Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > caofdir | Structured version Visualization version GIF version |
Description: Transfer a reverse distributive law to the function operation. (Contributed by NM, 19-Oct-2014.) |
Ref | Expression |
---|---|
caofdi.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
caofdi.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝐾) |
caofdi.3 | ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) |
caofdi.4 | ⊢ (𝜑 → 𝐻:𝐴⟶𝑆) |
caofdir.5 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝐾)) → ((𝑥𝑅𝑦)𝑇𝑧) = ((𝑥𝑇𝑧)𝑂(𝑦𝑇𝑧))) |
Ref | Expression |
---|---|
caofdir | ⊢ (𝜑 → ((𝐺 ∘f 𝑅𝐻) ∘f 𝑇𝐹) = ((𝐺 ∘f 𝑇𝐹) ∘f 𝑂(𝐻 ∘f 𝑇𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caofdir.5 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝐾)) → ((𝑥𝑅𝑦)𝑇𝑧) = ((𝑥𝑇𝑧)𝑂(𝑦𝑇𝑧))) | |
2 | 1 | adantlr 715 | . . . 4 ⊢ (((𝜑 ∧ 𝑤 ∈ 𝐴) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝐾)) → ((𝑥𝑅𝑦)𝑇𝑧) = ((𝑥𝑇𝑧)𝑂(𝑦𝑇𝑧))) |
3 | caofdi.3 | . . . . 5 ⊢ (𝜑 → 𝐺:𝐴⟶𝑆) | |
4 | 3 | ffvelrnda 6862 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐺‘𝑤) ∈ 𝑆) |
5 | caofdi.4 | . . . . 5 ⊢ (𝜑 → 𝐻:𝐴⟶𝑆) | |
6 | 5 | ffvelrnda 6862 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐻‘𝑤) ∈ 𝑆) |
7 | caofdi.2 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝐾) | |
8 | 7 | ffvelrnda 6862 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (𝐹‘𝑤) ∈ 𝐾) |
9 | 2, 4, 6, 8 | caovdird 7383 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → (((𝐺‘𝑤)𝑅(𝐻‘𝑤))𝑇(𝐹‘𝑤)) = (((𝐺‘𝑤)𝑇(𝐹‘𝑤))𝑂((𝐻‘𝑤)𝑇(𝐹‘𝑤)))) |
10 | 9 | mpteq2dva 5126 | . 2 ⊢ (𝜑 → (𝑤 ∈ 𝐴 ↦ (((𝐺‘𝑤)𝑅(𝐻‘𝑤))𝑇(𝐹‘𝑤))) = (𝑤 ∈ 𝐴 ↦ (((𝐺‘𝑤)𝑇(𝐹‘𝑤))𝑂((𝐻‘𝑤)𝑇(𝐹‘𝑤))))) |
11 | caofdi.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
12 | ovexd 7206 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐺‘𝑤)𝑅(𝐻‘𝑤)) ∈ V) | |
13 | 3 | feqmptd 6738 | . . . 4 ⊢ (𝜑 → 𝐺 = (𝑤 ∈ 𝐴 ↦ (𝐺‘𝑤))) |
14 | 5 | feqmptd 6738 | . . . 4 ⊢ (𝜑 → 𝐻 = (𝑤 ∈ 𝐴 ↦ (𝐻‘𝑤))) |
15 | 11, 4, 6, 13, 14 | offval2 7445 | . . 3 ⊢ (𝜑 → (𝐺 ∘f 𝑅𝐻) = (𝑤 ∈ 𝐴 ↦ ((𝐺‘𝑤)𝑅(𝐻‘𝑤)))) |
16 | 7 | feqmptd 6738 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑤 ∈ 𝐴 ↦ (𝐹‘𝑤))) |
17 | 11, 12, 8, 15, 16 | offval2 7445 | . 2 ⊢ (𝜑 → ((𝐺 ∘f 𝑅𝐻) ∘f 𝑇𝐹) = (𝑤 ∈ 𝐴 ↦ (((𝐺‘𝑤)𝑅(𝐻‘𝑤))𝑇(𝐹‘𝑤)))) |
18 | ovexd 7206 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐺‘𝑤)𝑇(𝐹‘𝑤)) ∈ V) | |
19 | ovexd 7206 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝐴) → ((𝐻‘𝑤)𝑇(𝐹‘𝑤)) ∈ V) | |
20 | 11, 4, 8, 13, 16 | offval2 7445 | . . 3 ⊢ (𝜑 → (𝐺 ∘f 𝑇𝐹) = (𝑤 ∈ 𝐴 ↦ ((𝐺‘𝑤)𝑇(𝐹‘𝑤)))) |
21 | 11, 6, 8, 14, 16 | offval2 7445 | . . 3 ⊢ (𝜑 → (𝐻 ∘f 𝑇𝐹) = (𝑤 ∈ 𝐴 ↦ ((𝐻‘𝑤)𝑇(𝐹‘𝑤)))) |
22 | 11, 18, 19, 20, 21 | offval2 7445 | . 2 ⊢ (𝜑 → ((𝐺 ∘f 𝑇𝐹) ∘f 𝑂(𝐻 ∘f 𝑇𝐹)) = (𝑤 ∈ 𝐴 ↦ (((𝐺‘𝑤)𝑇(𝐹‘𝑤))𝑂((𝐻‘𝑤)𝑇(𝐹‘𝑤))))) |
23 | 10, 17, 22 | 3eqtr4d 2783 | 1 ⊢ (𝜑 → ((𝐺 ∘f 𝑅𝐻) ∘f 𝑇𝐹) = ((𝐺 ∘f 𝑇𝐹) ∘f 𝑂(𝐻 ∘f 𝑇𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2113 Vcvv 3398 ↦ cmpt 5111 ⟶wf 6336 ‘cfv 6340 (class class class)co 7171 ∘f cof 7424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5155 ax-sep 5168 ax-nul 5175 ax-pr 5297 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3683 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-id 5430 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-ov 7174 df-oprab 7175 df-mpo 7176 df-of 7426 |
This theorem is referenced by: psrlmod 20781 lflvsdi1 36712 mendlmod 40582 expgrowth 41483 |
Copyright terms: Public domain | W3C validator |