Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > caovdi | Structured version Visualization version GIF version |
Description: Convert an operation distributive law to class notation. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 28-Jun-2013.) |
Ref | Expression |
---|---|
caovdi.1 | ⊢ 𝐴 ∈ V |
caovdi.2 | ⊢ 𝐵 ∈ V |
caovdi.3 | ⊢ 𝐶 ∈ V |
caovdi.4 | ⊢ (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧)) |
Ref | Expression |
---|---|
caovdi | ⊢ (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovdi.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | caovdi.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | caovdi.3 | . 2 ⊢ 𝐶 ∈ V | |
4 | tru 1543 | . . 3 ⊢ ⊤ | |
5 | caovdi.4 | . . . . 5 ⊢ (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧)) | |
6 | 5 | a1i 11 | . . . 4 ⊢ ((⊤ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧))) |
7 | 6 | caovdig 7464 | . . 3 ⊢ ((⊤ ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V)) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶))) |
8 | 4, 7 | mpan 686 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶))) |
9 | 1, 2, 3, 8 | mp3an 1459 | 1 ⊢ (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1085 = wceq 1539 ⊤wtru 1540 ∈ wcel 2108 Vcvv 3422 (class class class)co 7255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 |
This theorem is referenced by: caovdir 7484 caovlem2 7486 |
Copyright terms: Public domain | W3C validator |