Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > caovdi | Structured version Visualization version GIF version |
Description: Convert an operation distributive law to class notation. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 28-Jun-2013.) |
Ref | Expression |
---|---|
caovdi.1 | ⊢ 𝐴 ∈ V |
caovdi.2 | ⊢ 𝐵 ∈ V |
caovdi.3 | ⊢ 𝐶 ∈ V |
caovdi.4 | ⊢ (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧)) |
Ref | Expression |
---|---|
caovdi | ⊢ (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caovdi.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | caovdi.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | caovdi.3 | . 2 ⊢ 𝐶 ∈ V | |
4 | tru 1542 | . . 3 ⊢ ⊤ | |
5 | caovdi.4 | . . . . 5 ⊢ (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧)) | |
6 | 5 | a1i 11 | . . . 4 ⊢ ((⊤ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V ∧ 𝑧 ∈ V)) → (𝑥𝐺(𝑦𝐹𝑧)) = ((𝑥𝐺𝑦)𝐹(𝑥𝐺𝑧))) |
7 | 6 | caovdig 7364 | . . 3 ⊢ ((⊤ ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V)) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶))) |
8 | 4, 7 | mpan 689 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) → (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶))) |
9 | 1, 2, 3, 8 | mp3an 1458 | 1 ⊢ (𝐴𝐺(𝐵𝐹𝐶)) = ((𝐴𝐺𝐵)𝐹(𝐴𝐺𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 ∧ w3a 1084 = wceq 1538 ⊤wtru 1539 ∈ wcel 2111 Vcvv 3409 (class class class)co 7156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-v 3411 df-un 3865 df-in 3867 df-ss 3877 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-iota 6299 df-fv 6348 df-ov 7159 |
This theorem is referenced by: caovdir 7384 caovlem2 7386 |
Copyright terms: Public domain | W3C validator |