)))))
2310, 17, 223eqtr4d 2781 1 (𝜑 → ((𝐺f 𝑅𝐻) ∘f 𝑇𝐹) = ((𝐺f 𝑇𝐹) ∘f 𝑂(𝐻f 𝑇𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  Vcvv 3473  cmpt 5231  wf 6539  cfv 6543  (class class class)co 7412  f cof 7672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674
This theorem is referenced by:  psrlmod  21833  lflvsdi1  38415  mendlmod  42401  expgrowth  43560
  Copyright terms: Public domain W3C validator