| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > caovdi | Structured version Visualization version GIF version | ||
| Description: Convert an operation distributive law to class notation. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 28-Jun-2013.) |
| Ref | Expression |
|---|---|
| caovdi.1 | ⊢ 𝐴 ∈ V |
| caovdi.2 | ⊢ 𝐵 ∈ V |
| caovdi.3 | ⊢ 𝐶 ∈ V |
| caovdi.4 | ⊢ (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧)) |
| Ref | Expression |
|---|---|
| caovdi | ⊢ (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovdi.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | caovdi.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | caovdi.3 | . 2 ⊢ 𝐶 ∈ V | |
| 4 | tru 1545 | . . 3 ⊢ ⊤ | |
| 5 | caovdi.4 | . . . . 5 ⊢ (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧)) | |
| 6 | 5 | a1i 11 | . . . 4 ⊢ ((⊤ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧))) |
| 7 | 6 | caovdig 7560 | . . 3 ⊢ ((⊤ ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V)) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶))) |
| 8 | 4, 7 | mpan 690 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶))) |
| 9 | 1, 2, 3, 8 | mp3an 1463 | 1 ⊢ (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1541 ⊤wtru 1542 ∈ wcel 2111 Vcvv 3436 (class class class)co 7346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: caovdir 7580 caovlem2 7582 |
| Copyright terms: Public domain | W3C validator |